Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 12;71(Pt 10):1140–1142. doi: 10.1107/S205698901501628X

Crystal structure of dimethyl 3,3′-[(4-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate)

Hong-Shun Sun a,*, Yu-long Li a, Hong Jiang a, Ning Xu a, Hong Xu a
PMCID: PMC4647434  PMID: 26594391

In the title compound, the two indole ring systems are approximately perpendicular to one another, with a dihedral angle between their planes of 84.0 (5)°.

Keywords: crystal structure, MRI contrast agent, indole, bis-indolymethane, N—H⋯O hydrogen bonds, C—H⋯π inter­actions

Abstract

In the title compound, C27H21FN2O4, the mean planes of the indole ring systems (r.m.s. deviations = 0.0263 and 0.0160 Å) are approximately perpendic­ular to one another, making a dihedral angle of 84.0 (5)°; the fluoro­benzene ring is twisted with respect to the mean planes of the two indole ring systems at 89.5 (5) and 84.6 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into inversion dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagated along the b-axis direction. Weak C—H⋯π inter­actions are observed between neighbouring chains.

Chemical context  

Bis(indol­yl)methane derivatives have been found widely in various terrestrial and marine natural resources (Porter et al., 1977; Sundberg, 1996), and have many applications in pharmaceuticals with diverse activities, such as anti­cancer, anti­leishmanial and anti­hyperlipidemic (Chang et al., 1999; Ge et al., 1999). Other, bis­(indoly)methane derivatives can also be used as a precursor for MRI contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar compounds (Sun et al., 2012, 2013, 2014; Li et al., 2014; Lu et al., 2014). Now we report herein another bis­(indoly)methane compound.graphic file with name e-71-01140-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The two indole ring systems are approximately planar, the maximum deviations being 0.049 (3) and 0.030 (2) Å; the mean planes of the two indole ring systems nearly perpen­dicular to each other [dihedral angle = 84.0 (5)°] while the benzene ring (C22–C27) is twisted to the N1/C2–C9 and N2/C12–C19 indole ring systems by dihedral angles of 89.5 (5) and 84.6 (3)°, respectively. The carboxyl groups are approximately co-planar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of attached indole ring systems are 10.8 (3) and 12.3 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, pairs of N1—H1A⋯O4i [symmetry code: (i) x, y + 1, z] hydrogen bonds link the mol­ecules into inversion dimmers, which are further linked by N2—H2A⋯O2ii [symmetry code: (ii) 1 − x, 1 − y, 1 − z] hydrogen bonds into supra­molecular chains propagated along the b axis (Table 1 and Fig. 2). Weak C—H⋯π inter­actions are also observed between neighbouring chains.

Table 1. Hydrogen-bond geometry (, ).

Cg1, Cg4 and Cg5 are the centroids of the N1-ring, C14-ring and C22-ring.

DHA DH HA D A DHA
N1H1AO4i 0.86 2.07 2.903(3) 162
N2H2AO2ii 0.86 2.07 2.892(3) 159
C4H4A Cg5 0.93 2.82 3.622(3) 146
C5H5B Cg4iii 0.93 2.84 3.705(3) 156
C26H26A Cg1iv 0.93 2.69 3.587(4) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Database survey  

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013), dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014), dimethyl 3,3′-[(3-nitro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate (Sun et al., 2014) and dimethyl 3,3′-[(3-fluoro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Lu et al., 2014). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles being 82.0 (5), 84.5 (5), 79.5 (4), 89.3 (5) and 87.8 (5)°, respectively.

Synthesis and crystallization  

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 4-fluoro­benzaldehyde (6.2 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction was monitored by TLC (CHCl3:hexane = 1:1). Yield was 90%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. 1H NMR (300 MHz, DMSO) δ 11.81 (s, 2H), 7.59–7.36 (m, 3H), 7.13 (dd, J = 15.1, 7.2 Hz, 6H), 6.71 (t, J = 7.5 Hz, 2H), 6.60 (d, J = 8.3 Hz, 2H), 3.77 (s, 6H).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms. U iso(H) = xU eq(C,N), where x = 1.5 for methyl H atoms and 1.2 for the others.

Table 2. Experimental details.

Crystal data
Chemical formula C27H21FN2O4
M r 456.46
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 9.7270(19), 10.122(2), 13.441(3)
, , () 68.15(3), 73.69(3), 89.73(3)
V (3) 1171.4(4)
Z 2
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.30 0.20 0.10
 
Data collection
Diffractometer Nonius CAD-4 diffractometer
Absorption correction scan (North et al., 1968)
T min, T max 0.973, 0.991
No. of measured, independent and observed [I > 2(I)] reflections 4587, 4311, 2756
R int 0.040
(sin /)max (1) 0.603
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.054, 0.147, 1.00
No. of reflections 4311
No. of parameters 307
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.16, 0.18

Computer programs: CAD-4 EXPRESS (EnrafNonius, 1994), XCAD4 (Harms Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901501628X/xu5870sup1.cif

e-71-01140-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501628X/xu5870Isup2.hkl

e-71-01140-Isup2.hkl (211.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501628X/xu5870Isup3.cml

CCDC reference: 1421585

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support. Funding for this research was provided by Nanjing Polytechnic Institute, China (NHKY-2015-01).

supplementary crystallographic information

Crystal data

C27H21FN2O4 Z = 2
Mr = 456.46 F(000) = 476
Triclinic, P1 Dx = 1.294 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.7270 (19) Å Cell parameters from 25 reflections
b = 10.122 (2) Å θ = 9–13°
c = 13.441 (3) Å µ = 0.09 mm1
α = 68.15 (3)° T = 293 K
β = 73.69 (3)° Block, colorless
γ = 89.73 (3)° 0.30 × 0.20 × 0.10 mm
V = 1171.4 (4) Å3

Data collection

Nonius CAD-4 diffractometer 2756 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.040
Graphite monochromator θmax = 25.4°, θmin = 1.7°
ω/2θ scans h = 0→11
Absorption correction: ψ scan (North et al., 1968) k = −12→12
Tmin = 0.973, Tmax = 0.991 l = −15→16
4587 measured reflections 3 standard reflections every 200 reflections
4311 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3
4311 reflections (Δ/σ)max < 0.001
307 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.6800 (2) 1.1318 (2) 0.27546 (18) 0.0513 (6)
H1A 0.6727 1.1742 0.3213 0.062*
C1 0.7071 (2) 0.8060 (2) 0.20833 (19) 0.0382 (5)
H1B 0.7844 0.7680 0.2409 0.046*
O1 0.6875 (3) 0.9631 (2) 0.47878 (17) 0.0872 (7)
N2 0.4265 (2) 0.49916 (19) 0.39447 (16) 0.0465 (5)
H2A 0.3987 0.4100 0.4353 0.056*
O2 0.7270 (2) 0.77039 (17) 0.43616 (14) 0.0554 (5)
C2 0.6977 (2) 0.9558 (2) 0.2084 (2) 0.0386 (5)
O3 0.8103 (2) 0.52264 (18) 0.29747 (17) 0.0636 (5)
C3 0.6956 (2) 1.0904 (2) 0.1197 (2) 0.0395 (6)
O4 0.6464 (2) 0.32942 (17) 0.38907 (16) 0.0633 (5)
C4 0.7094 (3) 1.1362 (2) 0.0044 (2) 0.0479 (6)
H4A 0.7174 1.0699 −0.0292 0.058*
F 0.8690 (2) 0.7816 (2) −0.22102 (14) 0.0854 (6)
C5 0.7110 (3) 1.2785 (3) −0.0579 (2) 0.0559 (7)
H5B 0.7218 1.3084 −0.1342 0.067*
C6 0.6967 (3) 1.3798 (3) −0.0089 (3) 0.0627 (8)
H6A 0.6972 1.4757 −0.0534 0.075*
C7 0.6819 (3) 1.3414 (3) 0.1023 (3) 0.0587 (7)
H7A 0.6717 1.4090 0.1348 0.070*
C8 0.6827 (3) 1.1961 (2) 0.1658 (2) 0.0464 (6)
C9 0.6911 (3) 0.9871 (2) 0.3010 (2) 0.0443 (6)
C10 0.7028 (3) 0.8940 (3) 0.4101 (2) 0.0485 (6)
C11 0.7075 (5) 0.8835 (4) 0.5877 (3) 0.1118 (15)
H11A 0.6940 0.9428 0.6304 0.168*
H11B 0.8033 0.8555 0.5773 0.168*
H11C 0.6386 0.7997 0.6272 0.168*
C12 0.5725 (3) 0.7045 (2) 0.28357 (19) 0.0384 (5)
C13 0.4254 (3) 0.7349 (2) 0.30284 (19) 0.0408 (6)
C14 0.3562 (3) 0.8584 (3) 0.2647 (2) 0.0502 (7)
H14A 0.4102 0.9463 0.2179 0.060*
C15 0.2095 (3) 0.8478 (3) 0.2971 (2) 0.0616 (8)
H15A 0.1641 0.9295 0.2720 0.074*
C16 0.1249 (3) 0.7167 (3) 0.3675 (3) 0.0649 (8)
H16A 0.0250 0.7130 0.3880 0.078*
C17 0.1881 (3) 0.5942 (3) 0.4064 (2) 0.0587 (7)
H17A 0.1327 0.5073 0.4538 0.070*
C18 0.3376 (3) 0.6042 (2) 0.37256 (19) 0.0441 (6)
C19 0.5672 (3) 0.5583 (2) 0.34119 (19) 0.0399 (6)
C20 0.6760 (3) 0.4588 (3) 0.3467 (2) 0.0460 (6)
C21 0.9232 (3) 0.4299 (3) 0.2909 (3) 0.0868 (11)
H21A 1.0152 0.4869 0.2540 0.130*
H21B 0.9091 0.3751 0.2490 0.130*
H21C 0.9203 0.3662 0.3653 0.130*
C22 0.7510 (2) 0.8014 (2) 0.09177 (19) 0.0386 (6)
C23 0.6484 (3) 0.7791 (3) 0.0436 (2) 0.0495 (6)
H23A 0.5512 0.7679 0.0834 0.059*
C24 0.6868 (3) 0.7731 (3) −0.0611 (2) 0.0527 (7)
H24A 0.6170 0.7588 −0.0924 0.063*
C25 0.8294 (3) 0.7885 (3) −0.1176 (2) 0.0543 (7)
C26 0.9337 (3) 0.8114 (3) −0.0755 (3) 0.0698 (9)
H26A 1.0304 0.8225 −0.1164 0.084*
C27 0.8938 (3) 0.8180 (3) 0.0304 (2) 0.0581 (7)
H27A 0.9648 0.8339 0.0600 0.070*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0702 (15) 0.0321 (11) 0.0561 (14) 0.0069 (10) −0.0203 (11) −0.0209 (10)
C1 0.0363 (13) 0.0298 (12) 0.0485 (14) 0.0036 (10) −0.0142 (11) −0.0142 (10)
O1 0.158 (2) 0.0616 (13) 0.0675 (14) 0.0279 (14) −0.0540 (15) −0.0379 (12)
N2 0.0553 (13) 0.0267 (10) 0.0480 (12) −0.0034 (9) −0.0092 (10) −0.0086 (9)
O2 0.0728 (13) 0.0346 (10) 0.0542 (11) 0.0024 (8) −0.0202 (9) −0.0113 (8)
C2 0.0337 (12) 0.0299 (12) 0.0494 (14) 0.0010 (9) −0.0114 (11) −0.0131 (11)
O3 0.0548 (12) 0.0421 (10) 0.0936 (15) 0.0147 (9) −0.0217 (11) −0.0262 (10)
C3 0.0353 (13) 0.0292 (12) 0.0511 (15) 0.0006 (10) −0.0136 (11) −0.0119 (11)
O4 0.0838 (14) 0.0297 (10) 0.0768 (13) 0.0119 (9) −0.0245 (11) −0.0209 (9)
C4 0.0477 (15) 0.0340 (13) 0.0594 (17) −0.0002 (11) −0.0175 (13) −0.0139 (12)
F 0.0945 (14) 0.1087 (15) 0.0628 (11) 0.0344 (11) −0.0181 (10) −0.0482 (11)
C5 0.0586 (17) 0.0418 (15) 0.0601 (17) −0.0014 (12) −0.0234 (14) −0.0074 (13)
C6 0.071 (2) 0.0319 (14) 0.078 (2) 0.0014 (13) −0.0318 (17) −0.0065 (14)
C7 0.076 (2) 0.0311 (13) 0.074 (2) 0.0059 (13) −0.0321 (16) −0.0184 (13)
C8 0.0462 (15) 0.0326 (13) 0.0599 (17) 0.0033 (11) −0.0173 (12) −0.0165 (12)
C9 0.0514 (15) 0.0285 (12) 0.0521 (15) 0.0017 (10) −0.0146 (12) −0.0152 (11)
C10 0.0569 (17) 0.0396 (14) 0.0511 (16) −0.0015 (12) −0.0172 (13) −0.0190 (12)
C11 0.192 (5) 0.096 (3) 0.071 (2) 0.030 (3) −0.064 (3) −0.041 (2)
C12 0.0473 (14) 0.0292 (12) 0.0387 (13) 0.0027 (10) −0.0115 (11) −0.0142 (10)
C13 0.0462 (14) 0.0312 (12) 0.0402 (13) −0.0007 (10) −0.0068 (11) −0.0128 (10)
C14 0.0493 (16) 0.0332 (13) 0.0606 (17) 0.0054 (11) −0.0125 (13) −0.0128 (12)
C15 0.0484 (17) 0.0472 (16) 0.080 (2) 0.0104 (13) −0.0138 (15) −0.0185 (15)
C16 0.0446 (16) 0.0591 (18) 0.075 (2) 0.0039 (13) −0.0047 (14) −0.0182 (16)
C17 0.0469 (17) 0.0479 (16) 0.0610 (18) −0.0098 (13) −0.0009 (13) −0.0098 (13)
C18 0.0522 (16) 0.0342 (13) 0.0399 (14) −0.0009 (11) −0.0080 (12) −0.0122 (11)
C19 0.0498 (15) 0.0288 (12) 0.0415 (13) 0.0022 (10) −0.0135 (11) −0.0141 (10)
C20 0.0596 (17) 0.0342 (13) 0.0483 (15) 0.0067 (12) −0.0182 (13) −0.0190 (11)
C21 0.066 (2) 0.073 (2) 0.130 (3) 0.0350 (18) −0.033 (2) −0.047 (2)
C22 0.0382 (13) 0.0279 (11) 0.0464 (14) 0.0021 (9) −0.0085 (11) −0.0137 (10)
C23 0.0410 (15) 0.0523 (15) 0.0546 (16) 0.0014 (12) −0.0085 (12) −0.0240 (13)
C24 0.0574 (18) 0.0510 (16) 0.0564 (17) 0.0068 (13) −0.0199 (14) −0.0259 (13)
C25 0.0631 (19) 0.0544 (16) 0.0486 (16) 0.0144 (13) −0.0121 (14) −0.0270 (13)
C26 0.0444 (17) 0.094 (2) 0.072 (2) 0.0155 (16) −0.0050 (15) −0.0420 (19)
C27 0.0397 (15) 0.0742 (19) 0.0661 (19) 0.0057 (13) −0.0142 (14) −0.0345 (16)

Geometric parameters (Å, º)

N1—C8 1.364 (3) C11—H11A 0.9600
N1—C9 1.386 (3) C11—H11B 0.9600
N1—H1A 0.8600 C11—H11C 0.9600
C1—C12 1.513 (3) C12—C19 1.385 (3)
C1—C2 1.519 (3) C12—C13 1.434 (3)
C1—C22 1.522 (3) C13—C14 1.410 (3)
C1—H1B 0.9800 C13—C18 1.413 (3)
O1—C10 1.328 (3) C14—C15 1.362 (4)
O1—C11 1.453 (4) C14—H14A 0.9300
N2—C18 1.366 (3) C15—C16 1.403 (4)
N2—C19 1.372 (3) C15—H15A 0.9300
N2—H2A 0.8600 C16—C17 1.371 (4)
O2—C10 1.209 (3) C16—H16A 0.9300
C2—C9 1.379 (3) C17—C18 1.389 (4)
C2—C3 1.443 (3) C17—H17A 0.9300
O3—C20 1.329 (3) C19—C20 1.456 (3)
O3—C21 1.446 (3) C21—H21A 0.9600
C3—C4 1.409 (3) C21—H21B 0.9600
C3—C8 1.411 (3) C21—H21C 0.9600
O4—C20 1.216 (3) C22—C27 1.376 (3)
C4—C5 1.368 (3) C22—C23 1.393 (3)
C4—H4A 0.9300 C23—C24 1.375 (3)
F—C25 1.363 (3) C23—H23A 0.9300
C5—C6 1.398 (4) C24—C25 1.359 (4)
C5—H5B 0.9300 C24—H24A 0.9300
C6—C7 1.362 (4) C25—C26 1.351 (4)
C6—H6A 0.9300 C26—C27 1.393 (4)
C7—C8 1.400 (3) C26—H26A 0.9300
C7—H7A 0.9300 C27—H27A 0.9300
C9—C10 1.454 (3)
C8—N1—C9 108.9 (2) C13—C12—C1 128.2 (2)
C8—N1—H1A 125.6 C14—C13—C18 117.7 (2)
C9—N1—H1A 125.6 C14—C13—C12 134.8 (2)
C12—C1—C2 113.09 (19) C18—C13—C12 107.4 (2)
C12—C1—C22 110.81 (18) C15—C14—C13 119.3 (2)
C2—C1—C22 114.33 (18) C15—C14—H14A 120.3
C12—C1—H1B 106.0 C13—C14—H14A 120.3
C2—C1—H1B 106.0 C14—C15—C16 121.7 (3)
C22—C1—H1B 106.0 C14—C15—H15A 119.1
C10—O1—C11 116.2 (2) C16—C15—H15A 119.1
C18—N2—C19 109.29 (19) C17—C16—C15 120.7 (3)
C18—N2—H2A 125.4 C17—C16—H16A 119.6
C19—N2—H2A 125.4 C15—C16—H16A 119.6
C9—C2—C3 105.93 (19) C16—C17—C18 117.8 (2)
C9—C2—C1 123.5 (2) C16—C17—H17A 121.1
C3—C2—C1 130.5 (2) C18—C17—H17A 121.1
C20—O3—C21 116.5 (2) N2—C18—C17 129.7 (2)
C4—C3—C8 117.4 (2) N2—C18—C13 107.6 (2)
C4—C3—C2 135.5 (2) C17—C18—C13 122.7 (2)
C8—C3—C2 107.1 (2) N2—C19—C12 109.9 (2)
C5—C4—C3 119.7 (2) N2—C19—C20 116.4 (2)
C5—C4—H4A 120.2 C12—C19—C20 133.4 (2)
C3—C4—H4A 120.2 O4—C20—O3 123.3 (2)
C4—C5—C6 121.3 (3) O4—C20—C19 123.0 (2)
C4—C5—H5B 119.4 O3—C20—C19 113.7 (2)
C6—C5—H5B 119.4 O3—C21—H21A 109.5
C7—C6—C5 121.5 (2) O3—C21—H21B 109.5
C7—C6—H6A 119.2 H21A—C21—H21B 109.5
C5—C6—H6A 119.2 O3—C21—H21C 109.5
C6—C7—C8 117.3 (3) H21A—C21—H21C 109.5
C6—C7—H7A 121.4 H21B—C21—H21C 109.5
C8—C7—H7A 121.4 C27—C22—C23 117.5 (2)
N1—C8—C7 128.8 (2) C27—C22—C1 121.2 (2)
N1—C8—C3 108.2 (2) C23—C22—C1 121.4 (2)
C7—C8—C3 122.9 (2) C24—C23—C22 121.9 (2)
C2—C9—N1 109.8 (2) C24—C23—H23A 119.0
C2—C9—C10 129.3 (2) C22—C23—H23A 119.0
N1—C9—C10 120.8 (2) C25—C24—C23 118.2 (3)
O2—C10—O1 123.1 (2) C25—C24—H24A 120.9
O2—C10—C9 125.4 (2) C23—C24—H24A 120.9
O1—C10—C9 111.4 (2) C26—C25—C24 122.6 (3)
O1—C11—H11A 109.5 C26—C25—F 118.6 (3)
O1—C11—H11B 109.5 C24—C25—F 118.8 (3)
H11A—C11—H11B 109.5 C25—C26—C27 118.8 (3)
O1—C11—H11C 109.5 C25—C26—H26A 120.6
H11A—C11—H11C 109.5 C27—C26—H26A 120.6
H11B—C11—H11C 109.5 C22—C27—C26 121.1 (3)
C19—C12—C13 105.8 (2) C22—C27—H27A 119.5
C19—C12—C1 125.9 (2) C26—C27—H27A 119.5
C12—C1—C2—C9 66.6 (3) C1—C12—C13—C18 175.5 (2)
C22—C1—C2—C9 −165.3 (2) C18—C13—C14—C15 0.8 (4)
C12—C1—C2—C3 −114.3 (3) C12—C13—C14—C15 177.2 (3)
C22—C1—C2—C3 13.8 (3) C13—C14—C15—C16 −0.1 (4)
C9—C2—C3—C4 174.6 (3) C14—C15—C16—C17 0.1 (5)
C1—C2—C3—C4 −4.6 (4) C15—C16—C17—C18 −0.8 (4)
C9—C2—C3—C8 −2.0 (3) C19—N2—C18—C17 178.4 (3)
C1—C2—C3—C8 178.8 (2) C19—N2—C18—C13 −0.1 (3)
C8—C3—C4—C5 0.5 (3) C16—C17—C18—N2 −176.8 (3)
C2—C3—C4—C5 −175.8 (3) C16—C17—C18—C13 1.6 (4)
C3—C4—C5—C6 −1.1 (4) C14—C13—C18—N2 177.1 (2)
C4—C5—C6—C7 0.6 (4) C12—C13—C18—N2 −0.2 (3)
C5—C6—C7—C8 0.5 (4) C14—C13—C18—C17 −1.6 (4)
C9—N1—C8—C7 −176.3 (3) C12—C13—C18—C17 −178.8 (2)
C9—N1—C8—C3 0.1 (3) C18—N2—C19—C12 0.3 (3)
C6—C7—C8—N1 174.9 (3) C18—N2—C19—C20 −174.2 (2)
C6—C7—C8—C3 −1.0 (4) C13—C12—C19—N2 −0.4 (3)
C4—C3—C8—N1 −176.1 (2) C1—C12—C19—N2 −175.7 (2)
C2—C3—C8—N1 1.2 (3) C13—C12—C19—C20 172.8 (2)
C4—C3—C8—C7 0.6 (4) C1—C12—C19—C20 −2.5 (4)
C2—C3—C8—C7 177.9 (2) C21—O3—C20—O4 3.2 (4)
C3—C2—C9—N1 2.1 (3) C21—O3—C20—C19 −174.6 (2)
C1—C2—C9—N1 −178.7 (2) N2—C19—C20—O4 4.8 (4)
C3—C2—C9—C10 −173.9 (2) C12—C19—C20—O4 −168.0 (3)
C1—C2—C9—C10 5.3 (4) N2—C19—C20—O3 −177.5 (2)
C8—N1—C9—C2 −1.4 (3) C12—C19—C20—O3 9.7 (4)
C8—N1—C9—C10 175.0 (2) C12—C1—C22—C27 −145.7 (2)
C11—O1—C10—O2 2.5 (4) C2—C1—C22—C27 85.1 (3)
C11—O1—C10—C9 −175.7 (3) C12—C1—C22—C23 33.8 (3)
C2—C9—C10—O2 3.3 (4) C2—C1—C22—C23 −95.4 (3)
N1—C9—C10—O2 −172.3 (2) C27—C22—C23—C24 0.2 (4)
C2—C9—C10—O1 −178.5 (2) C1—C22—C23—C24 −179.3 (2)
N1—C9—C10—O1 5.9 (3) C22—C23—C24—C25 0.5 (4)
C2—C1—C12—C19 −148.6 (2) C23—C24—C25—C26 −1.0 (4)
C22—C1—C12—C19 81.6 (3) C23—C24—C25—F 179.4 (2)
C2—C1—C12—C13 37.2 (3) C24—C25—C26—C27 0.6 (5)
C22—C1—C12—C13 −92.7 (3) F—C25—C26—C27 −179.8 (2)
C19—C12—C13—C14 −176.2 (3) C23—C22—C27—C26 −0.6 (4)
C1—C12—C13—C14 −1.1 (4) C1—C22—C27—C26 178.9 (2)
C19—C12—C13—C18 0.4 (2) C25—C26—C27—C22 0.1 (5)

Hydrogen-bond geometry (Å, º)

Cg1, Cg4 and Cg5 are the centroids of the N1-ring, C14-ring and C22-ring.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O4i 0.86 2.07 2.903 (3) 162
N2—H2A···O2ii 0.86 2.07 2.892 (3) 159
C4—H4A···Cg5 0.93 2.82 3.622 (3) 146
C5—H5B···Cg4iii 0.93 2.84 3.705 (3) 156
C26—H26A···Cg1iv 0.93 2.69 3.587 (4) 161

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z; (iv) −x+2, −y+2, −z.

References

  1. Chang, Y.-C., Riby, J., Chang, G. H.-F., Peng, B., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261. [DOI] [PMC free article] [PubMed]
  6. Lu, X.-H., Sun, H.-S. & Hu, J. (2014). Acta Cryst. E70, 593–595. [DOI] [PMC free article] [PubMed]
  7. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  8. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  9. Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370–372. [DOI] [PMC free article] [PubMed]
  12. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  13. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516. [DOI] [PMC free article] [PubMed]
  14. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S205698901501628X/xu5870sup1.cif

e-71-01140-sup1.cif (23.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901501628X/xu5870Isup2.hkl

e-71-01140-Isup2.hkl (211.2KB, hkl)

Supporting information file. DOI: 10.1107/S205698901501628X/xu5870Isup3.cml

CCDC reference: 1421585

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES