Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 26;71(Pt 10):o776–o777. doi: 10.1107/S2056989015017454

Crystal structure of methyl (2Z)-2-[(2Z)-2-(2-cyclo­pentyl­idenehydrazin-1-yl­idene)-4-oxo-3-phenyl-1,3-thia­zolidin-5-yl­idene]ethano­ate

Mehmet Akkurt a, Victoria A Smolenski b, Shaaban K Mohamed c,d, Jerry P Jasinski b, Alaa A Hassan d, Mustafa R Albayati e,*
PMCID: PMC4647441  PMID: 26594474

Abstract

In the title compound, C17H17N3O3S, the cyclo­pentane ring is disordered over two sets of sites with an occupancy ratio of 0.775 (8):0.225 (8) for the affected atoms. The thia­zolidinyl ring is planar (r.m.s. deviation = 0.024 Å) and forms a dihedral angle of 65.13 (8)° with the attached phenyl ring. The mol­ecular packing is stabilized by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional structure.

Keywords: crystal structure, thia­zolidinyl ring, disorder, hydrogen bonding, C—H⋯π inter­actions

Related literature  

For biological properties of thia­zole-containing compounds, see: Quiroga et al. (2002); Hutchinson et al. (2002); Hargrave et al. (1983); Patt et al. (1992); Sharma et al. (2009); Jaen et al. (1990); Tsuji & Ishikawa (1994); Bell et al. (1995): Ergenc et al. (1999); Carter et al. (1999); Badorc et al. (1997); Rudolph et al. (2001).graphic file with name e-71-0o776-scheme1.jpg

Experimental  

Crystal data  

  • C17H17N3O3S

  • M r = 343.40

  • Monoclinic, Inline graphic

  • a = 5.5215 (3) Å

  • b = 16.1299 (8) Å

  • c = 18.7112 (9) Å

  • β = 93.980 (5)°

  • V = 1662.42 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.28 × 0.08 × 0.04 mm

Data collection  

  • Agilent Xcalibur, Eos, Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) T min = 0.850, T max = 1.000

  • 11300 measured reflections

  • 5503 independent reflections

  • 3958 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.135

  • S = 1.02

  • 5503 reflections

  • 222 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015; molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015017454/tk5388sup1.cif

e-71-0o776-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017454/tk5388Isup2.hkl

e-71-0o776-Isup2.hkl (301.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017454/tk5388Isup3.cml

. DOI: 10.1107/S2056989015017454/tk5388fig1.tif

View of the title compound showing only the major component of the disorder. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015017454/tk5388fig2.tif

The mol­ecular packing viewed down a axis. The C—H⋯O inter­actions are shown as dotted lines with non-participating H atoms omitted for clarity.

CCDC reference: 1425685

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

Cg4 is the centroid of the C9C14 ring.

DHA DH HA D A DHA
C13H13O2i 0.93 2.35 3.245(2) 163
C15H15O3ii 0.93 2.56 3.485(2) 172
C17H17AO1ii 0.96 2.42 3.269(2) 147
C3AH3A2Cg4iii 0.97 2.96 3.914(3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

S1. Comment

Thiazoles are important class of heterocyclic compounds, found in many potent biologically active molecules such as sulfathiazol (antimicrobial drug), Ritonavir (antiretroviral drug), Abafungin (antifungal drug), with trade name Abasol cream, and Bleomycine and Tiazofurin (antineoplastic drug). It has been noted over the years that interesting biological activities (Quiroga et al., 2002; Hutchinson et al., 2002) were associated with thiazole derivatives. Applications of thiazoles were found in drug development for the treatment of allergies (Hargrave et al., 1983), hypertension (Patt et al., 1992), inflammation (Sharma et al., 2009), schizophrenia (Jaen et al., 1990), bacteria infection (Tsuji & Ishikawa, 1994), HIV infection (Bell et al., 1995), hypnotics (Ergenc et al., 1999) and for the treatment of pain (Carter et al., 1999), as fibrinogen receptor antagonists with antithrombotic activity (Badorc et al., 1997) and as new inhibitors of bacterial DNA gyrase B (Rudolph et al., 2001). In this context we report in this study the synthesis and crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The major and minor components of the disordered cyclo­pentane ring [0.775 (8):0.225 (8)] adopt an envelope conformations with atoms C2A and C2B as the flap in each component. The puckering parameters are Q(2) 0.274 (3) Å, φ (2) = 42.7 (6)° for major component, and Q(2) 0.253 (8) Å, φ (2) = 209.6 (16)° for minor component. The central 1,3-thiazolidine ring (S1/N3C6–C8) makes a dihedral angle of 65.13 (8)° with the phenyl ring (C9–C14).

In the crystal, C—H···O and C—H···π interactions stabilize the molecular packing, forming a three-dimensional network, Fig. 2 and Table 1.

S2. Experimental

A mixture of 2-cyclopentylidene-N-phenylhydrazinecarbothioamide (1 mmol, 233 mg) and dimethyl but-2-ynedioate (1 mmol, 142 mg) in ethylacetate (10 ml) was stirred and refluxed at 350 K. The reaction progress was monitored by TLC until completion. On cooling, a solid yellow product was precipitated, filtered off, dried under vacuum and recrystallized from ethanol to afford yellow crystals.

S3. Refinement

All H atoms were positioned geometrically and constrained to ride on their parent atoms (C—H = 0.93–0.97 Å) with Uiso(H) = 1.2–1.5Ueq(C). The cyclopentyl group was partially disordered over two positions with refined site-occupancies of 0.775 (8): 0.225 (8) . The (3 0 23), (2 1 24), (-1 3 13), (2 11 22), (5 16 3), (2 2 8), (1 3 27), (4 7 18) and (-1 1 14) reflections were omitted owing to poor agreement.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing only the major component of the disorder. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The molecular packing viewed down a axis. The C—H···O interactions are shown as dotted lines with non-participating H atoms omitted for clarity.

Crystal data

C17H17N3O3S F(000) = 720
Mr = 343.40 Dx = 1.372 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2753 reflections
a = 5.5215 (3) Å θ = 4.0–31.8°
b = 16.1299 (8) Å µ = 0.22 mm1
c = 18.7112 (9) Å T = 296 K
β = 93.980 (5)° Needle, colourless
V = 1662.42 (15) Å3 0.28 × 0.08 × 0.04 mm
Z = 4

Data collection

Agilent Xcalibur, Eos, Gemini diffractometer 5503 independent reflections
Radiation source: Enhance (Mo) X-ray Source 3958 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.036
Detector resolution: 16.0416 pixels mm-1 θmax = 32.8°, θmin = 3.3°
ω scans h = −8→6
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2014) k = −21→23
Tmin = 0.850, Tmax = 1.000 l = −27→28
11300 measured reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.058P)2 + 0.3068P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
5503 reflections Δρmax = 0.37 e Å3
222 parameters Δρmin = −0.32 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1A 1.2932 (4) 0.58581 (12) 0.06164 (10) 0.0431 (5) 0.775 (8)
H1A1 1.4493 0.6135 0.0674 0.052* 0.775 (8)
H1A2 1.2277 0.5927 0.0125 0.052* 0.775 (8)
C2A 1.3179 (9) 0.4943 (2) 0.0808 (2) 0.0593 (11) 0.775 (8)
H2A1 1.2026 0.4613 0.0515 0.071* 0.775 (8)
H2A2 1.4806 0.4746 0.0739 0.071* 0.775 (8)
C3A 1.2661 (6) 0.48937 (15) 0.15730 (14) 0.0737 (9) 0.775 (8)
H3A1 1.4154 0.4948 0.1874 0.088* 0.775 (8)
H3A2 1.1932 0.4363 0.1673 0.088* 0.775 (8)
C4A 1.0943 (4) 0.55863 (12) 0.17258 (10) 0.0435 (5) 0.775 (8)
H4A1 0.9287 0.5385 0.1721 0.052* 0.775 (8)
H4A2 1.1381 0.5835 0.2189 0.052* 0.775 (8)
C5A 1.1210 (3) 0.61997 (10) 0.11325 (8) 0.0310 (3) 0.775 (8)
C1B 1.2932 (4) 0.58581 (12) 0.06164 (10) 0.0431 (5) 0.225 (8)
H1B1 1.4095 0.6271 0.0482 0.052* 0.225 (8)
H1B2 1.2079 0.5633 0.0189 0.052* 0.225 (8)
C2B 1.413 (3) 0.5181 (8) 0.1087 (7) 0.0593 (11) 0.225 (8)
H2B1 1.4586 0.4726 0.0786 0.071* 0.225 (8)
H2B2 1.5594 0.5399 0.1333 0.071* 0.225 (8)
C3B 1.2661 (6) 0.48937 (15) 0.15730 (14) 0.0737 (9) 0.225 (8)
H3B1 1.3603 0.4733 0.2008 0.088* 0.225 (8)
H3B2 1.1765 0.4414 0.1386 0.088* 0.225 (8)
C4B 1.0943 (4) 0.55863 (12) 0.17258 (10) 0.0435 (5) 0.225 (8)
H4B1 0.9287 0.5385 0.1721 0.052* 0.225 (8)
H4B2 1.1381 0.5835 0.2189 0.052* 0.225 (8)
C5B 1.1210 (3) 0.61997 (10) 0.11325 (8) 0.0310 (3) 0.225 (8)
C6 0.7150 (3) 0.76671 (10) 0.13570 (8) 0.0265 (3)
C7 0.3804 (3) 0.85436 (10) 0.14664 (8) 0.0285 (3)
C8 0.4255 (3) 0.86289 (10) 0.06923 (8) 0.0273 (3)
C9 0.5666 (3) 0.78876 (9) 0.25645 (8) 0.0252 (3)
C10 0.7676 (3) 0.81830 (10) 0.29704 (9) 0.0310 (3)
H10 0.8922 0.8450 0.2752 0.037*
C11 0.7804 (3) 0.80745 (11) 0.37074 (9) 0.0352 (4)
H11 0.9157 0.8261 0.3985 0.042*
C12 0.5927 (3) 0.76895 (11) 0.40315 (9) 0.0352 (4)
H12 0.5999 0.7628 0.4527 0.042*
C13 0.3940 (3) 0.73959 (11) 0.36148 (9) 0.0362 (4)
H13 0.2693 0.7129 0.3833 0.043*
C14 0.3784 (3) 0.74947 (10) 0.28753 (9) 0.0317 (3)
H14 0.2443 0.7301 0.2597 0.038*
C15 0.2862 (3) 0.91153 (10) 0.02523 (9) 0.0299 (3)
H15 0.1573 0.9405 0.0428 0.036*
C16 0.3360 (3) 0.91924 (10) −0.05004 (9) 0.0300 (3)
C17 0.1970 (4) 0.96748 (13) −0.16424 (10) 0.0489 (5)
H17A 0.0682 0.9999 −0.1871 0.073*
H17B 0.1937 0.9127 −0.1843 0.073*
H17C 0.3501 0.9931 −0.1716 0.073*
N1 1.0203 (3) 0.69020 (9) 0.10329 (8) 0.0364 (3)
N2 0.8698 (3) 0.71279 (9) 0.15868 (7) 0.0318 (3)
N3 0.5509 (2) 0.80198 (8) 0.18016 (7) 0.0266 (3)
O1 0.2219 (2) 0.88906 (8) 0.17660 (7) 0.0404 (3)
O2 0.5119 (2) 0.88964 (8) −0.07551 (7) 0.0396 (3)
O3 0.1654 (2) 0.96244 (8) −0.08814 (6) 0.0387 (3)
S1 0.67455 (7) 0.80416 (2) 0.04705 (2) 0.02957 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1A 0.0508 (11) 0.0431 (10) 0.0379 (9) 0.0199 (9) 0.0213 (8) 0.0066 (8)
C2A 0.092 (3) 0.0466 (18) 0.042 (2) 0.0352 (18) 0.0245 (18) 0.0039 (13)
C3A 0.114 (2) 0.0509 (13) 0.0616 (15) 0.0400 (14) 0.0432 (16) 0.0202 (11)
C4A 0.0522 (12) 0.0412 (10) 0.0390 (10) 0.0131 (8) 0.0183 (9) 0.0094 (8)
C5A 0.0314 (8) 0.0372 (8) 0.0249 (7) 0.0078 (6) 0.0061 (6) 0.0017 (6)
C1B 0.0508 (11) 0.0431 (10) 0.0379 (9) 0.0199 (9) 0.0213 (8) 0.0066 (8)
C2B 0.092 (3) 0.0466 (18) 0.042 (2) 0.0352 (18) 0.0245 (18) 0.0039 (13)
C3B 0.114 (2) 0.0509 (13) 0.0616 (15) 0.0400 (14) 0.0432 (16) 0.0202 (11)
C4B 0.0522 (12) 0.0412 (10) 0.0390 (10) 0.0131 (8) 0.0183 (9) 0.0094 (8)
C5B 0.0314 (8) 0.0372 (8) 0.0249 (7) 0.0078 (6) 0.0061 (6) 0.0017 (6)
C6 0.0262 (7) 0.0299 (7) 0.0241 (7) 0.0031 (6) 0.0061 (6) −0.0022 (6)
C7 0.0275 (7) 0.0308 (8) 0.0277 (8) 0.0043 (6) 0.0055 (6) −0.0003 (6)
C8 0.0259 (7) 0.0287 (7) 0.0281 (7) 0.0029 (6) 0.0065 (6) 0.0000 (6)
C9 0.0258 (7) 0.0279 (7) 0.0226 (7) 0.0045 (5) 0.0067 (6) −0.0012 (5)
C10 0.0266 (7) 0.0393 (9) 0.0278 (8) −0.0046 (6) 0.0069 (6) −0.0015 (6)
C11 0.0337 (9) 0.0434 (9) 0.0282 (8) −0.0036 (7) 0.0003 (7) −0.0051 (7)
C12 0.0416 (9) 0.0398 (9) 0.0249 (8) 0.0028 (7) 0.0073 (7) 0.0027 (7)
C13 0.0353 (9) 0.0414 (9) 0.0332 (9) −0.0060 (7) 0.0120 (7) 0.0069 (7)
C14 0.0258 (7) 0.0365 (8) 0.0328 (8) −0.0031 (6) 0.0024 (6) 0.0010 (6)
C15 0.0286 (8) 0.0315 (8) 0.0303 (8) 0.0074 (6) 0.0060 (6) 0.0001 (6)
C16 0.0325 (8) 0.0261 (7) 0.0317 (8) 0.0049 (6) 0.0032 (6) 0.0018 (6)
C17 0.0621 (13) 0.0552 (12) 0.0294 (9) 0.0193 (10) 0.0041 (9) 0.0069 (8)
N1 0.0401 (8) 0.0432 (8) 0.0271 (7) 0.0175 (6) 0.0117 (6) 0.0042 (6)
N2 0.0333 (7) 0.0376 (7) 0.0252 (6) 0.0121 (6) 0.0072 (5) −0.0004 (5)
N3 0.0254 (6) 0.0325 (7) 0.0224 (6) 0.0064 (5) 0.0052 (5) −0.0004 (5)
O1 0.0394 (7) 0.0498 (7) 0.0333 (6) 0.0199 (6) 0.0124 (5) 0.0030 (5)
O2 0.0396 (7) 0.0462 (7) 0.0339 (6) 0.0160 (6) 0.0100 (5) 0.0039 (5)
O3 0.0409 (7) 0.0459 (7) 0.0294 (6) 0.0184 (6) 0.0036 (5) 0.0053 (5)
S1 0.0303 (2) 0.0351 (2) 0.02404 (19) 0.01015 (15) 0.00729 (15) 0.00175 (14)

Geometric parameters (Å, º)

C1A—C5A 1.506 (2) C8—S1 1.7435 (15)
C1A—C2A 1.523 (4) C9—C14 1.380 (2)
C1A—H1A1 0.9700 C9—C10 1.385 (2)
C1A—H1A2 0.9700 C9—N3 1.4400 (19)
C2A—C3A 1.480 (4) C10—C11 1.387 (2)
C2A—H2A1 0.9700 C10—H10 0.9300
C2A—H2A2 0.9700 C11—C12 1.384 (2)
C3A—C4A 1.506 (3) C11—H11 0.9300
C3A—H3A1 0.9700 C12—C13 1.384 (3)
C3A—H3A2 0.9700 C12—H12 0.9300
C4A—C5A 1.502 (2) C13—C14 1.389 (2)
C4A—H4A1 0.9700 C13—H13 0.9300
C4A—H4A2 0.9700 C14—H14 0.9300
C5A—N1 1.270 (2) C15—C16 1.459 (2)
C2B—H2B1 0.9700 C15—H15 0.9300
C2B—H2B2 0.9700 C16—O2 1.2094 (19)
C6—N2 1.273 (2) C16—O3 1.3371 (19)
C6—N3 1.3930 (18) C17—O3 1.449 (2)
C6—S1 1.7648 (16) C17—H17A 0.9600
C7—O1 1.2087 (18) C17—H17B 0.9600
C7—N3 1.383 (2) C17—H17C 0.9600
C7—C8 1.493 (2) N1—N2 1.4203 (18)
C8—C15 1.341 (2)
C5A—C1A—C2A 104.68 (17) C14—C9—C10 121.67 (14)
C5A—C1A—H1A1 110.8 C14—C9—N3 119.38 (14)
C2A—C1A—H1A1 110.8 C10—C9—N3 118.91 (13)
C5A—C1A—H1A2 110.8 C9—C10—C11 119.03 (15)
C2A—C1A—H1A2 110.8 C9—C10—H10 120.5
H1A1—C1A—H1A2 108.9 C11—C10—H10 120.5
C3A—C2A—C1A 105.0 (2) C12—C11—C10 120.30 (16)
C3A—C2A—H2A1 110.7 C12—C11—H11 119.9
C1A—C2A—H2A1 110.7 C10—C11—H11 119.9
C3A—C2A—H2A2 110.7 C11—C12—C13 119.66 (15)
C1A—C2A—H2A2 110.7 C11—C12—H12 120.2
H2A1—C2A—H2A2 108.8 C13—C12—H12 120.2
C2A—C3A—C4A 108.1 (2) C12—C13—C14 120.90 (15)
C2A—C3A—H3A1 110.1 C12—C13—H13 119.6
C4A—C3A—H3A1 110.1 C14—C13—H13 119.6
C2A—C3A—H3A2 110.1 C9—C14—C13 118.43 (15)
C4A—C3A—H3A2 110.1 C9—C14—H14 120.8
H3A1—C3A—H3A2 108.4 C13—C14—H14 120.8
C5A—C4A—C3A 104.65 (15) C8—C15—C16 120.29 (14)
C5A—C4A—H4A1 110.8 C8—C15—H15 119.9
C3A—C4A—H4A1 110.8 C16—C15—H15 119.9
C5A—C4A—H4A2 110.8 O2—C16—O3 123.44 (15)
C3A—C4A—H4A2 110.8 O2—C16—C15 123.85 (15)
H4A1—C4A—H4A2 108.9 O3—C16—C15 112.71 (14)
N1—C5A—C4A 129.17 (15) O3—C17—H17A 109.5
N1—C5A—C1A 121.44 (15) O3—C17—H17B 109.5
C4A—C5A—C1A 109.38 (14) H17A—C17—H17B 109.5
H2B1—C2B—H2B2 107.8 O3—C17—H17C 109.5
N2—C6—N3 121.76 (14) H17A—C17—H17C 109.5
N2—C6—S1 126.11 (12) H17B—C17—H17C 109.5
N3—C6—S1 112.11 (11) C5A—N1—N2 113.21 (13)
O1—C7—N3 124.37 (15) C6—N2—N1 110.00 (13)
O1—C7—C8 125.61 (15) C7—N3—C6 115.42 (13)
N3—C7—C8 110.00 (12) C7—N3—C9 122.16 (12)
C15—C8—C7 121.50 (14) C6—N3—C9 122.32 (13)
C15—C8—S1 126.88 (12) C16—O3—C17 115.13 (13)
C7—C8—S1 111.62 (11) C8—S1—C6 90.72 (7)
C5A—C1A—C2A—C3A −26.1 (4) C4A—C5A—N1—N2 2.6 (3)
C1A—C2A—C3A—C4A 29.1 (4) C1A—C5A—N1—N2 −178.28 (17)
C2A—C3A—C4A—C5A −20.2 (4) N3—C6—N2—N1 −177.41 (14)
C3A—C4A—C5A—N1 −177.5 (2) S1—C6—N2—N1 3.9 (2)
C3A—C4A—C5A—C1A 3.2 (3) C5A—N1—N2—C6 −158.03 (17)
C2A—C1A—C5A—N1 −165.2 (3) O1—C7—N3—C6 178.61 (16)
C2A—C1A—C5A—C4A 14.1 (3) C8—C7—N3—C6 −2.76 (19)
O1—C7—C8—C15 −0.4 (3) O1—C7—N3—C9 −4.9 (3)
N3—C7—C8—C15 −179.02 (15) C8—C7—N3—C9 173.70 (13)
O1—C7—C8—S1 178.92 (15) N2—C6—N3—C7 −174.81 (16)
N3—C7—C8—S1 0.32 (17) S1—C6—N3—C7 4.01 (17)
C14—C9—C10—C11 0.5 (2) N2—C6—N3—C9 8.7 (2)
N3—C9—C10—C11 178.44 (14) S1—C6—N3—C9 −172.45 (11)
C9—C10—C11—C12 −1.1 (3) C14—C9—N3—C7 66.1 (2)
C10—C11—C12—C13 1.4 (3) C10—C9—N3—C7 −111.84 (17)
C11—C12—C13—C14 −1.1 (3) C14—C9—N3—C6 −117.65 (16)
C10—C9—C14—C13 −0.2 (2) C10—C9—N3—C6 64.4 (2)
N3—C9—C14—C13 −178.09 (15) O2—C16—O3—C17 3.7 (3)
C12—C13—C14—C9 0.5 (3) C15—C16—O3—C17 −176.13 (15)
C7—C8—C15—C16 179.45 (15) C15—C8—S1—C6 −179.15 (16)
S1—C8—C15—C16 0.2 (2) C7—C8—S1—C6 1.56 (12)
C8—C15—C16—O2 −6.8 (3) N2—C6—S1—C8 175.66 (16)
C8—C15—C16—O3 173.02 (15) N3—C6—S1—C8 −3.10 (12)

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C9–C14 ring.

D—H···A D—H H···A D···A D—H···A
C13—H13···O2i 0.93 2.35 3.245 (2) 163
C15—H15···O3ii 0.93 2.56 3.485 (2) 172
C17—H17A···O1ii 0.96 2.42 3.269 (2) 147
C3A—H3A2···Cg4iii 0.97 2.96 3.914 (3) 169

Symmetry codes: (i) x−1/2, −y+3/2, z+1/2; (ii) −x, −y+2, −z; (iii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5388).

References

  1. Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
  2. Badorc, A., Bordes, M. F., de Cointet, P., Savi, P., Bernat, A., Lalé, A., Petitou, M., Maffrand, J. P. & Herbert, J. M. (1997). J. Med. Chem. 40, 3393–3401. [DOI] [PubMed]
  3. Bell, F. W., Cantrell, A. S., Högberg, M., Jaskunas, S. R., Johansson, N. G., Jordan, C. L., Kinnick, M. D., Lind, P., Morin, J. M. Jr & Noréen, R. (1995). J. Med. Chem. 38, 4929–4936. [DOI] [PubMed]
  4. Carter, J. S., Kramer, S., Talley, J. J., Penning, T., Collins, P., Graneto, M. J., Seibert, K., Koboldt, C., Masferrer, J. & Zweifel, B. (1999). Bioorg. Med. Chem. Lett. 9, 1171–1174. [DOI] [PubMed]
  5. Ergenç, N., Çapan, G., Günay, N. S., Özkirimli, S., Güngör, M., Özbey, S. & Kendi, E. (1999). Arch. Pharm. Pharm. Med. Chem. 332, 343–347. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hargrave, K. D., Hess, F. K. & Oliver, J. T. (1983). J. Med. Chem. 26, 1158–1163. [DOI] [PubMed]
  8. Hutchinson, I., Jennings, S. A., Vishnuvajjala, B. R., Westwell, A. D. & Stevens, M. F. G. (2002). J. Med. Chem. 45, 744–747. [DOI] [PubMed]
  9. Jaen, J. C., Wise, L. D., Caprathe, B. W., Tecle, H., Bergmeier, S., Humblet, C. C., Heffner, T. G., Meltzer, L. T. & Pugsley, T. A. (1990). J. Med. Chem. 33, 311–317. [DOI] [PubMed]
  10. Patt, W. C., Hamilton, H. W., Taylor, M. D., Ryan, M. J., Taylor, D. G. Jr, Connolly, C. J. C., Doherty, A. M., Klutchko, S. R., Sircar, I. & Steinbaugh, B. A. (1992). J. Med. Chem. 35, 2562–2572. [DOI] [PubMed]
  11. Quiroga, J., Hernández, P., Insuasty, B., Abonía, R., Cobo, J., Sánchez, A., Nogueras, M. & Low, J. N. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 555–559.
  12. Rudolph, J., Theis, H., Hanke, R., Endermann, R., Johannsen, L. & Geschke, F. U. (2001). J. Med. Chem. 44, 619–626. [DOI] [PubMed]
  13. Sharma, R. N., Xavier, F. P., Vasu, K. K., Chaturvedi, S. C. & Pancholi, S. S. (2009). J. Enzyme Inhib. Med. Chem. 24, 890–897. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tsuji, K. & Ishikawa, H. (1994). Bioorg. Med. Chem. Lett. 4, 1601–1606.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015017454/tk5388sup1.cif

e-71-0o776-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015017454/tk5388Isup2.hkl

e-71-0o776-Isup2.hkl (301.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015017454/tk5388Isup3.cml

. DOI: 10.1107/S2056989015017454/tk5388fig1.tif

View of the title compound showing only the major component of the disorder. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

a . DOI: 10.1107/S2056989015017454/tk5388fig2.tif

The mol­ecular packing viewed down a axis. The C—H⋯O inter­actions are shown as dotted lines with non-participating H atoms omitted for clarity.

CCDC reference: 1425685

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES