Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 30;71(Pt 10):1259–1261. doi: 10.1107/S2056989015017478

Crystal structure of [5-bromo-2-(pyridin-2-yl-κN)phenyl-κC 1](pentane-2,4-dionato-κ 2 O,O′)platinum(II)

Keito Fukuda a, Tomoaki Sugaya a,*, Koji Ishihara a
PMCID: PMC4647431  PMID: 26594420

In the title complex, [Pt(C11H7BrN)(C5H7O2)], two crystallographically non-equivalent dimers stacked by π–π inter­actions are arranged anti­parallel to each other.

Keywords: crystal structure, platinum(II), cyclo­metalated complex, acetyl­acetonato ligand, π–π inter­actions

Abstract

The title cyclo­metalated platinum(II) complex with 2-(4-bromo­phen­yl)pyridinato and acetyl­acetonato ligands, [Pt(C11H7BrN)(C5H7O2)], consists of two crystallographically non-equivalent dimers, each stacked by π–π inter­actions with distances of ≃ 3.4 Å. In both dimers, the platinum(II) complexes are arranged anti­parallel to each other. Each complex exhibits a slightly distorted square-planar coordination environment around the central Pt(II) atom. The dihedral angles between two chelate rings including the PtII atom in these complexes are 0.08 (12) and 1.54 (9)°.

Chemical context  

Square-planar cyclo­metalated platinum(II) complexes with luminescent properties have recently attracted attention because of their potential applications (Chi & Chou, 2010; Ma et al., 2013), such as DNA probing, as chemical sensors or as organic light-emitting diodes (OLEDs). In particular, platinum(II) complexes including β-diketonate anions (e.g. acetyl­acetonate) as an ancillary ligand have been widely studied because of their excellent stabilities and high quantum yields. Although these complexes afford luminescence in the solid state, their crystal structures have not been sufficiently explored. We report herein the crystal structure of the cyclo­metalated platinum(II) complex with 2-(4-bromo­phen­yl)pyridinato (Brppy, C11H7BrN) and acetyl­acetonato (acac, C5H7O2) ligands, [Pt(Brppy)(acac)].graphic file with name e-71-01259-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains two complex mol­ecules with very similar configurations (r.m.s. deviation of fit of two molecules = 0.07 Å). The structure of one of the complex mol­ecules of the title compound is shown in Fig. 1. In both complexes, the PtII atom is coordinated by C and N atoms of the bidentate Brppy ligand and two O atoms of the acac ligand. The coordination environments around the central PtII atoms (Pt1 and Pt2) are slightly distorted from an ideal square-planar configuration, with angles around Pt1 in the range 81.89 (18)–93.04 (17)° and around Pt2 in the range 81.73 (18)–93.57 (16)°. The Pt—C bond lengths [Pt1—C11 = 1.970 (5) and Pt2—C27 = 1.969 (5) Å] are slightly shorter than the Pt—N bond lengths [Pt1—N1 = 1.995 (4) and Pt2—N2 = 1.999 (4) Å] due to the stronger electron-donating ability of a C atom compared to that of an N atom. Pt—O bond lengths are compiled in Table 1. The phenyl and pyridyl rings are approximately coplanar [the dihedral angle between the N1,C1–C5 and C6–C11 rings is 1.31 (17)° while that between the N2,C17–C21 and C22–C27 rings is 3.12 (13)°]. In addition, the dihedral angles between two planes composed of the two chelate rings in the cyclo­metalated complex are 0.08 (12)° (involving Pt1) and 1.54 (9)° (involving Pt2).

Figure 1.

Figure 1

Mol­ecular structure of one of the two independent PtII complexes of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Table 1. Selected bond lengths ().

O1Pt1 2.077(3) O3Pt2 2.081(3)
O2Pt1 2.007(3) O4Pt2 2.005(3)

Supra­molecular features  

As shown in Figs. 2 and 3, in the unit cell two non-equivalent dimers are formed by π–π inter­actions between individual complexes. Each non-equivalent dimer is in a head-to-tail form. In each unit cell both types of head-to-tail dimers stacked with an inter­molecular π–π inter­action are perpendicular to each other. The π-plane of one PtII complex (Pt1) is directed to the b axis, on the other hand, that of the other complex (Pt2) is directed to the a axis. The shortest inter­molecular contacts are C4⋯C15i = 3.406 (7) and C22⋯O3ii = 3.402 (6) Å [symmetry codes: (i) –x + Inline graphic, –y + Inline graphic, −z + 1; (ii) –x + Inline graphic, –y + Inline graphic, –z + 1]. Weak C—H⋯O and C—H⋯Br inter­actions might also help to consolidate the crystal packing (Table 2). There is almost no inter­action between the two PtII atoms in each dimers because the z-axes of Pt1 and Pt2 are not coaxial. In fact, the Pt—Pt contacts [Pt1⋯Pt1i = 3.688 (1) and Pt2⋯Pt2ii = 3.723 (1) Å] are longer than the van der Waals diameter of the Pt atom (3.5 Å; Bondi, 1964)

Figure 2.

Figure 2

Crystal packing of the title complex, viewed perpendicular to the ab plane. Dashed lines represent the shortest inter­molecular contacts. Red wires represent the Pt1 mol­ecule, and blue wires the Pt2 mol­ecule. H atoms are omitted for clarity. [Symmetry codes: (i) –x + Inline graphic, –y + Inline graphic, –z + 1; (ii) –x + Inline graphic, –y + Inline graphic, –z + 1.]

Figure 3.

Figure 3

Crystal packing of the title complex, viewed perpendicular to the ac plane. Red wires represent the Pt1 mol­ecule, and blue wires the Pt2 mol­ecule. H atoms are omitted for clarity.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1O1 0.95 2.40 2.999(7) 121
C4H4O4i 0.95 2.58 3.281(6) 131
C17H17O3 0.95 2.45 3.034(6) 120
C17H17Br1ii 0.95 2.87 3.693(6) 145

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Synthesis and crystallization  

The title complex was synthesized according to a traditional two-step preparation method via the di­chlorido-bridged dimer complex [Pt(C11H7BrN)(μ-Cl)]2 (Cockburn et al., 1973; Liu et al., 2009), though one-pot synthesis has been reported recently (Hudson et al., 2012).

[Pt(C11H7BrN)( μ -Cl)]2: A mixture of 2-(4-bromo­phen­yl)pyridine (0.585 g, 2.5 mmol) and K2PtCl4 (1.00 g, 2.4 mmol) in a 2-eth­oxy­ethanol–water mixture (45 ml/15 ml) was stirred for 6 h at 333 K under an Ar atmosphere. After cooling to room temperature, the yellow–green precipitate was filtered off, washed with di­chloro­methane, and dried in vacuo. Yield: 0.535 g, (48.2%).

[Pt(C11H7BrN)(C5H7O2)]: A mixture of the di­chlorido-bridged dimer complex (0.185 g, 0.20 mmol), acetyl­acetone (0.020 g, 0.20 mmol) and Na2CO3 (0.211 g, 2.0 mmol) in 2-eth­oxy­ethanol was stirred for 7 h at 323 K under an Ar atmosphere. After cooling to room temperature, the yellow precipitate was filtered off and dried in vacuo. Yield: 0.200 g (47.6%)

Yellow single crystals suitable for X-ray structural analysis were grown by vapor diffusion of hexane into the di­chloro­methane solution of the title complex.

Analysis found (calculated for C16H14BrNO2Pt): C, 36.15 (36.45); H, 2.25 (2.68); N, 2.59 (2.66). UV–vis [CHCl3, λ max nm−1 ( / L mol−1 cm−1)]: 262 (29800), 280 (27500), 317 (sh, 11700), 330 (sh, 9400), 363 (6400), 389 (4200). 1H NMR (CDCl3, 298 K); 8.97 (d, J Pt-H = 40.0 Hz, J = 6.0 Hz, 1H), 7.81 (t, J = 6.0 Hz, 1H), 7.71 (s, J Pt-H = 40.0 Hz, 1H), 7.57 (d, J = 6.0 Hz, 1H), 7.31-7.45 (m, 2H), 7.14 (t, J = 6.0 Hz, 1H), 5.48 (s, 1H), 2.03 (s, 3H), 2.01 (s, 3H).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in geometrically idealized positions and refined using a riding model, with C—H = 0.95 Å, U iso(H) = 1.2U eq(C) for Csp 2–H, and U iso(H) = 1.5U eq(C) for methyl H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula [Pt(C11H7BrN)(C5H7O2)]
M r 527.28
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c () 17.557(2), 17.876(2), 19.832(2)
() 91.397(1)
V (3) 6222.4(13)
Z 16
Radiation type Mo K
(mm1) 11.59
Crystal size (mm) 0.18 0.06 0.02
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.48, 0.80
No. of measured, independent and observed [I > 2(I)] reflections 35025, 7103, 6001
R int 0.038
(sin /)max (1) 0.649
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.027, 0.070, 1.01
No. of reflections 7103
No. of parameters 383
H-atom treatment H-atom parameters constrained
max, min (e 3) 3.66, 1.20

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017478/wm5214sup1.cif

e-71-01259-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017478/wm5214Isup2.hkl

e-71-01259-Isup2.hkl (564.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017478/wm5214Isup3.tif

CCDC reference: 1425736

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Takashi Fujihara (Saitama University) for providing an opportunity for X-ray crystallographic analysis. This work was supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) (25810052 to TS), and partially by JSPS KAKENHI Grant No. 2540150.

supplementary crystallographic information

Crystal data

[Pt(C11H7BrN)(C5H7O2)] F(000) = 3936
Mr = 527.28 Dx = 2.251 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 17.557 (2) Å Cell parameters from 9927 reflections
b = 17.876 (2) Å θ = 2.3–27.3°
c = 19.832 (2) Å µ = 11.59 mm1
β = 91.397 (1)° T = 200 K
V = 6222.4 (13) Å3 Lath, yellow
Z = 16 0.18 × 0.06 × 0.02 mm

Data collection

Bruker APEXII CCD area detector diffractometer 7103 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode 6001 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromator Rint = 0.038
Detector resolution: 8.333 pixels mm-1 θmax = 27.5°, θmin = 1.6°
phi and ω scans h = −22→22
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −23→23
Tmin = 0.48, Tmax = 0.80 l = −25→25
35025 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0368P)2 + 16.0306P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
7103 reflections Δρmax = 3.66 e Å3
383 parameters Δρmin = −1.19 e Å3

Special details

Geometry. Distance SDEV3.4016 (0.0055) C22 - O3_$6 3.4056 (0.0070) C4 - C15_$5 3.6879 (0.0005) Pt1 - Pt1_$5 3.7230 (0.0005) Pt2 - Pt2_$6$5 1.5 - x, 0.5 - y, 1 - z $6 0.5 - x, 0.5 - y, 1 - zLeast-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)17.0464 (0.0086) x + 3.5524 (0.0343) y - 3.1157 (0.0389) z = 1.9362 (0.0174)* -0.0159 (0.0032) C22 * 0.0106 (0.0035) C23 * 0.0050 (0.0037) C24 * -0.0152 (0.0036) C25 * 0.0096 (0.0034) C26 * 0.0059 (0.0032) C27Rms deviation of fitted atoms = 0.011217.1816 (0.0082) x + 3.3837 (0.0389) y - 2.0681 (0.0436) z = 2.4419 (0.0278)Angle to previous plane (with approximate e.s.d.) = 3.118 (0.129)* -0.0040 (0.0032) N2 * 0.0023 (0.0037) C17 * 0.0000 (0.0041) C18 * -0.0004 (0.0041) C19 * -0.0014 (0.0038) C20 * 0.0036 (0.0033) C21Rms deviation of fitted atoms = 0.00253.5018 (0.0341) x + 17.1159 (0.0108) y - 4.2313 (0.0388) z = 3.1261 (0.0262)Angle to previous plane (with approximate e.s.d.) = 66.846 (0.177)* 0.0047 (0.0032) C6 * -0.0001 (0.0036) C7 * -0.0055 (0.0037) C8 * 0.0064 (0.0036) C9 * -0.0015 (0.0033) C10 * -0.0040 (0.0031) C11Rms deviation of fitted atoms = 0.00433.8621 (0.0359) x + 17.0726 (0.0113) y - 4.0479 (0.0426) z = 3.4669 (0.0355)Angle to previous plane (with approximate e.s.d.) = 1.309 (0.166)* -0.0056 (0.0031) N1 * 0.0048 (0.0038) C1 * -0.0003 (0.0042) C2 * -0.0032 (0.0042) C3 * 0.0024 (0.0037) C4 * 0.0019 (0.0032) C5Rms deviation of fitted atoms = 0.003517.0575 (0.0059) x + 3.8901 (0.0226) y - 2.3217 (0.0295) z = 2.4371 (0.0163)Angle to previous plane (with approximate e.s.d.) = 63.889 (0.149)* 0.0136 (0.0026) O3 * 0.0004 (0.0034) C29 * -0.0121 (0.0038) C30 * -0.0006 (0.0035) C31 * 0.0149 (0.0026) O4 * -0.0162 (0.0018) Pt2Rms deviation of fitted atoms = 0.011717.1494 (0.0057) x + 3.4219 (0.0232) y - 2.3782 (0.0383) z = 2.2709 (0.0209)Angle to previous plane (with approximate e.s.d.) = 1.538 (0.086)* -0.0073 (0.0024) N2 * 0.0020 (0.0029) C21 * 0.0076 (0.0030) C22 * -0.0104 (0.0026) C27 * 0.0081 (0.0018) Pt2Rms deviation of fitted atoms = 0.00763.7521 (0.0218) x + 17.0640 (0.0077) y - 4.2225 (0.0285) z = 3.2745 (0.0235)Angle to previous plane (with approximate e.s.d.) = 65.705 (0.111)* -0.0132 (0.0026) O1 * -0.0080 (0.0035) C13 * 0.0257 (0.0037) C14 * -0.0103 (0.0034) C15 * -0.0121 (0.0026) O2 * 0.0179 (0.0017) Pt1Rms deviation of fitted atoms = 0.01573.7578 (0.0215) x + 17.0576 (0.0090) y - 4.2485 (0.0367) z = 3.2795 (0.0249)Angle to previous plane (with approximate e.s.d.) = 0.080 (0.123)* -0.0089 (0.0023) N1 * 0.0120 (0.0028) C5 * -0.0086 (0.0028) C6 * 0.0027 (0.0024) C11 * 0.0028 (0.0017) Pt1Rms deviation of fitted atoms = 0.0079

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.63794 (4) 0.11449 (4) 0.24876 (3) 0.06869 (19)
Br2 0.13287 (5) 0.08166 (4) 0.25166 (3) 0.06997 (19)
C1 0.6968 (3) 0.1984 (3) 0.6440 (3) 0.0478 (12)
H1 0.7459 0.1928 0.6646 0.057*
C2 0.6367 (4) 0.2211 (3) 0.6835 (3) 0.0614 (16)
H2 0.6441 0.2304 0.7304 0.074*
C3 0.5655 (4) 0.2296 (3) 0.6522 (3) 0.0626 (17)
H3 0.5231 0.2449 0.6777 0.075*
C4 0.5565 (3) 0.2159 (3) 0.5846 (3) 0.0484 (13)
H4 0.5080 0.2221 0.5632 0.058*
C5 0.6187 (3) 0.1929 (2) 0.5470 (3) 0.0368 (10)
C6 0.6190 (3) 0.1739 (2) 0.4758 (3) 0.0355 (10)
C7 0.5543 (3) 0.1762 (3) 0.4328 (3) 0.0467 (12)
H7 0.5065 0.1904 0.4502 0.056*
C8 0.5596 (3) 0.1583 (3) 0.3660 (3) 0.0493 (14)
H8 0.5160 0.1593 0.3367 0.059*
C9 0.6299 (3) 0.1388 (3) 0.3424 (3) 0.0455 (12)
C10 0.6949 (3) 0.1351 (3) 0.3833 (2) 0.0392 (11)
H10 0.7421 0.1207 0.3649 0.047*
C11 0.6905 (3) 0.1526 (2) 0.4509 (2) 0.0342 (10)
C12 0.9693 (4) 0.1381 (4) 0.6572 (3) 0.0652 (17)
H12A 0.9552 0.1822 0.6835 0.098*
H12B 1.0234 0.1410 0.6463 0.098*
H12C 0.9602 0.0928 0.6837 0.098*
C13 0.9223 (3) 0.1355 (3) 0.5936 (3) 0.0445 (12)
C14 0.9569 (3) 0.1148 (3) 0.5327 (3) 0.0475 (13)
H14 1.0104 0.1067 0.5349 0.057*
C15 0.9213 (3) 0.1051 (3) 0.4705 (3) 0.0395 (11)
C16 0.9671 (3) 0.0762 (3) 0.4126 (3) 0.0514 (14)
H16A 0.9435 0.0305 0.3947 0.077*
H16B 1.0192 0.0653 0.4286 0.077*
H16C 0.9684 0.1142 0.3770 0.077*
C17 0.1737 (3) 0.2277 (3) 0.6336 (3) 0.0477 (13)
H17 0.1651 0.2790 0.6435 0.057*
C18 0.1893 (3) 0.1793 (4) 0.6855 (3) 0.0591 (15)
H18 0.1913 0.1967 0.7308 0.071*
C19 0.2023 (3) 0.1049 (4) 0.6714 (3) 0.0629 (17)
H19 0.2133 0.0706 0.7069 0.075*
C20 0.1990 (3) 0.0805 (3) 0.6053 (3) 0.0511 (13)
H20 0.2077 0.0293 0.5951 0.061*
C21 0.1831 (3) 0.1312 (3) 0.5538 (3) 0.0411 (11)
C22 0.1765 (2) 0.1157 (3) 0.4814 (3) 0.0377 (11)
C23 0.1874 (3) 0.0452 (3) 0.4521 (3) 0.0452 (12)
H23 0.2023 0.0040 0.4796 0.054*
C24 0.1767 (3) 0.0357 (3) 0.3844 (3) 0.0482 (13)
H24 0.1836 −0.0121 0.3645 0.058*
C25 0.1556 (3) 0.0967 (3) 0.3451 (3) 0.0444 (12)
C26 0.1472 (3) 0.1677 (3) 0.3722 (3) 0.0410 (11)
H26 0.1346 0.2089 0.3438 0.049*
C27 0.1574 (3) 0.1782 (3) 0.4412 (3) 0.0360 (10)
C28 0.1093 (4) 0.4917 (3) 0.5815 (3) 0.0568 (15)
H28A 0.0791 0.4731 0.6189 0.085*
H28B 0.0838 0.5352 0.5611 0.085*
H28C 0.1600 0.5062 0.5985 0.085*
C29 0.1167 (3) 0.4308 (3) 0.5292 (3) 0.0435 (12)
C30 0.1027 (3) 0.4486 (3) 0.4614 (3) 0.0490 (13)
H30 0.0888 0.4990 0.4520 0.059*
C31 0.1067 (3) 0.4011 (3) 0.4063 (3) 0.0433 (12)
C32 0.0874 (4) 0.4303 (3) 0.3369 (3) 0.0617 (16)
H32A 0.1263 0.4141 0.3055 0.093*
H32B 0.0855 0.4851 0.3379 0.093*
H32C 0.0376 0.4108 0.3219 0.093*
N1 0.6882 (2) 0.1843 (2) 0.5787 (2) 0.0349 (8)
N2 0.1701 (2) 0.2051 (2) 0.5697 (2) 0.0368 (9)
O1 0.85200 (19) 0.15218 (18) 0.59970 (18) 0.0418 (8)
O2 0.85083 (18) 0.11665 (19) 0.45482 (17) 0.0402 (8)
O3 0.13515 (19) 0.36673 (18) 0.55181 (18) 0.0410 (8)
O4 0.1237 (2) 0.33092 (18) 0.40711 (17) 0.0400 (8)
Pt1 0.77288 (2) 0.15171 (2) 0.52011 (2) 0.03211 (6)
Pt2 0.14668 (2) 0.27243 (2) 0.49142 (2) 0.03308 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0827 (5) 0.0827 (5) 0.0401 (3) −0.0135 (4) −0.0115 (3) 0.0119 (3)
Br2 0.0957 (5) 0.0599 (4) 0.0547 (4) −0.0007 (3) 0.0093 (3) −0.0143 (3)
C1 0.052 (3) 0.043 (3) 0.047 (3) 0.001 (2) 0.000 (2) −0.003 (2)
C2 0.071 (4) 0.056 (4) 0.057 (4) 0.003 (3) 0.008 (3) −0.005 (3)
C3 0.064 (4) 0.052 (4) 0.073 (4) 0.006 (3) 0.027 (3) −0.001 (3)
C4 0.036 (3) 0.039 (3) 0.070 (4) 0.006 (2) 0.009 (3) 0.006 (3)
C5 0.032 (2) 0.023 (2) 0.056 (3) −0.0007 (18) 0.001 (2) 0.009 (2)
C6 0.027 (2) 0.026 (2) 0.053 (3) −0.0041 (18) −0.004 (2) 0.009 (2)
C7 0.031 (3) 0.049 (3) 0.060 (3) 0.000 (2) −0.004 (2) 0.008 (3)
C8 0.038 (3) 0.045 (3) 0.063 (4) −0.007 (2) −0.019 (3) 0.017 (3)
C9 0.050 (3) 0.046 (3) 0.040 (3) −0.008 (2) −0.007 (2) 0.009 (2)
C10 0.037 (3) 0.035 (2) 0.046 (3) −0.004 (2) −0.001 (2) 0.009 (2)
C11 0.033 (2) 0.024 (2) 0.045 (3) −0.0028 (18) −0.002 (2) 0.0079 (19)
C12 0.048 (4) 0.079 (5) 0.068 (4) −0.001 (3) −0.020 (3) 0.008 (3)
C13 0.036 (3) 0.043 (3) 0.054 (3) −0.008 (2) −0.011 (2) 0.014 (2)
C14 0.028 (2) 0.046 (3) 0.068 (4) 0.003 (2) −0.006 (2) 0.013 (3)
C15 0.027 (2) 0.040 (3) 0.051 (3) 0.001 (2) 0.001 (2) 0.013 (2)
C16 0.035 (3) 0.052 (3) 0.067 (4) 0.004 (2) 0.006 (2) 0.014 (3)
C17 0.041 (3) 0.051 (3) 0.051 (3) −0.001 (2) 0.000 (2) 0.002 (2)
C18 0.057 (4) 0.071 (4) 0.049 (3) −0.007 (3) −0.009 (3) 0.013 (3)
C19 0.053 (4) 0.074 (4) 0.061 (4) −0.006 (3) −0.011 (3) 0.025 (3)
C20 0.043 (3) 0.045 (3) 0.065 (4) −0.001 (2) −0.006 (3) 0.016 (3)
C21 0.027 (2) 0.036 (3) 0.060 (3) −0.0026 (19) 0.000 (2) 0.010 (2)
C22 0.022 (2) 0.028 (2) 0.064 (3) −0.0004 (17) 0.005 (2) 0.009 (2)
C23 0.035 (3) 0.031 (3) 0.070 (4) 0.002 (2) 0.007 (2) 0.005 (2)
C24 0.046 (3) 0.029 (3) 0.069 (4) 0.000 (2) 0.010 (3) −0.005 (2)
C25 0.042 (3) 0.039 (3) 0.053 (3) −0.003 (2) 0.014 (2) −0.006 (2)
C26 0.037 (3) 0.032 (2) 0.054 (3) −0.001 (2) 0.008 (2) 0.003 (2)
C27 0.028 (2) 0.028 (2) 0.052 (3) −0.0004 (18) 0.005 (2) 0.005 (2)
C28 0.062 (4) 0.042 (3) 0.067 (4) 0.003 (3) 0.004 (3) −0.010 (3)
C29 0.033 (3) 0.031 (2) 0.067 (3) −0.004 (2) 0.008 (2) 0.001 (2)
C30 0.049 (3) 0.032 (3) 0.066 (4) 0.003 (2) 0.007 (3) 0.006 (2)
C31 0.045 (3) 0.027 (2) 0.058 (3) −0.002 (2) 0.008 (2) 0.009 (2)
C32 0.085 (5) 0.037 (3) 0.063 (4) 0.007 (3) 0.004 (3) 0.011 (3)
N1 0.033 (2) 0.0284 (19) 0.043 (2) 0.0001 (16) 0.0005 (17) 0.0037 (16)
N2 0.0235 (19) 0.037 (2) 0.050 (2) −0.0018 (16) 0.0014 (16) 0.0063 (18)
O1 0.0344 (19) 0.043 (2) 0.048 (2) −0.0013 (14) −0.0061 (15) 0.0071 (15)
O2 0.0295 (17) 0.0403 (19) 0.051 (2) 0.0019 (14) 0.0007 (14) 0.0059 (15)
O3 0.0366 (18) 0.0320 (17) 0.055 (2) −0.0009 (14) 0.0031 (15) −0.0027 (15)
O4 0.045 (2) 0.0295 (17) 0.0461 (19) 0.0016 (14) 0.0055 (15) 0.0068 (14)
Pt1 0.02610 (9) 0.02845 (10) 0.04157 (11) −0.00042 (6) −0.00348 (7) 0.00636 (7)
Pt2 0.02732 (10) 0.02679 (9) 0.04527 (11) −0.00091 (6) 0.00418 (7) 0.00340 (7)

Geometric parameters (Å, º)

C9—C10 1.385 (7) C16—H16A 0.9800
C6—C11 1.414 (7) C16—H16B 0.9800
C10—C11 1.380 (7) C16—H16C 0.9800
C12—C13 1.492 (8) C17—H17 0.9500
C13—C14 1.413 (8) C18—H18 0.9500
C14—C15 1.382 (7) C19—H19 0.9500
C15—C16 1.508 (7) C2—H2 0.9500
C17—C18 1.368 (8) C20—H20 0.9500
C18—C19 1.378 (9) C23—H23 0.9500
C1—C2 1.390 (8) C24—H24 0.9500
C19—C20 1.381 (9) C26—H26 0.9500
C20—C21 1.389 (7) C28—H28A 0.9800
C21—C22 1.463 (7) C28—H28B 0.9800
C22—C23 1.402 (7) C28—H28C 0.9800
C23—C24 1.362 (8) C3—H3 0.9500
Br2—C25 1.905 (5) C30—H30 0.9500
C24—C25 1.386 (8) C32—H32A 0.9800
C25—C26 1.388 (7) C32—H32B 0.9800
C22—C27 1.407 (6) C32—H32C 0.9800
C26—C27 1.388 (7) C4—H4 0.9500
C28—C29 1.511 (7) C7—H7 0.9500
C2—C3 1.392 (9) C8—H8 0.9500
C29—C30 1.397 (8) C1—N1 1.325 (6)
C30—C31 1.387 (8) C5—N1 1.367 (6)
C31—C32 1.504 (8) C17—N2 1.331 (7)
C3—C4 1.367 (9) C21—N2 1.378 (6)
C4—C5 1.400 (7) C13—O1 1.279 (6)
C5—C6 1.452 (7) C15—O2 1.284 (5)
C6—C7 1.404 (7) C29—O3 1.270 (6)
C7—C8 1.369 (8) C31—O4 1.290 (6)
Br1—C9 1.915 (5) C11—Pt1 1.970 (5)
C8—C9 1.376 (8) N1—Pt1 1.995 (4)
C1—H1 0.9500 O1—Pt1 2.077 (3)
C10—H10 0.9500 O2—Pt1 2.007 (3)
C12—H12A 0.9800 C27—Pt2 1.969 (5)
C12—H12B 0.9800 N2—Pt2 1.999 (4)
C12—H12C 0.9800 O3—Pt2 2.081 (3)
C14—H14 0.9500 O4—Pt2 2.005 (3)
N1—C1—C2 122.5 (5) C21—C20—H20 120.1
N1—C1—H1 118.8 N2—C21—C20 119.2 (5)
C2—C1—H1 118.8 N2—C21—C22 113.4 (4)
C1—C2—C3 117.8 (6) C20—C21—C22 127.4 (5)
C1—C2—H2 121.1 C23—C22—C27 120.8 (5)
C3—C2—H2 121.1 C23—C22—C21 124.6 (4)
C4—C3—C2 119.9 (6) C27—C22—C21 114.6 (4)
C4—C3—H3 120.0 C24—C23—C22 120.3 (5)
C2—C3—H3 120.0 C24—C23—H23 119.9
C3—C4—C5 120.2 (5) C22—C23—H23 119.9
C3—C4—H4 119.9 C23—C24—C25 119.0 (5)
C5—C4—H4 119.9 C23—C24—H24 120.5
N1—C5—C4 119.1 (5) C25—C24—H24 120.5
N1—C5—C6 113.4 (4) C24—C25—C26 122.0 (5)
C4—C5—C6 127.5 (5) C24—C25—Br2 118.9 (4)
C7—C6—C11 120.6 (5) C26—C25—Br2 119.0 (4)
C7—C6—C5 124.2 (5) C27—C26—C25 119.5 (5)
C11—C6—C5 115.2 (4) C27—C26—H26 120.2
C8—C7—C6 120.5 (5) C25—C26—H26 120.2
C8—C7—H7 119.8 C26—C27—C22 118.3 (5)
C6—C7—H7 119.8 C26—C27—Pt2 127.0 (4)
C7—C8—C9 118.2 (5) C22—C27—Pt2 114.7 (4)
C7—C8—H8 120.9 C29—C28—H28A 109.5
C9—C8—H8 120.9 C29—C28—H28B 109.5
C8—C9—C10 123.1 (5) H28A—C28—H28B 109.5
C8—C9—Br1 118.4 (4) C29—C28—H28C 109.5
C10—C9—Br1 118.5 (4) H28A—C28—H28C 109.5
C11—C10—C9 119.6 (5) H28B—C28—H28C 109.5
C11—C10—H10 120.2 O3—C29—C30 125.6 (5)
C9—C10—H10 120.2 O3—C29—C28 115.7 (5)
C10—C11—C6 118.1 (4) C30—C29—C28 118.7 (5)
C10—C11—Pt1 128.2 (4) C31—C30—C29 127.4 (5)
C6—C11—Pt1 113.7 (4) C31—C30—H30 116.3
C13—C12—H12A 109.5 C29—C30—H30 116.3
C13—C12—H12B 109.5 O4—C31—C30 127.0 (5)
H12A—C12—H12B 109.5 O4—C31—C32 113.3 (5)
C13—C12—H12C 109.5 C30—C31—C32 119.7 (5)
H12A—C12—H12C 109.5 C31—C32—H32A 109.5
H12B—C12—H12C 109.5 C31—C32—H32B 109.5
O1—C13—C14 125.3 (5) H32A—C32—H32B 109.5
O1—C13—C12 115.3 (5) C31—C32—H32C 109.5
C14—C13—C12 119.4 (5) H32A—C32—H32C 109.5
C15—C14—C13 126.9 (5) H32B—C32—H32C 109.5
C15—C14—H14 116.5 C1—N1—C5 120.5 (4)
C13—C14—H14 116.5 C1—N1—Pt1 123.8 (3)
O2—C15—C14 127.5 (5) C5—N1—Pt1 115.7 (3)
O2—C15—C16 113.6 (5) C17—N2—C21 120.4 (4)
C14—C15—C16 119.0 (4) C17—N2—Pt2 124.1 (4)
C15—C16—H16A 109.5 C21—N2—Pt2 115.6 (3)
C15—C16—H16B 109.5 C13—O1—Pt1 123.8 (3)
H16A—C16—H16B 109.5 C15—O2—Pt1 124.2 (3)
C15—C16—H16C 109.5 C29—O3—Pt2 123.8 (4)
H16A—C16—H16C 109.5 C31—O4—Pt2 124.0 (3)
H16B—C16—H16C 109.5 C11—Pt1—N1 81.89 (18)
N2—C17—C18 121.9 (6) C11—Pt1—O2 93.04 (17)
N2—C17—H17 119.1 N1—Pt1—O2 174.80 (15)
C18—C17—H17 119.1 C11—Pt1—O1 174.72 (17)
C17—C18—C19 119.3 (6) N1—Pt1—O1 92.90 (15)
C17—C18—H18 120.3 O2—Pt1—O1 92.15 (14)
C19—C18—H18 120.3 C27—Pt2—N2 81.73 (18)
C18—C19—C20 119.6 (5) C27—Pt2—O4 92.57 (17)
C18—C19—H19 120.2 N2—Pt2—O4 174.29 (15)
C20—C19—H19 120.2 C27—Pt2—O3 175.20 (17)
C19—C20—C21 119.7 (6) N2—Pt2—O3 93.57 (16)
C19—C20—H20 120.1 O4—Pt2—O3 92.12 (13)
N1—C1—C2—C3 −0.6 (9) C21—C22—C23—C24 177.1 (5)
C1—C2—C3—C4 −0.2 (9) C22—C23—C24—C25 0.6 (8)
C2—C3—C4—C5 0.4 (9) C23—C24—C25—C26 1.9 (8)
C3—C4—C5—N1 0.1 (7) C23—C24—C25—Br2 −175.1 (4)
C3—C4—C5—C6 178.0 (5) C24—C25—C26—C27 −2.4 (8)
N1—C5—C6—C7 178.2 (4) Br2—C25—C26—C27 174.6 (4)
C4—C5—C6—C7 0.2 (8) C25—C26—C27—C22 0.3 (7)
N1—C5—C6—C11 −2.2 (6) C25—C26—C27—Pt2 −178.7 (4)
C4—C5—C6—C11 179.8 (4) C23—C22—C27—C26 2.1 (7)
C11—C6—C7—C8 −0.4 (7) C21—C22—C27—C26 −177.6 (4)
C5—C6—C7—C8 179.2 (5) C23—C22—C27—Pt2 −178.8 (3)
C6—C7—C8—C9 −0.6 (8) C21—C22—C27—Pt2 1.5 (5)
C7—C8—C9—C10 1.2 (8) O3—C29—C30—C31 −0.6 (9)
C7—C8—C9—Br1 −179.5 (4) C28—C29—C30—C31 179.8 (5)
C8—C9—C10—C11 −0.9 (8) C29—C30—C31—O4 0.5 (9)
Br1—C9—C10—C11 179.8 (3) C29—C30—C31—C32 178.3 (5)
C9—C10—C11—C6 −0.1 (7) C2—C1—N1—C5 1.2 (8)
C9—C10—C11—Pt1 179.7 (4) C2—C1—N1—Pt1 179.9 (4)
C7—C6—C11—C10 0.7 (7) C4—C5—N1—C1 −0.9 (7)
C5—C6—C11—C10 −178.9 (4) C6—C5—N1—C1 −179.1 (4)
C7—C6—C11—Pt1 −179.1 (4) C4—C5—N1—Pt1 −179.7 (3)
C5—C6—C11—Pt1 1.3 (5) C6—C5—N1—Pt1 2.1 (5)
O1—C13—C14—C15 −3.6 (9) C18—C17—N2—C21 −0.8 (8)
C12—C13—C14—C15 175.8 (5) C18—C17—N2—Pt2 179.5 (4)
C13—C14—C15—O2 3.9 (9) C20—C21—N2—C17 0.9 (7)
C13—C14—C15—C16 −174.6 (5) C22—C21—N2—C17 179.7 (4)
N2—C17—C18—C19 0.4 (9) C20—C21—N2—Pt2 −179.4 (4)
C17—C18—C19—C20 −0.1 (9) C22—C21—N2—Pt2 −0.6 (5)
C18—C19—C20—C21 0.3 (8) C14—C13—O1—Pt1 0.3 (7)
C19—C20—C21—N2 −0.6 (8) C12—C13—O1—Pt1 −179.0 (4)
C19—C20—C21—C22 −179.2 (5) C14—C15—O2—Pt1 −0.7 (7)
N2—C21—C22—C23 179.7 (4) C16—C15—O2—Pt1 177.9 (3)
C20—C21—C22—C23 −1.7 (8) C30—C29—O3—Pt2 −1.2 (7)
N2—C21—C22—C27 −0.6 (6) C28—C29—O3—Pt2 178.4 (3)
C20—C21—C22—C27 178.0 (5) C30—C31—O4—Pt2 1.5 (7)
C27—C22—C23—C24 −2.6 (7) C32—C31—O4—Pt2 −176.5 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···O1 0.95 2.40 2.999 (7) 121
C4—H4···O4i 0.95 2.58 3.281 (6) 131
C17—H17···O3 0.95 2.45 3.034 (6) 120
C17—H17···Br1ii 0.95 2.87 3.693 (6) 145

Symmetry codes: (i) −x+1/2, −y+1/2, −z+1; (ii) x−1/2, −y+1/2, z+1/2.

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Bruker (2014). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chi, Y. & Chou, P.-T. (2010). Chem. Soc. Rev. 39, 638–655. [DOI] [PubMed]
  4. Cockburn, B. N., Howe, V., Keating, T., Johnson, B. F. G. & Lewis, J. (1973). J. Chem. Soc. Dalton Trans. pp. 404–410.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Hudson, Z. M., Blight, B. A. & Wang, S. (2012). Org. Lett. 14, 1700–1703. [DOI] [PubMed]
  7. Liu, J., Yang, C.-J., Cao, Q.-Y., Xu, M., Wang, J., Peng, H.-N., Tan, W.-F., Lü, X.-X. & Gao, X.-C. (2009). Inorg. Chim. Acta, 362, 575–579.
  8. Ma, D.-L., He, H.-Z., Leung, K.-H., Chan, D. S.-H. & Leung, C.-H. (2013). Angew. Chem. Int. Ed. 52, 7666–7682. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015017478/wm5214sup1.cif

e-71-01259-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017478/wm5214Isup2.hkl

e-71-01259-Isup2.hkl (564.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017478/wm5214Isup3.tif

CCDC reference: 1425736

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES