Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):1242–1244. doi: 10.1107/S2056989015017673

Crystal structure of 5-[4-(di­ethyl­amino)­benzyl­idene]-2,2-dimethyl-1,3-dioxane-4,6-dione

Egija Stepina a, Dmitrijs Stepanovs a,b,*, Inese Mierina a, Mara Jure a,*
PMCID: PMC4647437  PMID: 26594416

The title compound, 5-[4-(di­ethyl­amino)­phenyl­methyl­idene]-2,2-dimethyl-1,3-dioxane-4,6-dione, have been synthesized and its crystal structure determined. Due to the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C—H⋯O inter­actions, which associate the mol­ecules in dimers.

Keywords: crystal structure; aryl­idene Meldrum’s acid; 5-aryl­methyl­ene-2,2-dimethyl-1,3-dioxan-4,6-dione; organic synthesis; intra­molecular hydrogen bonding

Abstract

The title compound, C17H21NO4, consists of substituted Meldrum’s acid with a [4-(di­ethyl­amino)­phen­yl]methyl­idene fragment attached to the fifth position. The heterocycle assumes a distorted boat conformation. The planar part of heterocycle is almost coplanar with the benzene ring due to the presence of a long conjugated system in the mol­ecule. This leads to the formation of C—H⋯O-type intra­molecular contacts. As a result of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C—H⋯O inter­actions, which associate the mol­ecules into inversion dimers.

Chemical context  

Aryl­idene Meldrum’s acids (5-aryl­methyl­idene-2,2-dimethyl-1,3-dioxane-4,6-diones) are attractive building blocks in organic chemistry: these compounds are used for the synthesis of different heterocycles. Recent examples include: pyrazolidinones (Pair et al., 2014), lactames (Zhang et al., 2013), carbocycles (e.g. Trost & Maruniak, 2013) and aliphatic compounds (e.g. Mohite & Bhat, 2013). Aryl­idene Meldrum’s acids can be easily converted to aryl­methyl Meldrum‘s acids [for a description of a typical procedure, see Mierina et al. (2015)], which serve as starting compounds for the synthesis of various valuable compounds [for a mini-review, see Mierina (2014)]. Apart from their wide application in syntheses, these derivatives of Meldrum’s acid have been studied as platelet aggregation inhibitors (El Maatougui et al., 2012), anti­malarial agents and anti-oxidants (Sandhu et al., 2010) and photostable UV-filters for cosmetic applications (Habeck & Krause, 1999).graphic file with name e-71-01242-scheme1.jpg

Structural commentary  

The title compound, C17H21NO4, consists of substituted Meldrum’s acid with a [4-(di­ethyl­amino)­phen­yl]methyl­idene fragment attached to fifth position (Fig. 1.). The heterocycle assumes a distorted boat conformation. Atoms C2 and C5 deviate from the least-squares plane [maximum deviations ±0.013 (1) Å] calculated for the other four atoms of the heterocycle by 0.549 (3) and 0.154 (3) Å, respectively. The planar part of heterocycle is nearly coplanar with the benzene ring [dihedral angle = 8.05 (10)°] due to the presence of a long conjugated system in the mol­ecule. This leads to the formation of C—H⋯O-type intra­molecular contacts (Table 1).

Figure 1.

Figure 1

The mol­ecular structure the title compound, showing 50% probability displacement ellipsoids and the atomic numbering

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C13H13O19 0.93 2.13 2.915(2) 141
C17H17BO20i 0.97 2.39 3.268(3) 151

Symmetry code: (i) Inline graphic.

π–π stacking inter­actions are also observed between conjugated systems of the mol­ecules. The distance between the corresponding least-square planes is 3.54 (su?) Å.

The crystal structure of the zwitterionic form of 5-[4-(di­eth­ylamino)­benz­yl]-2,2-dimethyl-1,3-dioxane-4,6-dione has been already reported (Mierina et al., 2015). The title compound differs from this by the presence of a double bond between atoms C5 and C7.

Supra­molecular features  

Because of the absence of hydrogen-bond donors in the structure, the crystal packing is controlled by van der Waals forces and weak C—H⋯O inter­actions, which associate mol­ecules into inversion dimers (Fig. 2, Table 1).

Figure 2.

Figure 2

The crystal packing of the title compound, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Database survey  

Several 5-aryl­idene-2,2-dimethyl-1,3-dioxane-4,6-diones (Huck et al., 1995; Gould et al., 1998; Novoa de Armas et al., 2000; O’Leary et al., 2001; O’Leary & Wallis 2006; Crawford & McNab, 2009; Wilsily & Fillion, 2009; Zeng, 2010a ,b , 2011a ,b ,c , 2013; Jie, 2012; García-Álvarez et al., 2013; Dey et al., 2015) and their spiro-analogues (Sato et al., 1989; Zeng, 2011d ,e ,f ; Zeng et al. 2013) have been characterized by X-ray analysis. However, information on the crystal structure of 5-aryl­methyl­idene-2,2-dimethyl-1,3-dioxane-4,6-diones containing an amino functionality on the aromatic ring is not available.

Synthesis and crystallization  

5-[4-(Di­ethyl­amino)­phenyl­methyl­idene]-2,2-dimethyl-1,3-dioxane-4,6-dione was obtained from Meldrum’s acid (1.00 g, 6.9 mmol) and 4-di­ethyl­amino­benzaldehyde (1.27 g, 6.9 mmol) by heating in water (50 ml) at 348 K for 2 h, followed by cooling to room temperature and filtration of the formed precipitate and recrystallization from ethanol (1.62 g, 80%) analogously to the method described previously (Mierina et al., 2015). The spectroscopic and physical data correspond to those in the literature (Mierina et al., 2015). X-ray quality single crystals were obtained by slow evaporation from ethanol.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93–0.98Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C17H21NO4
M r 303.35
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c () 7.8662(2), 11.4601(3), 18.1517(6)
() 96.858(1)
V (3) 1624.62(8)
Z 4
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.26 0.19 0.09
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2(I)] reflections 6627, 3705, 2183
R int 0.054
(sin /)max (1) 0.649
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.055, 0.127, 1.00
No. of reflections 3705
No. of parameters 203
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.18, 0.19

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL DENZO and SCALEPACK (Otwinovski Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017673/xu5872sup1.cif

e-71-01242-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017673/xu5872Isup2.hkl

e-71-01242-Isup2.hkl (181.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017673/xu5872Isup3.cml

CCDC reference: 1426237

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

IM thanks the European Social Fund for a scholarship within the project ‘Support for the implementation of doctoral studies at Riga Technical University’.

supplementary crystallographic information

Crystal data

C17H21NO4 F(000) = 648
Mr = 303.35 Dx = 1.240 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 15405 reflections
a = 7.8662 (2) Å θ = 1.0–27.5°
b = 11.4601 (3) Å µ = 0.09 mm1
c = 18.1517 (6) Å T = 173 K
β = 96.858 (1)° Plate, red
V = 1624.62 (8) Å3 0.26 × 0.19 × 0.09 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 2183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.054
Graphite monochromator θmax = 27.5°, θmin = 2.3°
CCD scans h = −10→10
6627 measured reflections k = −14→13
3705 independent reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.0774P] where P = (Fo2 + 2Fc2)/3
3705 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.57779 (16) 0.16291 (12) 0.51388 (7) 0.0404 (4)
O19 0.65514 (15) 0.45154 (13) 0.40080 (8) 0.0407 (4)
O3 0.73309 (14) 0.27588 (11) 0.43789 (8) 0.0390 (4)
C8 0.2432 (2) 0.50423 (15) 0.40398 (10) 0.0252 (4)
C10 −0.0015 (2) 0.63516 (16) 0.37433 (10) 0.0266 (4)
H10 −0.1138 0.6545 0.3804 0.032*
O20 0.33160 (19) 0.21986 (13) 0.54631 (9) 0.0584 (5)
N14 0.02179 (17) 0.80169 (13) 0.29384 (9) 0.0307 (4)
C12 0.2607 (2) 0.66959 (17) 0.32158 (11) 0.0317 (5)
H12 0.3242 0.7124 0.2910 0.038*
C9 0.0729 (2) 0.53919 (16) 0.40930 (10) 0.0259 (4)
H9 0.0078 0.4944 0.4382 0.031*
C11 0.0910 (2) 0.70529 (16) 0.32900 (10) 0.0266 (4)
C4 0.6131 (2) 0.36263 (18) 0.42864 (11) 0.0310 (5)
C13 0.3340 (2) 0.57427 (17) 0.35789 (11) 0.0309 (5)
H13 0.4465 0.5550 0.3521 0.037*
C7 0.3028 (2) 0.40397 (16) 0.44569 (10) 0.0275 (4)
H7 0.2188 0.3745 0.4725 0.033*
C15 0.1135 (2) 0.86883 (18) 0.24297 (11) 0.0386 (5)
H15A 0.0311 0.9075 0.2070 0.046*
H15B 0.1801 0.8159 0.2161 0.046*
C5 0.4505 (2) 0.33863 (16) 0.45730 (10) 0.0292 (4)
C6 0.4436 (3) 0.23885 (18) 0.50801 (11) 0.0377 (5)
C2 0.6814 (2) 0.16029 (17) 0.45458 (12) 0.0363 (5)
C18 −0.2946 (2) 0.7988 (2) 0.25955 (13) 0.0473 (6)
H18A −0.2752 0.8057 0.2085 0.071*
H18B −0.3967 0.8406 0.2673 0.071*
H18C −0.3077 0.7180 0.2716 0.071*
C17 −0.1429 (2) 0.84969 (17) 0.30887 (12) 0.0349 (5)
H17A −0.1415 0.9336 0.3019 0.042*
H17B −0.1577 0.8348 0.3603 0.042*
C21 0.8427 (3) 0.0962 (2) 0.48418 (14) 0.0551 (6)
H21A 0.8967 0.1357 0.5274 0.083*
H21B 0.9195 0.0943 0.4469 0.083*
H21C 0.8146 0.0179 0.4971 0.083*
C22 0.5872 (3) 0.1025 (2) 0.38720 (12) 0.0460 (6)
H22A 0.5555 0.0247 0.3997 0.069*
H22B 0.6600 0.0994 0.3484 0.069*
H22C 0.4860 0.1465 0.3706 0.069*
C16 0.2319 (3) 0.9596 (2) 0.28194 (14) 0.0533 (6)
H16A 0.1656 1.0166 0.3047 0.080*
H16B 0.2950 0.9971 0.2465 0.080*
H16C 0.3102 0.9224 0.3194 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0464 (8) 0.0385 (9) 0.0367 (8) 0.0179 (6) 0.0058 (6) 0.0069 (7)
O19 0.0303 (7) 0.0382 (9) 0.0546 (10) 0.0026 (6) 0.0093 (6) 0.0078 (7)
O3 0.0274 (7) 0.0354 (8) 0.0538 (9) 0.0093 (6) 0.0033 (6) 0.0008 (7)
C8 0.0267 (9) 0.0252 (10) 0.0236 (10) 0.0011 (7) 0.0025 (7) −0.0030 (8)
C10 0.0229 (9) 0.0296 (11) 0.0276 (10) 0.0014 (7) 0.0039 (7) −0.0005 (9)
O20 0.0643 (10) 0.0510 (11) 0.0666 (11) 0.0218 (8) 0.0352 (9) 0.0286 (9)
N14 0.0289 (8) 0.0294 (9) 0.0341 (10) 0.0030 (7) 0.0042 (7) 0.0077 (7)
C12 0.0287 (9) 0.0320 (12) 0.0357 (12) −0.0004 (8) 0.0096 (8) 0.0068 (9)
C9 0.0263 (9) 0.0292 (11) 0.0229 (10) −0.0026 (7) 0.0058 (7) −0.0004 (8)
C11 0.0291 (9) 0.0257 (10) 0.0241 (10) 0.0014 (8) −0.0003 (7) −0.0027 (8)
C4 0.0285 (10) 0.0321 (12) 0.0315 (11) 0.0051 (8) 0.0000 (8) −0.0043 (10)
C13 0.0243 (9) 0.0335 (11) 0.0359 (12) 0.0028 (8) 0.0077 (8) 0.0029 (9)
C7 0.0292 (9) 0.0266 (11) 0.0279 (11) 0.0007 (8) 0.0082 (7) −0.0034 (9)
C15 0.0417 (11) 0.0358 (12) 0.0389 (12) 0.0026 (9) 0.0070 (9) 0.0156 (10)
C5 0.0303 (9) 0.0279 (11) 0.0293 (11) 0.0026 (8) 0.0033 (7) −0.0022 (9)
C6 0.0430 (11) 0.0346 (12) 0.0364 (12) 0.0103 (9) 0.0086 (9) 0.0034 (10)
C2 0.0360 (11) 0.0324 (12) 0.0403 (13) 0.0108 (9) 0.0033 (9) 0.0005 (10)
C18 0.0347 (11) 0.0472 (14) 0.0580 (15) 0.0033 (9) −0.0029 (10) 0.0115 (12)
C17 0.0342 (10) 0.0286 (11) 0.0421 (12) 0.0069 (8) 0.0057 (8) 0.0037 (10)
C21 0.0446 (12) 0.0548 (16) 0.0634 (17) 0.0220 (11) −0.0038 (11) 0.0016 (13)
C22 0.0522 (12) 0.0397 (14) 0.0441 (14) 0.0123 (10) −0.0023 (10) −0.0057 (11)
C16 0.0518 (13) 0.0419 (14) 0.0670 (17) −0.0090 (10) 0.0103 (11) 0.0091 (12)

Geometric parameters (Å, º)

O1—C6 1.363 (2) C7—H7 0.9300
O1—C2 1.426 (2) C15—C16 1.514 (3)
O19—C4 1.201 (2) C15—H15A 0.9700
O3—C4 1.368 (2) C15—H15B 0.9700
O3—C2 1.429 (2) C5—C6 1.473 (3)
C8—C9 1.413 (2) C2—C22 1.506 (3)
C8—C13 1.413 (2) C2—C21 1.509 (3)
C8—C7 1.424 (2) C18—C17 1.519 (3)
C10—C9 1.366 (2) C18—H18A 0.9600
C10—C11 1.413 (3) C18—H18B 0.9600
C10—H10 0.9300 C18—H18C 0.9600
O20—C6 1.205 (2) C17—H17A 0.9700
N14—C11 1.357 (2) C17—H17B 0.9700
N14—C15 1.457 (2) C21—H21A 0.9600
N14—C17 1.463 (2) C21—H21B 0.9600
C12—C13 1.367 (3) C21—H21C 0.9600
C12—C11 1.418 (2) C22—H22A 0.9600
C12—H12 0.9300 C22—H22B 0.9600
C9—H9 0.9300 C22—H22C 0.9600
C4—C5 1.463 (2) C16—H16A 0.9600
C13—H13 0.9300 C16—H16B 0.9600
C7—C5 1.377 (2) C16—H16C 0.9600
C6—O1—C2 117.50 (15) O20—C6—C5 125.78 (18)
C4—O3—C2 119.35 (14) O1—C6—C5 117.29 (17)
C9—C8—C13 115.46 (16) O1—C2—O3 110.09 (15)
C9—C8—C7 116.56 (16) O1—C2—C22 110.63 (16)
C13—C8—C7 127.97 (16) O3—C2—C22 111.13 (17)
C9—C10—C11 120.46 (16) O1—C2—C21 105.88 (17)
C9—C10—H10 119.8 O3—C2—C21 106.15 (16)
C11—C10—H10 119.8 C22—C2—C21 112.74 (18)
C11—N14—C15 121.78 (15) C17—C18—H18A 109.5
C11—N14—C17 122.20 (15) C17—C18—H18B 109.5
C15—N14—C17 115.86 (15) H18A—C18—H18B 109.5
C13—C12—C11 122.18 (17) C17—C18—H18C 109.5
C13—C12—H12 118.9 H18A—C18—H18C 109.5
C11—C12—H12 118.9 H18B—C18—H18C 109.5
C10—C9—C8 123.61 (16) N14—C17—C18 113.34 (17)
C10—C9—H9 118.2 N14—C17—H17A 108.9
C8—C9—H9 118.2 C18—C17—H17A 108.9
N14—C11—C10 122.12 (16) N14—C17—H17B 108.9
N14—C11—C12 121.31 (16) C18—C17—H17B 108.9
C10—C11—C12 116.57 (16) H17A—C17—H17B 107.7
O19—C4—O3 116.57 (16) C2—C21—H21A 109.5
O19—C4—C5 127.27 (17) C2—C21—H21B 109.5
O3—C4—C5 116.09 (17) H21A—C21—H21B 109.5
C12—C13—C8 121.68 (16) C2—C21—H21C 109.5
C12—C13—H13 119.2 H21A—C21—H21C 109.5
C8—C13—H13 119.2 H21B—C21—H21C 109.5
C5—C7—C8 137.58 (17) C2—C22—H22A 109.5
C5—C7—H7 111.2 C2—C22—H22B 109.5
C8—C7—H7 111.2 H22A—C22—H22B 109.5
N14—C15—C16 112.95 (18) C2—C22—H22C 109.5
N14—C15—H15A 109.0 H22A—C22—H22C 109.5
C16—C15—H15A 109.0 H22B—C22—H22C 109.5
N14—C15—H15B 109.0 C15—C16—H16A 109.5
C16—C15—H15B 109.0 C15—C16—H16B 109.5
H15A—C15—H15B 107.8 H16A—C16—H16B 109.5
C7—C5—C4 126.92 (18) C15—C16—H16C 109.5
C7—C5—C6 115.10 (16) H16A—C16—H16C 109.5
C4—C5—C6 117.86 (16) H16B—C16—H16C 109.5
O20—C6—O1 116.90 (18)
C11—C10—C9—C8 0.8 (3) C8—C7—C5—C4 4.4 (4)
C13—C8—C9—C10 −1.4 (3) C8—C7—C5—C6 −179.8 (2)
C7—C8—C9—C10 178.19 (17) O19—C4—C5—C7 13.2 (3)
C15—N14—C11—C10 −175.52 (17) O3—C4—C5—C7 −170.14 (18)
C17—N14—C11—C10 9.3 (3) O19—C4—C5—C6 −162.49 (19)
C15—N14—C11—C12 4.1 (3) O3—C4—C5—C6 14.2 (2)
C17—N14—C11—C12 −171.03 (17) C2—O1—C6—O20 160.50 (19)
C9—C10—C11—N14 −179.51 (17) C2—O1—C6—C5 −21.3 (2)
C9—C10—C11—C12 0.8 (3) C7—C5—C6—O20 −10.3 (3)
C13—C12—C11—N14 178.48 (18) C4—C5—C6—O20 166.0 (2)
C13—C12—C11—C10 −1.8 (3) C7—C5—C6—O1 171.75 (17)
C2—O3—C4—O19 −165.89 (17) C4—C5—C6—O1 −12.0 (3)
C2—O3—C4—C5 17.1 (2) C6—O1—C2—O3 50.5 (2)
C11—C12—C13—C8 1.3 (3) C6—O1—C2—C22 −72.7 (2)
C9—C8—C13—C12 0.4 (3) C6—O1—C2—C21 164.84 (18)
C7—C8—C13—C12 −179.18 (18) C4—O3—C2—O1 −48.8 (2)
C9—C8—C7—C5 179.1 (2) C4—O3—C2—C22 74.2 (2)
C13—C8—C7—C5 −1.4 (4) C4—O3—C2—C21 −162.94 (17)
C11—N14—C15—C16 −85.9 (2) C11—N14—C17—C18 −89.7 (2)
C17—N14—C15—C16 89.6 (2) C15—N14—C17—C18 94.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O19 0.93 2.13 2.915 (2) 141
C17—H17B···O20i 0.97 2.39 3.268 (3) 151

Symmetry code: (i) −x, −y+1, −z+1.

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  2. Crawford, L. A. & McNab, H. (2009). Collect. Czech. Chem. Commun. 74, 995–1009.
  3. Dey, T., Ghosh, S., Ghosh, S. & Mukherjee, A. K. (2015). J. Mol. Struct. 1092, 51–62.
  4. El Maatougui, A., JhonnyAzuaje, B. S. P., Coelho, A., Cano, E., Yanez, M., Lopez, C., Yaziji, V., Carbajales, C. & Sotelo, E. (2012). Combin. Chem. High Throughput Screen. 15, 551–554. [DOI] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. García-Álvarez, F., Romero, N., Lobato-García, C. E., Terán, J. L. & Mendoza, A. (2013). Acta Cryst. E69, o50. [DOI] [PMC free article] [PubMed]
  7. Gould, R. O., Harris, S. G., McNab, H., Parsons, S. & Withell, K. (1998). Acta Cryst. C54, 234–236.
  8. Habeck, T. & Krause, A. (1999). German Patent 19806241.
  9. Huck, N. P. M., Meetsma, A., Zijlstra, R. & Feringa, B. L. (1995). Tetrahedron Lett. 36, 9381–9384.
  10. Jie, Y. (2012). Z. Kristallogr. New Cryst. Struct. 227, 347–348.
  11. Mierina, I. (2014). Synlett 25, 155-156.
  12. Mierina, I., Mishnev, A. & Jure, M. (2015). Acta Cryst. C71, 752–758. [DOI] [PubMed]
  13. Mohite, A. & Bhat, R. G. (2013). Org. Lett. 15, 4564–4567. [DOI] [PubMed]
  14. Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
  15. Novoa de Armas, H., Blaton, N. M., Peeters, O. M., De Ranter, C. J., Suárez, M., Ochoa, E., Verdecia, Y. & Salfrán, E. (2000). J. Chem. Crystallogr. 30, 189–194.
  16. O’Leary, J., Bell, P. C., Wallis, J. D. & Schweizer, W. B. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 133–139.
  17. O’Leary, J. & Wallis, J. D. (2006). Chem. Eur. J. 12, 7724–7732. [DOI] [PubMed]
  18. Otwinovski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
  19. Pair, E., Berini, C., Noël, R., Sanselme, M., Levacher, V. & Brière, J.-F. (2014). Chem. Commun. 50, 10218–10221. [DOI] [PubMed]
  20. Sandhu, H. S., Sapra, S., Gupta, M., Nepali, K., Gautam, R., Yadav, S., Kumar, R., Jachak, S. M., Chugh, M., Gupta, M. K., Suri, O. P. & Dhar, K. L. (2010). Bioorg. Med. Chem. 18, 5626–5633. [DOI] [PubMed]
  21. Sato, M., Hisamichi, H., Kaneko, C., Suzaki, N., Furuya, T. & Inukai, N. (1989). Tetrahedron Lett. 30, 5281–5284.
  22. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  23. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  24. Trost, B. M. & Maruniak, A. (2013). Angew. Chem. Int. Ed. 52, 6262–6264. [DOI] [PubMed]
  25. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  26. Wilsily, A. & Fillion, E. (2009). J. Org. Chem. 74, 8583–8594. [DOI] [PubMed]
  27. Zeng, W.-L. (2010a). Acta Cryst. E66, o2319. [DOI] [PMC free article] [PubMed]
  28. Zeng, W.-L. (2010b). Acta Cryst. E66, o2366. [DOI] [PMC free article] [PubMed]
  29. Zeng, W.-L. (2011a). Acta Cryst. E67, o276. [DOI] [PMC free article] [PubMed]
  30. Zeng, W.-L. (2011b). Acta Cryst. E67, o1351. [DOI] [PMC free article] [PubMed]
  31. Zeng, W.-L. (2011c). Acta Cryst. E67, o1937. [DOI] [PMC free article] [PubMed]
  32. Zeng, W. (2011d). Asian J. Chem 23, 4145-4147.
  33. Zeng, W.-L. (2011e). Acta Cryst. E67, o426. [DOI] [PMC free article] [PubMed]
  34. Zeng, W.-L. (2011f). Acta Cryst. E67, o1362. [DOI] [PMC free article] [PubMed]
  35. Zeng, W. (2013). Asian J. Chem 25, 864-866.
  36. Zeng, W., Li, Y. & Guo, H. (2013). J. Chem. Crystallogr 43, 223-227.
  37. Zhang, J.-P., Ding, J., Ma, N., Jiang, B., Xu, L.-C. & Tu, S.-J. (2013). J. Hetercycl. Chem. 50, 66–70.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989015017673/xu5872sup1.cif

e-71-01242-sup1.cif (25.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017673/xu5872Isup2.hkl

e-71-01242-Isup2.hkl (181.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017673/xu5872Isup3.cml

CCDC reference: 1426237

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES