Skip to main content
Thorax logoLink to Thorax
. 1993 Oct;48(10):1006–1011. doi: 10.1136/thx.48.10.1006

In vitro bioelectric properties of bronchial epithelium from transplanted lungs in recipients with cystic fibrosis.

V T Tsang 1, E W Alton 1, M E Hodson 1, M Yacoub 1
PMCID: PMC464812  PMID: 8256229

Abstract

BACKGROUND--Bronchial epithelial function after heart-lung transplantation (HLT) for cystic fibrosis (CF) may be affected by the original disease as well as other factors such as prolonged organ ischaemic time, the interruption of bronchial arterial and lymphatic supply, infection, rejection, and cyclosporin. In vitro measurement of the bioelectric properties of the bronchial mucosal lining may be an effective means of characterising the mucosal function of the lung allografts in response to pharmacological agents. METHODS--Bronchial mucosal tissues from explanted native lungs of CF and non-CF patients at transplantation were used to assess the possible application of a mini-Ussing chamber. With this technique, the bioelectric responses of bronchial mucosal biopsies from six patients with CF, one patient with congenital heart disease, four with primary pulmonary hypertension, and one with emphysema, all after HLT, were studied. The bioelectric and pharmacological responses of biopsies of bronchial mucosa from patients after HLT were compared with biopsies from non-CF non-HLT subjects. RESULTS--The altered bioelectric properties of CF tissues could be detected by the mini-Ussing chamber technique. The basal bioelectric values and the responses to amiloride and isoprenaline in CF patients were not different from those in non-CF patients two years after HLT. No significant difference in the basal bioelectric properties and responses to amiloride and isoprenaline was found between HLT recipients and non-CF non-HLT subjects. CONCLUSIONS--The mini-Ussing chamber is an effective means of characterising the typical CF bioelectric defect which was not found in the transplanted lungs of CF patients up to two years after HLT. Furthermore, values were unaltered in comparison with non-transplanted lungs, suggesting that bronchial epithelial function is maintained after HLT.

Full text

PDF
1006

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alton E. W., Khagani A., Taylor R. F., Logan-Sinclair R., Yacoub M., Geddes D. M. Effect of heart-lung transplantation on airway potential difference in patients with and without cystic fibrosis. Eur Respir J. 1991 Jan;4(1):5–9. [PubMed] [Google Scholar]
  2. Alton E. W., Khagani A., Yacoub M. H., Geddes D. M. Lack of effect of lung denervation on the measurement of potential difference after single-lung transplantation. N Engl J Med. 1989 Jun 29;320(26):1755–1755. [PubMed] [Google Scholar]
  3. Alton E. W., Rogers D. F., Logan-Sinclair R., Yacoub M., Barnes P. J., Geddes D. M. Bioelectric properties of cystic fibrosis airways obtained at heart-lung transplantation. Thorax. 1992 Dec;47(12):1010–1014. doi: 10.1136/thx.47.12.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baxter P., Goldhill J., Hardcastle J., Hardcastle P. T., Taylor C. J. Enhanced intestinal glucose and alanine transport in cystic fibrosis. Gut. 1990 Jul;31(7):817–820. doi: 10.1136/gut.31.7.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boucher R. C., Cheng E. H., Paradiso A. M., Stutts M. J., Knowles M. R., Earp H. S. Chloride secretory response of cystic fibrosis human airway epithelia. Preservation of calcium but not protein kinase C- and A-dependent mechanisms. J Clin Invest. 1989 Nov;84(5):1424–1431. doi: 10.1172/JCI114316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Corrales R. J., Coleman D. L., Jacoby D. B., Leikauf G. D., Hahn H. L., Nadel J. A., Widdicombe J. H. Ion transport across cat and ferret tracheal epithelia. J Appl Physiol (1985) 1986 Sep;61(3):1065–1070. doi: 10.1152/jappl.1986.61.3.1065. [DOI] [PubMed] [Google Scholar]
  7. Dalemans W., Barbry P., Champigny G., Jallat S., Dott K., Dreyer D., Crystal R. G., Pavirani A., Lecocq J. P., Lazdunski M. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation. Nature. 1991 Dec 19;354(6354):526–528. doi: 10.1038/354526a0. [DOI] [PubMed] [Google Scholar]
  8. Frizzell R. A., Rechkemmer G., Shoemaker R. L. Altered regulation of airway epithelial cell chloride channels in cystic fibrosis. Science. 1986 Aug 1;233(4763):558–560. doi: 10.1126/science.2425436. [DOI] [PubMed] [Google Scholar]
  9. Hardcastle J., Hardcastle P. T., Taylor C. J., Goldhill J. Failure of cholinergic stimulation to induce a secretory response from the rectal mucosa in cystic fibrosis. Gut. 1991 Sep;32(9):1035–1039. doi: 10.1136/gut.32.9.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knowles M. R., Buntin W. H., Bromberg P. A., Gatzy J. T., Boucher R. C. Measurements of transepithelial electric potential differences in the trachea and bronchi of human subjects in vivo. Am Rev Respir Dis. 1982 Jul;126(1):108–112. doi: 10.1164/arrd.1982.126.1.108. [DOI] [PubMed] [Google Scholar]
  11. Knowles M. R., Stutts M. J., Spock A., Fischer N., Gatzy J. T., Boucher R. C. Abnormal ion permeation through cystic fibrosis respiratory epithelium. Science. 1983 Sep 9;221(4615):1067–1070. doi: 10.1126/science.6308769. [DOI] [PubMed] [Google Scholar]
  12. Knowles M., Gatzy J., Boucher R. Increased bioelectric potential difference across respiratory epithelia in cystic fibrosis. N Engl J Med. 1981 Dec 17;305(25):1489–1495. doi: 10.1056/NEJM198112173052502. [DOI] [PubMed] [Google Scholar]
  13. Knowles M., Murray G., Shallal J., Askin F., Ranga V., Gatzy J., Boucher R. Bioelectric properties and ion flow across excised human bronchi. J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):868–877. doi: 10.1152/jappl.1984.56.4.868. [DOI] [PubMed] [Google Scholar]
  14. Li M., McCann J. D., Liedtke C. M., Nairn A. C., Greengard P., Welsh M. J. Cyclic AMP-dependent protein kinase opens chloride channels in normal but not cystic fibrosis airway epithelium. Nature. 1988 Jan 28;331(6154):358–360. doi: 10.1038/331358a0. [DOI] [PubMed] [Google Scholar]
  15. Quinton P. M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 1990 Jul;4(10):2709–2717. doi: 10.1096/fasebj.4.10.2197151. [DOI] [PubMed] [Google Scholar]
  16. Schoumacher R. A., Shoemaker R. L., Halm D. R., Tallant E. A., Wallace R. W., Frizzell R. A. Phosphorylation fails to activate chloride channels from cystic fibrosis airway cells. Nature. 1987 Dec 24;330(6150):752–754. doi: 10.1038/330752a0. [DOI] [PubMed] [Google Scholar]
  17. Sigalet D. L., Kneteman N. M., Thomson A. B. The effects of cyclosporine on normal bowel. Transplantation. 1991 Jun;51(6):1296–1298. [PubMed] [Google Scholar]
  18. Taylor C. J., Baxter P. S., Hardcastle J., Hardcastle P. T. Failure to induce secretion in jejunal biopsies from children with cystic fibrosis. Gut. 1988 Jul;29(7):957–962. doi: 10.1136/gut.29.7.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Veeze H. J., Sinaasappel M., Bijman J., Bouquet J., de Jonge H. R. Ion transport abnormalities in rectal suction biopsies from children with cystic fibrosis. Gastroenterology. 1991 Aug;101(2):398–403. doi: 10.1016/0016-5085(91)90017-f. [DOI] [PubMed] [Google Scholar]
  20. Welsh M. J., Liedtke C. M. Chloride and potassium channels in cystic fibrosis airway epithelia. 1986 Jul 31-Aug 6Nature. 322(6078):467–470. doi: 10.1038/322467a0. [DOI] [PubMed] [Google Scholar]
  21. Widdicombe J. H. Cystic fibrosis and beta-adrenergic response of airway epithelial cell cultures. Am J Physiol. 1986 Oct;251(4 Pt 2):R818–R822. doi: 10.1152/ajpregu.1986.251.4.R818. [DOI] [PubMed] [Google Scholar]
  22. Wood A., Higenbottam T., Jackson M., Scott J., Stewart S., Wallwork J. Airway mucosal bioelectric potential difference in cystic fibrosis after lung transplantation. Am Rev Respir Dis. 1989 Dec;140(6):1645–1649. doi: 10.1164/ajrccm/140.6.1645. [DOI] [PubMed] [Google Scholar]
  23. Yacoub M. H., Banner N. R., Khaghani A., Fitzgerald M., Madden B., Tsang V., Radley-Smith R., Hodson M. Heart-lung transplantation for cystic fibrosis and subsequent domino heart transplantation. J Heart Transplant. 1990 Sep-Oct;9(5):459–467. [PubMed] [Google Scholar]
  24. de Leval M. R., Smyth R., Whitehead B., Scott J. P., Elliott M. J., Sharples L., Caine N., Helms P., Martin I. R., Higenbottam T. Heart and lung transplantation for terminal cystic fibrosis. A 4 1/2-year experience. J Thorac Cardiovasc Surg. 1991 Apr;101(4):633–642. [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES