Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):m177–m178. doi: 10.1107/S2056989015016254

Crystal structure of tris­(1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium) tetra­bromido­cobaltate(II) bromide chloro­form hexa­solvate

Eduard Rais a, Ulrich Flörke a,*, René Wilhelm a,*
PMCID: PMC4647430  PMID: 26594424

Abstract

In the unit cell of the title compound, (C21H27N2)3[CoBr4]Br·6CHCl3, the tetrabromidocobaltate(II) anion and the bromide anion are located on a crystallographic threefold rotation axis. For the [CoBr4]2− group, the axis runs through one of the Br ligands and the CoII atom. All other structure moieties lie on general sites. Various tris­(1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium) structures with different counter-ions have been reported. In the title compound, the N—C—N angle is 113.7 (5)°, with short C—N bond lengths of 1.297 (7) and 1.307 (7) Å. The two mesityl planes make a dihedral angle of 34.6 (1)° and the dihedral angles between the mesityl and N–C–N planes are 82.0 (1) and 88.5 (1)°, respectively. The imidazoline ring is almost planar, with atom deviations in the range 0.003 (5)–0.017 (5) Å from the best plane; the mean deviation is 0.012 (5) Å. In the crystal, non-covalent inter­actions of the C—H⋯Br type occur between the Br anion and the cation, as well as between the [CoBr4]2− anion and both the chloro­form solvent mol­ecules. These H⋯A distances are slightly shorter than the sum of van der Waals radii.

Keywords: crystal structure, imidazolium salt, absolute structure, C—H⋯Br inter­actions

Related literature  

For similar tris­(1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium) structures, see: Arduengo et al. (1995); Hagos et al. (2008); Santoro et al. (2013); Buchalski et al. (2015). For synthesis of 2-bromo-1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium bromide, see: Wiggins et al. (2012). For the application of 1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium cation as a carbene precursor, see: Díez-González et al. (2009). For catalytic application of imidazolium based [CoCl4]2− salts, see: Bica & Gärtner (2008); Wang et al. (2015).graphic file with name e-71-0m177-scheme1.jpg

Experimental  

Crystal data  

  • (C21H27N2)3[CoBr4]Br·6CHCl3

  • M r = 2097.02

  • Trigonal, Inline graphic

  • a = 16.0535 (14) Å

  • c = 61.790 (12) Å

  • V = 13791 (4) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 130 K

  • 0.22 × 0.21 × 0.20 mm

Data collection  

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.279, T max = 1.0

  • 41734 measured reflections

  • 7309 independent reflections

  • 4427 reflections with I > 2σ(I)

  • R int = 0.077

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.078

  • S = 0.79

  • 7309 reflections

  • 306 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.65 e Å−3

  • Absolute structure: Flack (1983), 1821 Friedel pairs

  • Absolute structure parameter: 0.020 (11)

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015016254/nr2061sup1.cif

e-71-0m177-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016254/nr2061Isup2.hkl

e-71-0m177-Isup2.hkl (358KB, hkl)

. DOI: 10.1107/S2056989015016254/nr2061fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level. Non-stoichiometric representation.

a . DOI: 10.1107/S2056989015016254/nr2061fig2.tif

Crystal packing approximately viewed along a axis with inter­molecular hydrogen bonding pattern drawn as dotted lines. H-atoms not involved are omitted.

CCDC reference: 1421420

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1ABr3ii 0.95 2.58 3.373(4) 141
C100H10Br1i 1.00 2.71 3.668(5) 161
C200H20Br2iii 1.00 2.54 3.454(6) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

S1. Synthesis and crystallization

All manipulations were carried out under nitro­gen atmosphere using standard Schlenk techniques. MeCN was dried with an MBRAUN MB SPS-800 solvent purification system under nitro­gen. CHCl3 was dried over activated molecular sieve with 3 Å pore diameter. 2-Bromo-1,3-dimesityl-4,5-di­hydro-1H-imidazol-3-ium bromide (0.080 g, 0.172 mmol, 1 eq) and Cobalt powder (0.227 g, 3.852 mmol, 22 eq, grain size < 150 µm) were filled into a sealed schlenk tube equipped with a stirring bar. MeCN (3 mL) was added and the mixture was stirred and heated at 100 °C for 40 h under inert gas. The cooled down mixture was filtrated and the solvent was then removed under vacuum. The residual brown oil was separated by decantation and was dissolved in CHCl3 (0.7 mL). Crystal growth could be observed after one day. The NMR spectra are not suitable because of the paramagnetic properties of the [CoBr4]2- anion.

S2. Refinement

Hydrogen atom positions were clearly derived from difference Fourier maps and then refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(-CH3) and C–H 0.95-1.00 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip. It was not possible to refine a satisfactory split model for the C100–chloro­form.

S3. Chemical Context

The cation is a common precursor for the synthesis of 1,3-dimesityl-4,5-di­hydro­imidazol-2-yl­idene, which is used as a ligand in various catalytic applications (Díez-González et al., 2009). Alkyl-substituted imidazolium cations with [CoX4]2- anions (X = Cl, Br) are used as metal-containing ionic liquids (Bica & Gaertner, 2008; Wang et al., 2015).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level. Non-stoichiometric representation.

Fig. 2.

Fig. 2.

Crystal packing approximately viewed along a axis with intermolecular hydrogen bonding pattern drawn as dotted lines. H-atoms not involved are omitted.

Crystal data

(C21H27N2)3[CoBr4]Br·6CHCl3 Dx = 1.515 Mg m3
Mr = 2097.02 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:H Cell parameters from 4234 reflections
a = 16.0535 (14) Å θ = 2.5–19.7°
c = 61.790 (12) Å µ = 2.92 mm1
V = 13791 (4) Å3 T = 130 K
Z = 6 Prism, pale-green
F(000) = 6306 0.22 × 0.21 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer 7309 independent reflections
Radiation source: sealed tube 4427 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.077
φ and ω scans θmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −21→21
Tmin = 0.279, Tmax = 1.0 k = −21→19
41734 measured reflections l = −81→81

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0298P)2] where P = (Fo2 + 2Fc2)/3
S = 0.79 (Δ/σ)max = 0.001
7309 reflections Δρmax = 0.65 e Å3
306 parameters Δρmin = −0.64 e Å3
1 restraint Absolute structure: Flack (1983), 1821 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.020 (11)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.6667 0.3333 0.91225 (2) 0.0290 (3)
Br1 0.77035 (4) 0.49648 (5) 0.92389 (2) 0.04336 (19)
Br2 0.6667 0.3333 0.87362 (2) 0.0630 (4)
Br3 0.3333 0.6667 0.91594 (3) 0.0524 (4)
N1 0.4682 (3) −0.0461 (3) 0.90279 (8) 0.0296 (12)
N2 0.4612 (3) −0.0455 (3) 0.93802 (8) 0.0281 (12)
C1 0.4610 (4) −0.0918 (4) 0.92081 (10) 0.0292 (14)
H1A 0.4561 −0.1533 0.9213 0.035*
C2 0.4754 (4) 0.0476 (4) 0.90750 (10) 0.0338 (16)
H2A 0.4225 0.0526 0.9005 0.041*
H2B 0.5378 0.1017 0.9026 0.041*
C3 0.4669 (4) 0.0462 (4) 0.93224 (9) 0.0270 (14)
H3A 0.5239 0.1015 0.9389 0.032*
H3B 0.4082 0.0472 0.9368 0.032*
C4 0.4725 (4) −0.0782 (4) 0.88091 (10) 0.0319 (15)
C5 0.5614 (5) −0.0511 (5) 0.87196 (13) 0.049 (2)
C6 0.5625 (6) −0.0800 (5) 0.85046 (12) 0.055 (2)
H6A 0.6222 −0.0621 0.8437 0.065*
C7 0.4769 (7) −0.1346 (6) 0.83901 (12) 0.054 (2)
C8 0.3921 (6) −0.1592 (5) 0.84898 (11) 0.0464 (18)
H8A 0.3340 −0.1964 0.8412 0.056*
C9 0.3867 (5) −0.1327 (4) 0.86980 (11) 0.0375 (16)
C10 0.6534 (5) 0.0048 (6) 0.88517 (16) 0.087 (3)
H10A 0.6525 −0.0346 0.8974 0.130*
H10B 0.6577 0.0641 0.8907 0.130*
H10C 0.7092 0.0210 0.8760 0.130*
C11 0.4845 (7) −0.1602 (6) 0.81586 (12) 0.080 (3)
H11A 0.5414 −0.1673 0.8143 0.120*
H11B 0.4902 −0.1090 0.8062 0.120*
H11C 0.4268 −0.2209 0.8120 0.120*
C12 0.2910 (5) −0.1610 (5) 0.87956 (12) 0.0503 (19)
H12A 0.2405 −0.1947 0.8687 0.075*
H12B 0.2902 −0.1032 0.8844 0.075*
H12C 0.2795 −0.2035 0.8919 0.075*
C13 0.4495 (4) −0.0797 (4) 0.96013 (10) 0.0293 (14)
C14 0.5308 (4) −0.0439 (4) 0.97348 (11) 0.0356 (16)
C15 0.5164 (5) −0.0718 (4) 0.99472 (11) 0.0395 (17)
H15A 0.5707 −0.0479 1.0040 0.047*
C16 0.4255 (5) −0.1339 (4) 1.00332 (11) 0.0403 (17)
C17 0.3468 (5) −0.1667 (5) 0.98966 (12) 0.0454 (19)
H17A 0.2845 −0.2091 0.9953 0.055*
C18 0.3559 (5) −0.1394 (4) 0.96770 (12) 0.0378 (16)
C19 0.6300 (4) 0.0195 (5) 0.96462 (11) 0.0487 (19)
H19A 0.6332 0.0760 0.9577 0.073*
H19B 0.6447 −0.0163 0.9539 0.073*
H19C 0.6769 0.0403 0.9764 0.073*
C20 0.4143 (6) −0.1603 (5) 1.02691 (12) 0.059 (2)
H20A 0.4242 −0.2153 1.0290 0.089*
H20B 0.3495 −0.1774 1.0317 0.089*
H20C 0.4620 −0.1054 1.0354 0.089*
C21 0.2699 (4) −0.1763 (5) 0.95317 (12) 0.0503 (19)
H21A 0.2725 −0.2195 0.9423 0.076*
H21B 0.2698 −0.1221 0.9459 0.076*
H21C 0.2111 −0.2116 0.9618 0.076*
C100 0.8893 (6) 0.1327 (6) 0.92865 (13) 0.070 (3)
H10 0.8362 0.1455 0.9248 0.084*
Cl11 0.91290 (19) 0.1546 (2) 0.95548 (4) 0.0938 (8)
Cl12 0.8521 (2) 0.0149 (2) 0.92250 (7) 0.1562 (18)
Cl13 0.9911 (3) 0.2121 (2) 0.91398 (5) 0.1293 (12)
C200 0.0704 (6) 0.8507 (6) 0.01629 (18) 0.091 (3)
H20 0.0749 0.9066 0.0245 0.109*
Cl21 0.1365 (2) 0.8900 (2) −0.00698 (6) 0.1410 (14)
Cl22 0.11836 (19) 0.7912 (2) 0.03238 (5) 0.1032 (9)
Cl23 −0.05036 (16) 0.76626 (15) 0.01124 (4) 0.0790 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0214 (5) 0.0214 (5) 0.0440 (10) 0.0107 (2) 0.000 0.000
Br1 0.0253 (3) 0.0267 (3) 0.0769 (5) 0.0121 (3) −0.0062 (4) −0.0129 (3)
Br2 0.0687 (6) 0.0687 (6) 0.0515 (9) 0.0344 (3) 0.000 0.000
Br3 0.0263 (4) 0.0263 (4) 0.1045 (11) 0.01314 (19) 0.000 0.000
N1 0.030 (3) 0.027 (3) 0.033 (3) 0.015 (2) −0.001 (2) −0.004 (2)
N2 0.032 (3) 0.026 (3) 0.028 (3) 0.016 (2) 0.003 (2) 0.000 (2)
C1 0.023 (3) 0.024 (3) 0.034 (4) 0.007 (3) 0.002 (3) 0.002 (3)
C2 0.032 (4) 0.025 (3) 0.046 (5) 0.015 (3) −0.004 (3) −0.004 (3)
C3 0.031 (3) 0.027 (3) 0.027 (4) 0.017 (3) −0.001 (3) −0.005 (3)
C4 0.041 (4) 0.024 (3) 0.031 (4) 0.016 (3) 0.004 (3) 0.004 (3)
C5 0.051 (5) 0.034 (4) 0.065 (6) 0.023 (4) 0.013 (4) −0.001 (4)
C6 0.072 (6) 0.049 (5) 0.056 (6) 0.041 (4) 0.036 (5) 0.017 (4)
C7 0.092 (6) 0.056 (5) 0.037 (5) 0.055 (5) −0.005 (5) −0.002 (4)
C8 0.062 (5) 0.056 (5) 0.029 (4) 0.034 (4) −0.001 (4) −0.007 (4)
C9 0.052 (4) 0.032 (4) 0.031 (4) 0.023 (3) −0.005 (3) −0.003 (3)
C10 0.029 (4) 0.098 (7) 0.125 (9) 0.026 (5) 0.007 (5) −0.044 (6)
C11 0.149 (9) 0.094 (7) 0.044 (6) 0.095 (7) 0.010 (5) 0.005 (5)
C12 0.043 (4) 0.047 (4) 0.050 (5) 0.014 (4) −0.009 (4) −0.015 (4)
C13 0.037 (4) 0.020 (3) 0.032 (4) 0.015 (3) 0.004 (3) 0.002 (3)
C14 0.039 (4) 0.027 (3) 0.039 (5) 0.015 (3) 0.001 (3) 0.010 (3)
C15 0.047 (4) 0.040 (4) 0.035 (5) 0.024 (4) 0.000 (3) 0.007 (3)
C16 0.060 (5) 0.034 (4) 0.034 (4) 0.030 (4) 0.005 (4) 0.004 (3)
C17 0.052 (5) 0.036 (4) 0.045 (5) 0.021 (4) 0.028 (4) 0.011 (4)
C18 0.041 (4) 0.027 (4) 0.046 (5) 0.017 (3) 0.005 (3) −0.005 (3)
C19 0.034 (4) 0.050 (4) 0.050 (5) 0.012 (4) −0.001 (3) 0.007 (4)
C20 0.073 (6) 0.052 (5) 0.052 (5) 0.030 (4) 0.019 (4) 0.021 (4)
C21 0.035 (4) 0.050 (4) 0.058 (5) 0.015 (4) 0.011 (4) 0.000 (4)
C100 0.076 (6) 0.086 (6) 0.074 (7) 0.061 (6) −0.032 (5) −0.030 (5)
Cl11 0.106 (2) 0.119 (2) 0.0673 (17) 0.0651 (18) −0.0027 (14) 0.0048 (15)
Cl12 0.159 (3) 0.107 (2) 0.248 (5) 0.101 (2) −0.115 (3) −0.096 (3)
Cl13 0.192 (3) 0.165 (3) 0.115 (2) 0.153 (3) 0.073 (2) 0.067 (2)
C200 0.061 (6) 0.049 (5) 0.147 (10) 0.016 (5) 0.028 (6) −0.021 (6)
Cl21 0.128 (3) 0.114 (2) 0.181 (4) 0.060 (2) 0.098 (3) 0.067 (2)
Cl22 0.096 (2) 0.0933 (19) 0.107 (2) 0.0379 (16) −0.0029 (17) −0.0331 (17)
Cl23 0.0694 (15) 0.0597 (14) 0.0825 (17) 0.0131 (12) 0.0122 (13) −0.0093 (12)

Geometric parameters (Å, º)

Co1—Br2 2.387 (2) C11—H11C 0.9800
Co1—Br1 2.4057 (8) C12—H12A 0.9800
Co1—Br1i 2.4057 (8) C12—H12B 0.9800
Co1—Br1ii 2.4057 (8) C12—H12C 0.9800
N1—C1 1.307 (7) C13—C18 1.397 (8)
N1—C4 1.460 (7) C13—C14 1.402 (8)
N1—C2 1.479 (7) C14—C15 1.368 (8)
N2—C1 1.297 (7) C14—C19 1.500 (8)
N2—C13 1.449 (7) C15—C16 1.397 (9)
N2—C3 1.472 (7) C15—H15A 0.9500
C1—H1A 0.9500 C16—C17 1.386 (10)
C2—C3 1.534 (8) C16—C20 1.504 (9)
C2—H2A 0.9900 C17—C18 1.411 (9)
C2—H2B 0.9900 C17—H17A 0.9500
C3—H3A 0.9900 C18—C21 1.499 (9)
C3—H3B 0.9900 C19—H19A 0.9800
C4—C5 1.383 (9) C19—H19B 0.9800
C4—C9 1.389 (8) C19—H19C 0.9800
C5—C6 1.410 (10) C20—H20A 0.9800
C5—C10 1.525 (10) C20—H20B 0.9800
C6—C7 1.397 (10) C20—H20C 0.9800
C6—H6A 0.9500 C21—H21A 0.9800
C7—C8 1.360 (10) C21—H21B 0.9800
C7—C11 1.510 (10) C21—H21C 0.9800
C8—C9 1.371 (9) C100—Cl11 1.698 (8)
C8—H8A 0.9500 C100—Cl12 1.716 (8)
C9—C12 1.494 (9) C100—Cl13 1.741 (9)
C10—H10A 0.9800 C100—H10 1.0000
C10—H10B 0.9800 C200—Cl21 1.709 (10)
C10—H10C 0.9800 C200—Cl23 1.751 (9)
C11—H11A 0.9800 C200—Cl22 1.797 (11)
C11—H11B 0.9800 C200—H20 1.0000
Br2—Co1—Br1 107.39 (4) H11B—C11—H11C 109.5
Br2—Co1—Br1i 107.39 (4) C9—C12—H12A 109.5
Br1—Co1—Br1i 111.47 (4) C9—C12—H12B 109.5
Br2—Co1—Br1ii 107.39 (4) H12A—C12—H12B 109.5
Br1—Co1—Br1ii 111.47 (4) C9—C12—H12C 109.5
Br1i—Co1—Br1ii 111.47 (4) H12A—C12—H12C 109.5
C1—N1—C4 126.6 (5) H12B—C12—H12C 109.5
C1—N1—C2 110.1 (5) C18—C13—C14 123.0 (6)
C4—N1—C2 123.2 (5) C18—C13—N2 117.9 (5)
C1—N2—C13 126.4 (5) C14—C13—N2 118.8 (5)
C1—N2—C3 110.8 (5) C15—C14—C13 117.4 (6)
C13—N2—C3 122.6 (5) C15—C14—C19 121.4 (6)
N2—C1—N1 113.7 (5) C13—C14—C19 121.2 (6)
N2—C1—H1A 123.1 C14—C15—C16 123.0 (6)
N1—C1—H1A 123.1 C14—C15—H15A 118.5
N1—C2—C3 102.7 (5) C16—C15—H15A 118.5
N1—C2—H2A 111.2 C17—C16—C15 117.9 (6)
C3—C2—H2A 111.2 C17—C16—C20 121.7 (6)
N1—C2—H2B 111.2 C15—C16—C20 120.3 (7)
C3—C2—H2B 111.2 C16—C17—C18 122.3 (6)
H2A—C2—H2B 109.1 C16—C17—H17A 118.9
N2—C3—C2 102.5 (4) C18—C17—H17A 118.9
N2—C3—H3A 111.3 C13—C18—C17 116.4 (6)
C2—C3—H3A 111.3 C13—C18—C21 122.2 (6)
N2—C3—H3B 111.3 C17—C18—C21 121.4 (6)
C2—C3—H3B 111.3 C14—C19—H19A 109.5
H3A—C3—H3B 109.2 C14—C19—H19B 109.5
C5—C4—C9 122.9 (6) H19A—C19—H19B 109.5
C5—C4—N1 118.9 (6) C14—C19—H19C 109.5
C9—C4—N1 118.2 (5) H19A—C19—H19C 109.5
C4—C5—C6 117.0 (7) H19B—C19—H19C 109.5
C4—C5—C10 121.0 (7) C16—C20—H20A 109.5
C6—C5—C10 122.0 (7) C16—C20—H20B 109.5
C7—C6—C5 120.9 (7) H20A—C20—H20B 109.5
C7—C6—H6A 119.5 C16—C20—H20C 109.5
C5—C6—H6A 119.5 H20A—C20—H20C 109.5
C8—C7—C6 118.7 (7) H20B—C20—H20C 109.5
C8—C7—C11 123.7 (8) C18—C21—H21A 109.5
C6—C7—C11 117.5 (8) C18—C21—H21B 109.5
C7—C8—C9 123.0 (7) H21A—C21—H21B 109.5
C7—C8—H8A 118.5 C18—C21—H21C 109.5
C9—C8—H8A 118.5 H21A—C21—H21C 109.5
C8—C9—C4 117.6 (6) H21B—C21—H21C 109.5
C8—C9—C12 119.9 (6) Cl11—C100—Cl12 111.3 (5)
C4—C9—C12 122.5 (6) Cl11—C100—Cl13 109.0 (5)
C5—C10—H10A 109.5 Cl12—C100—Cl13 112.0 (5)
C5—C10—H10B 109.5 Cl11—C100—H10 108.1
H10A—C10—H10B 109.5 Cl12—C100—H10 108.1
C5—C10—H10C 109.5 Cl13—C100—H10 108.1
H10A—C10—H10C 109.5 Cl21—C200—Cl23 112.2 (6)
H10B—C10—H10C 109.5 Cl21—C200—Cl22 108.1 (5)
C7—C11—H11A 109.5 Cl23—C200—Cl22 106.8 (5)
C7—C11—H11B 109.5 Cl21—C200—H20 109.9
H11A—C11—H11B 109.5 Cl23—C200—H20 109.9
C7—C11—H11C 109.5 Cl22—C200—H20 109.9
H11A—C11—H11C 109.5
C13—N2—C1—N1 176.7 (5) C5—C4—C9—C8 −0.7 (9)
C3—N2—C1—N1 1.7 (7) N1—C4—C9—C8 177.6 (5)
C4—N1—C1—N2 178.3 (5) C5—C4—C9—C12 −179.5 (6)
C2—N1—C1—N2 0.4 (7) N1—C4—C9—C12 −1.2 (9)
C1—N1—C2—C3 −2.2 (6) C1—N2—C13—C18 −82.7 (7)
C4—N1—C2—C3 179.9 (5) C3—N2—C13—C18 91.8 (7)
C1—N2—C3—C2 −2.9 (6) C1—N2—C13—C14 103.6 (7)
C13—N2—C3—C2 −178.1 (5) C3—N2—C13—C14 −81.9 (7)
N1—C2—C3—N2 2.8 (5) C18—C13—C14—C15 1.8 (9)
C1—N1—C4—C5 −91.4 (7) N2—C13—C14—C15 175.0 (5)
C2—N1—C4—C5 86.2 (7) C18—C13—C14—C19 179.6 (6)
C1—N1—C4—C9 90.3 (7) N2—C13—C14—C19 −7.1 (9)
C2—N1—C4—C9 −92.1 (7) C13—C14—C15—C16 0.5 (9)
C9—C4—C5—C6 1.1 (9) C19—C14—C15—C16 −177.3 (6)
N1—C4—C5—C6 −177.2 (5) C14—C15—C16—C17 −1.3 (10)
C9—C4—C5—C10 −177.1 (7) C14—C15—C16—C20 −178.8 (6)
N1—C4—C5—C10 4.6 (10) C15—C16—C17—C18 −0.1 (9)
C4—C5—C6—C7 −0.8 (10) C20—C16—C17—C18 177.3 (6)
C10—C5—C6—C7 177.3 (7) C14—C13—C18—C17 −3.0 (9)
C5—C6—C7—C8 0.3 (10) N2—C13—C18—C17 −176.4 (5)
C5—C6—C7—C11 178.3 (6) C14—C13—C18—C21 179.7 (6)
C6—C7—C8—C9 0.1 (11) N2—C13—C18—C21 6.3 (9)
C11—C7—C8—C9 −177.8 (6) C16—C17—C18—C13 2.2 (9)
C7—C8—C9—C4 0.1 (10) C16—C17—C18—C21 179.5 (6)
C7—C8—C9—C12 178.9 (6)

Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, xy, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···Br3iii 0.95 2.58 3.373 (4) 141
C100—H10···Br1i 1.00 2.71 3.668 (5) 161
C200—H20···Br2iv 1.00 2.54 3.454 (6) 152

Symmetry codes: (i) −x+y+1, −x+1, z; (iii) x, y−1, z; (iv) −y+1/3, −x+5/3, z−5/6.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NR2061).

References

  1. Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.
  2. Bica, K. & Gärtner, P. (2008). Eur. J. Org. Chem. 2008, 3453–3456.
  3. Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Buchalski, P., Pacholski, R., Chodkiewicz, K., Buchowicz, W., Suwińska, K. & Shkurenko, A. (2015). Dalton Trans. 44, 7169–7176. [DOI] [PubMed]
  5. Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676. [DOI] [PubMed]
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Hagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357. [DOI] [PMC free article] [PubMed]
  8. Santoro, O., Collado, A., Slawin, A. M. Z., Nolan, S. P. & Cazin, C. S. J. (2013). Chem. Commun. 49, 10483–10485. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  12. Wang, Q., Geng, Y., Lu, X. & Zhang, S. (2015). ACS Sustainable Chem. Eng. 3, 340–348.
  13. Wiggins, K. M., Moerdyk, J. P. & Bielawski, C. W. (2012). Chem. Sci. 3, 2986–2992.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015016254/nr2061sup1.cif

e-71-0m177-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016254/nr2061Isup2.hkl

e-71-0m177-Isup2.hkl (358KB, hkl)

. DOI: 10.1107/S2056989015016254/nr2061fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement ellipsoids drawn at the 50% probability level. Non-stoichiometric representation.

a . DOI: 10.1107/S2056989015016254/nr2061fig2.tif

Crystal packing approximately viewed along a axis with inter­molecular hydrogen bonding pattern drawn as dotted lines. H-atoms not involved are omitted.

CCDC reference: 1421420

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES