Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Sep 17;71(Pt 10):m181–m182. doi: 10.1107/S2056989015016758

Crystal structure of di­chlorido­[2-(di­phenyl­phosphan­yl)-3,4,5,6-tetra­fluoro­benzene-1-thiol­ato-κ2 P,S]gold(III)

Peter W R Corfield a,*, Mary Bailey b
PMCID: PMC4647444  PMID: 26594426

Abstract

The title compound, [Au(C18H10F4PS)Cl2], crystallizes as neutral mol­ecules, with the AuIII atom coordinated by two Cl atoms and by the P and S atoms of the bidentate phosphanyl thiol­ate ligand, in a slightly distorted square-planar environment. The mol­ecules are linked into centrosymmetric dimers via long axial Au—Cl bonds of 3.393 (4) Å. This axial Au—Cl distance is longer than is usually seen, although one other example has been given. Dimer formation may explain the unexpectedly low solubility of the compound in common polar solvents. There is also a separate inter­molecular Au—F contact of 3.561 (6) Å, but this distance seems too long to be regarded as a bond. Two putative C—H⋯F hydrogen bonds appear to link the dimers into sheets parallel to (110). There is a short inter­molecular F⋯F contact of 2.695 (10) Å between two dimers related by the twofold axis.

Keywords: crystal structure, mixed ligand, gold complex

Related literature  

For synthetic details, see: Eller (1971); Eller & Meek (1970). Hollis & Lippard (1983) describe a similarly long axial Au—Cl bond in a mixed-valence gold compound, although other axial Au—Cl bonds in the literature are in the 3.0–3.1 Å range, as in Elder & Watkins (1986).graphic file with name e-71-0m181-scheme1.jpg

Experimental  

Crystal data  

  • [Au(C18H10F4PS)Cl2]

  • M r = 633.16

  • Monoclinic, Inline graphic

  • a = 18.90 (2) Å

  • b = 8.388 (12) Å

  • c = 24.15 (3) Å

  • β = 100.75 (3)°

  • V = 3761 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 8.15 mm−1

  • T = 298 K

  • 0.22 × 0.16 × 0.13 mm

Data collection  

  • Picker 4-circle diffractometer

  • Absorption correction: gaussian (Busing & Levy, 1957) T min = 0.384, T max = 0.442

  • 4262 measured reflections

  • 4142 independent reflections

  • 3209 reflections with I > 2σ(I)

  • R int = 0.025

  • 18 standard reflections every 500 reflections intensity decay: −1.0(3)

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.086

  • S = 1.03

  • 4142 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 1.00 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: Corfield (1972); cell refinement: Corfield (1972); data reduction: Corfield et al. (1973); program(s) used to solve structure: Corfield (1972); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL2014.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015016758/wm5209sup1.cif

e-71-0m181-sup1.cif (141.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016758/wm5209Isup2.hkl

e-71-0m181-Isup2.hkl (227.4KB, hkl)

. DOI: 10.1107/S2056989015016758/wm5209fig1.tif

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

a y z . DOI: 10.1107/S2056989015016758/wm5209fig2.tif

Packing of the title complex, viewed along a direction near to the a axis. The centrosymmetric dimers are shown, as well as the proximity of F3(1,y − 1,z) to a sixth coordination site for the gold atom. Long Au—Cl bonds are gived as dashed lines.

CCDC reference: 1422931

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (, ).

AuS 2.273(3)
AuP 2.258(3)
AuCl2 2.337(3)
AuCl1 2.305(3)
SAuP 90.22(10)
SAuCl2 87.51(10)
PAuCl2 177.69(6)
SAuCl1 176.59(7)
PAuCl1 88.36(10)
Cl2AuCl1 93.88(11)
SAuCl2i 88.12(7)
PAuCl2i 90.45(9)
Cl2AuCl2i 89.91(9)
Cl1AuCl2i 94.99(7)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C12H12F3ii 0.93 2.60 3.444(7) 151
C18H18F4iii 0.93 2.50 3.082(7) 121

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We are grateful for the provision of a crystalline sample by Gary P. Eller and Devon W. Meek, as well as support from the National Science Foundation through equipment grant GP8534 awarded to the Ohio State University where the experimental work was carried out.

supplementary crystallographic information

S1. Synthesis and crystallization

The preparation of the compound is described by Eller (1971), and synthesis of the then novel ligand is given in Eller & Meek (1970).

S2. Refinement

To reduce the number of parameters varied, the phenyl groups C16—C21 and C22—C27 were constrained as rigid hexagons, with C—C distances of 1.385 Å. Aromatic H atoms were placed geometrically, with their Ueq values set 1.2 times the Uiso of their bonded C atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Packing of the title complex, viewed along a direction near to the a axis. The centrosymmetric dimers are shown, as well as the proximity of F3(1,y - 1,z) to a sixth coordination site for the gold atom. Long Au—Cl bonds are gived as dashed lines.

Crystal data

[Au(C18H10F4PS)Cl2] F(000) = 2384
Mr = 633.16 Dx = 2.236 Mg m3Dm = 2.181 (3) Mg m3Dm measured by flotation in carbon tetrachloride/bromoforom mixture. Discrepancy may be due to an uncalibrated pycnometer.
Monoclinic, C2/c Mo Kα radiation, λ = 0.7107 Å
a = 18.90 (2) Å Cell parameters from 24 reflections
b = 8.388 (12) Å θ = 4.2–25.1°
c = 24.15 (3) Å µ = 8.15 mm1
β = 100.75 (3)° T = 298 K
V = 3761 (8) Å3 Irregular, red
Z = 8 0.22 × 0.16 × 0.13 mm

Data collection

Picker 4-circle diffractometer 3209 reflections with I > 2σ(I)
Radiation source: sealed X-ray tube Rint = 0.025
Oriented graphite 200 reflection monochromator θmax = 27.5°, θmin = 2.5°
θ/2θ scans h = 0→24
Absorption correction: gaussian (Busing & Levy, 1957) k = 0→9
Tmin = 0.384, Tmax = 0.442 l = −31→30
4262 measured reflections 18 standard reflections every 500 reflections
4142 independent reflections intensity decay: −1.0 (3)

Refinement

Refinement on F2 Primary atom site location: heavy-atom method
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2)] where P = (Fo2 + 2Fc2)/3
4142 reflections (Δ/σ)max < 0.001
220 parameters Δρmax = 1.00 e Å3
0 restraints Δρmin = −0.87 e Å3

Special details

Experimental. Data reduction followed procedures in Corfield et al. (1973), with programs written by Corfield and by Graeme Gainsford.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. To reduce the number of parameters varied, the phenyl groups C16—C21 and C22—C27 were constrained as rigid hexagons, with C—C distances of 1.385 Å. Ueq values for the aromatic H atoms were set 1.2 times the Uiso of their bonded C atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Au 0.03240 (2) 0.02779 (3) 0.08580 (2) 0.03238 (9)
Cl1 0.14260 (10) −0.0955 (2) 0.09200 (9) 0.0544 (5)
Cl2 −0.03221 (10) −0.1909 (2) 0.04280 (8) 0.0503 (4)
S −0.07524 (9) 0.1492 (2) 0.08537 (8) 0.0438 (4)
P 0.09063 (8) 0.2433 (2) 0.12802 (7) 0.0309 (3)
F2 0.1031 (2) 0.5694 (5) 0.1812 (2) 0.0572 (12)
F3 −0.0040 (3) 0.7682 (6) 0.1937 (2) 0.0681 (13)
F4 −0.1413 (3) 0.6750 (6) 0.1616 (2) 0.0757 (15)
F5 −0.1734 (2) 0.3959 (6) 0.1090 (2) 0.0622 (12)
C1 0.0205 (3) 0.3780 (8) 0.1371 (3) 0.0343 (14)
C2 0.0351 (4) 0.5243 (9) 0.1633 (3) 0.0431 (16)
C3 −0.0190 (4) 0.6241 (9) 0.1708 (3) 0.0479 (18)
C4 −0.0886 (4) 0.5795 (9) 0.1527 (3) 0.0488 (18)
C5 −0.1042 (3) 0.4341 (10) 0.1269 (3) 0.0461 (18)
C6 −0.0507 (3) 0.3312 (8) 0.1186 (3) 0.0363 (14)
C7 0.1393 (2) 0.1964 (5) 0.19702 (13) 0.0336 (14)
C8 0.2018 (2) 0.2774 (5) 0.21989 (18) 0.0490 (18)
H8 0.2215 0.3507 0.1981 0.059*
C9 0.2350 (2) 0.2494 (6) 0.27517 (19) 0.058 (2)
H9 0.2769 0.3038 0.2905 0.070*
C10 0.2057 (3) 0.1403 (6) 0.30757 (14) 0.055 (2)
H10 0.2279 0.1215 0.3447 0.066*
C11 0.1432 (3) 0.0592 (6) 0.28470 (17) 0.060 (2)
H11 0.1235 −0.0140 0.3065 0.072*
C12 0.1100 (2) 0.0873 (5) 0.22942 (18) 0.0462 (17)
H12 0.0681 0.0329 0.2141 0.055*
C13 0.1473 (2) 0.3410 (5) 0.08744 (17) 0.0352 (14)
C14 0.12320 (19) 0.4760 (5) 0.05659 (18) 0.0400 (15)
H14 0.0771 0.5146 0.0566 0.048*
C15 0.1678 (3) 0.5534 (4) 0.02581 (18) 0.0487 (18)
H15 0.1516 0.6441 0.0051 0.058*
C16 0.2365 (2) 0.4959 (6) 0.0259 (2) 0.051 (2)
H16 0.2664 0.5480 0.0052 0.062*
C17 0.26061 (18) 0.3610 (6) 0.0567 (2) 0.0527 (19)
H17 0.3068 0.3224 0.0568 0.063*
C18 0.2160 (2) 0.2835 (5) 0.08750 (19) 0.0433 (16)
H18 0.2323 0.1929 0.1082 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Au 0.03286 (13) 0.03025 (15) 0.03249 (12) −0.00327 (11) 0.00210 (8) −0.00023 (11)
Cl1 0.0446 (10) 0.0441 (11) 0.0717 (13) 0.0115 (8) 0.0038 (9) −0.0094 (9)
Cl2 0.0572 (11) 0.0408 (10) 0.0499 (10) −0.0166 (8) 0.0022 (8) −0.0058 (8)
S 0.0279 (8) 0.0472 (11) 0.0541 (10) −0.0065 (7) 0.0017 (7) −0.0028 (8)
P 0.0258 (7) 0.0295 (9) 0.0361 (8) −0.0005 (6) 0.0022 (6) 0.0001 (6)
F2 0.048 (2) 0.046 (3) 0.074 (3) −0.006 (2) 0.000 (2) −0.019 (2)
F3 0.082 (3) 0.051 (3) 0.071 (3) 0.010 (3) 0.012 (3) −0.023 (2)
F4 0.066 (3) 0.073 (4) 0.088 (4) 0.037 (3) 0.015 (3) −0.013 (3)
F5 0.034 (2) 0.072 (3) 0.080 (3) 0.009 (2) 0.008 (2) 0.005 (3)
C1 0.030 (3) 0.031 (4) 0.041 (3) 0.004 (3) 0.005 (3) 0.001 (3)
C2 0.047 (4) 0.038 (4) 0.043 (4) 0.005 (3) 0.004 (3) −0.008 (3)
C3 0.060 (5) 0.034 (4) 0.049 (4) 0.013 (3) 0.007 (4) −0.003 (3)
C4 0.051 (4) 0.045 (5) 0.052 (4) 0.021 (4) 0.015 (3) 0.002 (3)
C5 0.025 (3) 0.065 (5) 0.048 (4) 0.010 (3) 0.005 (3) 0.013 (4)
C6 0.036 (3) 0.041 (4) 0.032 (3) 0.003 (3) 0.005 (3) 0.007 (3)
C7 0.037 (3) 0.031 (4) 0.031 (3) 0.004 (3) 0.001 (3) 0.001 (3)
C8 0.047 (4) 0.048 (5) 0.046 (4) −0.011 (3) −0.006 (3) 0.006 (3)
C9 0.050 (4) 0.065 (6) 0.051 (4) −0.001 (4) −0.012 (4) −0.011 (4)
C10 0.068 (5) 0.054 (5) 0.040 (4) 0.016 (4) 0.001 (4) −0.002 (4)
C11 0.089 (6) 0.053 (5) 0.039 (4) −0.003 (5) 0.014 (4) 0.012 (3)
C12 0.054 (4) 0.040 (4) 0.044 (4) −0.008 (3) 0.008 (3) 0.000 (3)
C13 0.031 (3) 0.036 (4) 0.038 (3) 0.000 (3) 0.003 (3) 0.000 (3)
C14 0.042 (4) 0.039 (4) 0.040 (3) −0.001 (3) 0.009 (3) 0.002 (3)
C15 0.070 (5) 0.031 (4) 0.047 (4) −0.007 (4) 0.017 (4) 0.004 (3)
C16 0.059 (5) 0.051 (5) 0.047 (4) −0.017 (4) 0.017 (4) −0.003 (3)
C17 0.041 (4) 0.062 (5) 0.057 (5) −0.006 (4) 0.016 (3) −0.002 (4)
C18 0.034 (3) 0.045 (4) 0.051 (4) 0.001 (3) 0.006 (3) −0.001 (3)

Geometric parameters (Å, º)

Au—S 2.273 (3) C7—C12 1.3850
Au—P 2.258 (3) C8—C9 1.3850
Au—Cl2 2.337 (3) C8—H8 0.9300
Au—Cl1 2.305 (3) C9—C10 1.3850
Au—Cl2i 3.393 (4) C9—H9 0.9300
Au—F3ii 3.560 (6) C10—C11 1.3850
S—C6 1.747 (7) C10—H10 0.9300
P—C1 1.787 (6) C11—C12 1.3850
P—C7 1.791 (4) C11—H11 0.9300
P—C13 1.781 (4) C12—H12 0.9300
F2—C2 1.331 (8) C13—C14 1.3850
F3—C3 1.337 (9) C13—C18 1.3850
F4—C4 1.328 (8) C14—C15 1.3850
F5—C5 1.338 (8) C14—H14 0.9300
C1—C6 1.393 (8) C15—C16 1.3850
C1—C2 1.385 (10) C15—H15 0.9300
C2—C3 1.360 (10) C16—C17 1.3850
C3—C4 1.358 (10) C16—H16 0.9300
C4—C5 1.375 (11) C17—C18 1.3850
C5—C6 1.372 (9) C17—H17 0.9300
C7—C8 1.3850 C18—H18 0.9300
S—Au—P 90.22 (10) C5—C6—S 118.5 (5)
S—Au—Cl2 87.51 (10) C1—C6—S 123.4 (5)
P—Au—Cl2 177.69 (6) C8—C7—C12 120.0
S—Au—Cl1 176.59 (7) C8—C7—P 121.0 (3)
P—Au—Cl1 88.36 (10) C12—C7—P 118.7 (3)
Cl2—Au—Cl1 93.88 (11) C7—C8—C9 120.0
S—Au—Cl2i 88.12 (7) C7—C8—H8 120.0
P—Au—Cl2i 90.45 (9) C9—C8—H8 120.0
Cl2—Au—Cl2i 89.91 (9) C10—C9—C8 120.0
Cl1—Au—Cl2i 94.99 (7) C10—C9—H9 120.0
S—Au—F3ii 88.98 (11) C8—C9—H9 120.0
P—Au—F3ii 107.67 (12) C11—C10—C9 120.0
Cl2—Au—F3ii 71.87 (12) C11—C10—H10 120.0
Cl1—Au—F3ii 88.50 (11) C9—C10—H10 120.0
Cl2i—Au—F3ii 161.66 (8) C10—C11—C12 120.0
C6—S—Au 103.2 (2) C10—C11—H11 120.0
C1—P—C7 106.8 (3) C12—C11—H11 120.0
C1—P—C13 108.2 (3) C11—C12—C7 120.0
C7—P—C13 110.8 (2) C11—C12—H12 120.0
C1—P—Au 104.6 (2) C7—C12—H12 120.0
C7—P—Au 111.53 (17) C14—C13—C18 120.0
C13—P—Au 114.36 (18) C14—C13—P 120.0 (2)
C6—C1—C2 119.7 (6) C18—C13—P 120.0 (2)
C6—C1—P 118.5 (5) C15—C14—C13 120.0
C2—C1—P 121.8 (5) C15—C14—H14 120.0
F2—C2—C3 119.1 (6) C13—C14—H14 120.0
F2—C2—C1 119.9 (6) C16—C15—C14 120.0
C3—C2—C1 121.0 (7) C16—C15—H15 120.0
C4—C3—C2 119.7 (7) C14—C15—H15 120.0
C4—C3—F3 120.0 (7) C17—C16—C15 120.0
C2—C3—F3 120.3 (7) C17—C16—H16 120.0
F4—C4—C3 119.5 (7) C15—C16—H16 120.0
F4—C4—C5 120.2 (7) C16—C17—C18 120.0
C3—C4—C5 120.2 (6) C16—C17—H17 120.0
C6—C5—F5 120.3 (7) C18—C17—H17 120.0
C6—C5—C4 121.4 (6) C17—C18—C13 120.0
F5—C5—C4 118.3 (6) C17—C18—H18 120.0
C5—C6—C1 118.0 (6) C13—C18—H18 120.0

Symmetry codes: (i) −x, −y, −z; (ii) x, y−1, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C12—H12···F3ii 0.93 2.60 3.444 (7) 151
C18—H18···F4iii 0.93 2.50 3.082 (7) 121

Symmetry codes: (ii) x, y−1, z; (iii) x+1/2, y−1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5209).

References

  1. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  2. Busing, W. R. & Levy, H. A. (1957). Acta Cryst. 10, 180–182.
  3. Corfield, P. W. R. (1972). Local versions of standard programs, written at Ohio State University.
  4. Corfield, P. W. R., Dabrowiak, J. C. & Gore, E. S. (1973). Inorg. Chem. 12, 1734–1740.
  5. Elder, R. G. & Watkins, J. W. II (1986). Inorg. Chem. 25, 223–226.
  6. Eller, P. G. (1971). PhD thesis, The Ohio State University, Columbus, Ohio.
  7. Eller, P. G. & Meek, D. W. (1970). J. Organomet. Chem. 22, 631–636.
  8. Hollis, L. S. & Lippard, S. J. (1983). J. Am. Chem. Soc. 105, 4293–4299.
  9. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015016758/wm5209sup1.cif

e-71-0m181-sup1.cif (141.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015016758/wm5209Isup2.hkl

e-71-0m181-Isup2.hkl (227.4KB, hkl)

. DOI: 10.1107/S2056989015016758/wm5209fig1.tif

The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

a y z . DOI: 10.1107/S2056989015016758/wm5209fig2.tif

Packing of the title complex, viewed along a direction near to the a axis. The centrosymmetric dimers are shown, as well as the proximity of F3(1,y − 1,z) to a sixth coordination site for the gold atom. Long Au—Cl bonds are gived as dashed lines.

CCDC reference: 1422931

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES