Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 15;90(10):4389–4393. doi: 10.1073/pnas.90.10.4389

Evidence for lack of DNA photoreactivating enzyme in humans.

Y F Li 1, S T Kim 1, A Sancar 1
PMCID: PMC46516  PMID: 8506278

Abstract

Photoreactivating enzyme (DNA photolyase; deoxyribocyclobutadipyrimidine pyrimidine-lyase, EC 4.1.99.3) repairs UV damage to DNA by utilizing the energy of near-UV/visible light to split pyrimidine dimers into monomers. The enzyme is widespread in nature but is absent in certain species in a seemingly unpredictable manner. Its presence in humans has been a source of considerable controversy. To help resolve the issue we used a very specific and sensitive assay to compare photoreactivation activity in human, rattlesnake, yeast, and Escherichia coli cells. Photolyase was easily detectable in E. coli, yeast, and rattlesnake cell-free extracts but none was detected in cell-free extracts from HeLa cells or human white blood cells with an assay capable of detecting 10 molecules per cell. We conclude that humans most likely do not have DNA photolyase.

Full text

PDF
4389

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cook J. S., McGrath J. R. Photoreactivating-enzyme activity in metazoa. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1359–1365. doi: 10.1073/pnas.58.4.1359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. D'Ambrosio S. M., Whetstone J. W., Slazinski L., Lowney E. Photorepair of pyrimidine dimers in human skin in vivo. Photochem Photobiol. 1981 Oct;34(4):461–464. [PubMed] [Google Scholar]
  3. Eggset G., Volden G., Krokan H. Characterization of antibodies specific for UV-damaged DNA by ELISA. Photochem Photobiol. 1987 Apr;45(4):485–491. doi: 10.1111/j.1751-1097.1987.tb05407.x. [DOI] [PubMed] [Google Scholar]
  4. Eker A. P., Kooiman P., Hessels J. K., Yasui A. DNA photoreactivating enzyme from the cyanobacterium Anacystis nidulans. J Biol Chem. 1990 May 15;265(14):8009–8015. [PubMed] [Google Scholar]
  5. Giacomoni P. DNA photoreactivating enzyme from human tissues (S. E. Ogut, S. M. D'Ambrosio, M. Samuel and B. M. Sutherland, J. Photochem. Photobiol., B: Biol., 4 (1989) 47-56) J Photochem Photobiol B. 1990 Apr 15;5(2):268–271. doi: 10.1016/1011-1344(90)80012-m. [DOI] [PubMed] [Google Scholar]
  6. Goldberg E. Lactate dehydrogenase-X from mouse testes and spermatozoa. Methods Enzymol. 1975;41:318–323. doi: 10.1016/s0076-6879(75)41072-2. [DOI] [PubMed] [Google Scholar]
  7. Harm H. Damage and repair in mammalian cells after exposure to non-ionizing radiations. I. Ultraviolet and visible light irradiation of cells of the rat kangaroo (Potorous tridactylus) and determination of photorepairable damage in vitro. Mutat Res. 1978 Jun;50(3):353–366. doi: 10.1016/0027-5107(78)90040-4. [DOI] [PubMed] [Google Scholar]
  8. Harm H. Damage and repair in mammalian cells after exposure to non-ionizing radiations. III. Ultraviolet and visible light irradiation of cells of placental mammals, including humans, and determination of photorepairable damage in vitro. Mutat Res. 1980 Jan;69(1):167–176. doi: 10.1016/0027-5107(80)90186-4. [DOI] [PubMed] [Google Scholar]
  9. Henderson E. E. Host cell reactivation of Epstein-Barr virus in normal and repair-defective leukocytes. Cancer Res. 1978 Oct;38(10):3256–3263. [PubMed] [Google Scholar]
  10. Hirschfeld S., Levine A. S., Ozato K., Protić M. A constitutive damage-specific DNA-binding protein is synthesized at higher levels in UV-irradiated primate cells. Mol Cell Biol. 1990 May;10(5):2041–2048. doi: 10.1128/mcb.10.5.2041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hoeijmakers J. H. How relevant is the Escherichia coli UvrABC model for excision repair in eukaryotes? J Cell Sci. 1991 Dec;100(Pt 4):687–691. doi: 10.1242/jcs.100.4.687. [DOI] [PubMed] [Google Scholar]
  12. Legerski R., Peterson C. Expression cloning of a human DNA repair gene involved in xeroderma pigmentosum group C. Nature. 1992 Sep 3;359(6390):70–73. doi: 10.1038/359070a0. [DOI] [PubMed] [Google Scholar]
  13. Mortelmans K., Cleaver J. E., Friedberg E. C., Paterson M. C., Smith B. P., Thomas G. H. Photoreactivation of thymine dimers in UV-irradiated human cells: unique dependence on culture conditions. Mutat Res. 1977 Sep;44(3):433–445. doi: 10.1016/0027-5107(77)90101-4. [DOI] [PubMed] [Google Scholar]
  14. Ogut S. E., D'Ambrosio S. M., Samuel M., Sutherland B. M. DNA photoreactivating enzyme from human tissues. J Photochem Photobiol B. 1989 Oct;4(1):47–56. doi: 10.1016/1011-1344(89)80101-0. [DOI] [PubMed] [Google Scholar]
  15. Patterson M., Chu G. Evidence that xeroderma pigmentosum cells from complementation group E are deficient in a homolog of yeast photolyase. Mol Cell Biol. 1989 Nov;9(11):5105–5112. doi: 10.1128/mcb.9.11.5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Roza L., De Gruijl F. R., Bergen Henegouwen J. B., Guikers K., Van Weelden H., Van Der Schans G. P., Baan R. A. Detection of photorepair of UV-induced thymine dimers in human epidermis by immunofluorescence microscopy. J Invest Dermatol. 1991 Jun;96(6):903–907. doi: 10.1111/1523-1747.ep12475429. [DOI] [PubMed] [Google Scholar]
  17. Sabourin C. L., Ley R. D. Isolation and characterization of a marsupial DNA photolyase. Photochem Photobiol. 1988 May;47(5):719–723. doi: 10.1111/j.1751-1097.1988.tb02770.x. [DOI] [PubMed] [Google Scholar]
  18. Sancar A., Sancar G. B. DNA repair enzymes. Annu Rev Biochem. 1988;57:29–67. doi: 10.1146/annurev.bi.57.070188.000333. [DOI] [PubMed] [Google Scholar]
  19. Sancar A., Smith F. W., Sancar G. B. Purification of Escherichia coli DNA photolyase. J Biol Chem. 1984 May 10;259(9):6028–6032. [PubMed] [Google Scholar]
  20. Sancar G. B. DNA photolyases: physical properties, action mechanism, and roles in dark repair. Mutat Res. 1990 Sep-Nov;236(2-3):147–160. doi: 10.1016/0921-8777(90)90002-m. [DOI] [PubMed] [Google Scholar]
  21. Sancar G. B., Smith F. W. Interactions between yeast photolyase and nucleotide excision repair proteins in Saccharomyces cerevisiae and Escherichia coli. Mol Cell Biol. 1989 Nov;9(11):4767–4776. doi: 10.1128/mcb.9.11.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sebastian J., Sancar G. B. A damage-responsive DNA binding protein regulates transcription of the yeast DNA repair gene PHR1. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11251–11255. doi: 10.1073/pnas.88.24.11251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sibghat-Ullah, Sancar A. Substrate overlap and functional competition between human nucleotide excision repair and Escherichia coli photolyase and (a)BC excision nuclease. Biochemistry. 1990 Jun 19;29(24):5711–5718. doi: 10.1021/bi00476a011. [DOI] [PubMed] [Google Scholar]
  24. Sibghatullah, Husain I., Carlton W., Sancar A. Human nucleotide excision repair in vitro: repair of pyrimidine dimers, psoralen and cisplatin adducts by HeLa cell-free extract. Nucleic Acids Res. 1989 Jun 26;17(12):4471–4484. doi: 10.1093/nar/17.12.4471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sutherland B. M., Castellani A. Photoreactivating enzyme induction in human lymphocytes. Photochem Photobiol. 1982 Feb;35(2):275–277. doi: 10.1111/j.1751-1097.1982.tb03847.x. [DOI] [PubMed] [Google Scholar]
  26. Sutherland B. M., Harber L. C., Kochevar I. E. Pyrimidine dimer formation and repair in human skin. Cancer Res. 1980 Sep;40(9):3181–3185. [PubMed] [Google Scholar]
  27. Sutherland B. M., Oliver R. Culture conditions affect photoreactivating enzyme levels in human fibroblasts. Biochim Biophys Acta. 1976 Sep 6;442(3):358–367. doi: 10.1016/0005-2787(76)90310-5. [DOI] [PubMed] [Google Scholar]
  28. Sutherland B. M., Oliver R., Fuselier C. O., Sutherland J. C. Photoreactivation of pyrimidine dimers in the DNA of normal and xeroderma pigmentosum cells. Biochemistry. 1976 Jan 27;15(2):402–406. doi: 10.1021/bi00647a025. [DOI] [PubMed] [Google Scholar]
  29. Sutherland B. M., Oliver R. Low levels of photoreactivating enzyme in xeroderma pigmentosum variants. Nature. 1975 Sep 11;257(5522):132–134. doi: 10.1038/257132a0. [DOI] [PubMed] [Google Scholar]
  30. Sutherland B. M. Photoreactivating enzyme from human leukocytes. Nature. 1974 Mar 8;248(5444):109–112. doi: 10.1038/248109a0. [DOI] [PubMed] [Google Scholar]
  31. Sutherland B. M., Rice M., Wagner E. K. Xeroderma pigmentosum cells contain low levels of photoreactivating enzyme. Proc Natl Acad Sci U S A. 1975 Jan;72(1):103–107. doi: 10.1073/pnas.72.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sutherland B. M., Runge P., Sutherland J. C. DNA photoreactivating enzyme from placental mammals. Origin and characteristics. Biochemistry. 1974 Nov 5;13(23):4710–4715. doi: 10.1021/bi00720a005. [DOI] [PubMed] [Google Scholar]
  33. Sutherland J. C., Sutherland B. M. Human photoreactivating enzyme action spectrum and safelight conditions. Biophys J. 2009 Jan 1;15(5):435–440. doi: 10.1016/S0006-3495(75)85828-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Syvaoja J., Linn S. Characterization of a large form of DNA polymerase delta from HeLa cells that is insensitive to proliferating cell nuclear antigen. J Biol Chem. 1989 Feb 15;264(5):2489–2497. [PubMed] [Google Scholar]
  35. Taylor J. S., Brockie I. R. Synthesis of a trans-syn thymine dimer building block. Solid phase synthesis of CGTAT[t,s]TATGC. Nucleic Acids Res. 1988 Jun 10;16(11):5123–5136. doi: 10.1093/nar/16.11.5123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wagner E. K., Rice M., Sutherland B. M. Photoreactivation of herpes simplex virus in human fibroblasts. Nature. 1975 Apr 17;254(5501):627–628. doi: 10.1038/254627a0. [DOI] [PubMed] [Google Scholar]
  37. Wickner W., Brutlag D., Schekman R., Kornberg A. RNA synthesis initiates in vitro conversion of M13 DNA to its replicative form. Proc Natl Acad Sci U S A. 1972 Apr;69(4):965–969. doi: 10.1073/pnas.69.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wood R. D., Robins P., Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell. 1988 Apr 8;53(1):97–106. doi: 10.1016/0092-8674(88)90491-6. [DOI] [PubMed] [Google Scholar]
  39. de Gruijl F. R., Roza L. Photoreactivation in humans. J Photochem Photobiol B. 1991 Sep;10(4):367–371. doi: 10.1016/1011-1344(91)80022-a. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES