Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 15;90(10):4404–4408. doi: 10.1073/pnas.90.10.4404

The LIM motif defines a specific zinc-binding protein domain.

J W Michelsen 1, K L Schmeichel 1, M C Beckerle 1, D R Winge 1
PMCID: PMC46519  PMID: 8506279

Abstract

The cysteine-rich protein (CRP) contains two copies of the LIM sequence motif, CX2CX17HX2CX2CX2CX17-CX2C, that was first identified in the homeodomain proteins Lin-11, Is1-1, and Mec-3. The abundance and spacing of the cysteine residues in the LIM motif are reminiscent of a metal-binding domain. We examined the metal-binding properties of CRP isolated from chicken smooth muscle (cCRP) and from a bacterial expression system and observed that cCRP is a specific Zn-binding metalloprotein. Four Zn(II) ions are maximally bound to cCRP, consistent with the idea that each LIM domain coordinates two metal ions. From spectroscopic studies of Co(II)- and 113Cd(II)-substituted cCRP, we determined that each metal ion is tetrahedrally coordinated with cysteinyl sulfurs dominating the ligand types. One metal site within each LIM motif has tetrathiolate (S4) coordination, the second site may either be S4 or S3N1. The LIM motif represents another example of a specific Zn-binding protein sequence.

Full text

PDF
4404

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bertini I., Luchinat C. High spin cobalt(II) as a probe for the investigation of metalloproteins. Adv Inorg Biochem. 1984;6:71–111. [PubMed] [Google Scholar]
  2. Boehm T., Foroni L., Kaneko Y., Perutz M. F., Rabbitts T. H. The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4367–4371. doi: 10.1073/pnas.88.10.4367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen B., McGuffin M. E., Pfeifle C., Segal D., Cohen S. M. apterous, a gene required for imaginal disc development in Drosophila encodes a member of the LIM family of developmental regulatory proteins. Genes Dev. 1992 May;6(5):715–729. doi: 10.1101/gad.6.5.715. [DOI] [PubMed] [Google Scholar]
  4. Crawford A. W., Beckerle M. C. Purification and characterization of zyxin, an 82,000-dalton component of adherens junctions. J Biol Chem. 1991 Mar 25;266(9):5847–5853. [PubMed] [Google Scholar]
  5. Crawford A. W., Michelsen J. W., Beckerle M. C. An interaction between zyxin and alpha-actinin. J Cell Biol. 1992 Mar;116(6):1381–1393. doi: 10.1083/jcb.116.6.1381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fitzgerald D. W., Coleman J. E. Physicochemical properties of cloned nucleocapsid protein from HIV. Interactions with metal ions. Biochemistry. 1991 May 28;30(21):5195–5201. doi: 10.1021/bi00235a012. [DOI] [PubMed] [Google Scholar]
  7. Freyd G., Kim S. K., Horvitz H. R. Novel cysteine-rich motif and homeodomain in the product of the Caenorhabditis elegans cell lineage gene lin-11. Nature. 1990 Apr 26;344(6269):876–879. doi: 10.1038/344876a0. [DOI] [PubMed] [Google Scholar]
  8. Gardner K. H., Pan T., Narula S., Rivera E., Coleman J. E. Structure of the binuclear metal-binding site in the GAL4 transcription factor. Biochemistry. 1991 Nov 26;30(47):11292–11302. doi: 10.1021/bi00111a015. [DOI] [PubMed] [Google Scholar]
  9. Giedroc D. P., Coleman J. E. Structural and functional differences between the two intrinsic zinc ions of Escherichia coli RNA polymerase. Biochemistry. 1986 Aug 26;25(17):4969–4978. doi: 10.1021/bi00365a037. [DOI] [PubMed] [Google Scholar]
  10. Giedroc D. P., Giu H. W., Khan R., King G. C., Chen K. Zn(II) coordination domain mutants of T4 gene 32 protein. Biochemistry. 1992 Jan 28;31(3):765–774. doi: 10.1021/bi00118a018. [DOI] [PubMed] [Google Scholar]
  11. Grassetti D. R., Murray J. F., Jr Determination of sulfhydryl groups with 2,2'- or 4,4'-dithiodipyridine. Arch Biochem Biophys. 1967 Mar;119(1):41–49. doi: 10.1016/0003-9861(67)90426-2. [DOI] [PubMed] [Google Scholar]
  12. Hempe J. M., Cousins R. J. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9671–9674. doi: 10.1073/pnas.88.21.9671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson R. S., Schachman H. K. Communication between catalytic and regulatory subunits in Ni(II)- and Co(II)-aspartate transcarbamoylase. Ligand-promoted structural alterations at the intersubunit bonding domains. J Biol Chem. 1983 Mar 25;258(6):3528–3538. [PubMed] [Google Scholar]
  14. Karlsson O., Thor S., Norberg T., Ohlsson H., Edlund T. Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature. 1990 Apr 26;344(6269):879–882. doi: 10.1038/344879a0. [DOI] [PubMed] [Google Scholar]
  15. Kraulis P. J., Raine A. R., Gadhavi P. L., Laue E. D. Structure of the DNA-binding domain of zinc GAL4. Nature. 1992 Apr 2;356(6368):448–450. doi: 10.1038/356448a0. [DOI] [PubMed] [Google Scholar]
  16. Lane R. W., Ibers J. A., Frankel R. B., Papaefthymiou G. C., Holm R. H. Synthetic analogues of the active sites of iron-sulfur proteins. 14. Synthesis, properties, and structures of bis(o-xylyl-alpha,alpha'-dithiolato)ferrate(II, III) anions, analogues of oxidized and reduced rubredoxin sites. J Am Chem Soc. 1977 Jan 5;99(1):84–98. doi: 10.1021/ja00443a017. [DOI] [PubMed] [Google Scholar]
  17. Lee M. S., Gippert G. P., Soman K. V., Case D. A., Wright P. E. Three-dimensional solution structure of a single zinc finger DNA-binding domain. Science. 1989 Aug 11;245(4918):635–637. doi: 10.1126/science.2503871. [DOI] [PubMed] [Google Scholar]
  18. Li P. M., Reichert J., Freyd G., Horvitz H. R., Walsh C. T. The LIM region of a presumptive Caenorhabditis elegans transcription factor is an iron-sulfur- and zinc-containing metallodomain. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9210–9213. doi: 10.1073/pnas.88.20.9210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liebhaber S. A., Emery J. G., Urbanek M., Wang X. K., Cooke N. E. Characterization of a human cDNA encoding a widely expressed and highly conserved cysteine-rich protein with an unusual zinc-finger motif. Nucleic Acids Res. 1990 Jul 11;18(13):3871–3879. doi: 10.1093/nar/18.13.3871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
  21. Marmorstein R., Carey M., Ptashne M., Harrison S. C. DNA recognition by GAL4: structure of a protein-DNA complex. Nature. 1992 Apr 2;356(6368):408–414. doi: 10.1038/356408a0. [DOI] [PubMed] [Google Scholar]
  22. May S. W., Kuo J. Y. Preparation and properties of cobalt(II) rubredoxin. Biochemistry. 1978 Aug 8;17(16):3333–3338. doi: 10.1021/bi00609a025. [DOI] [PubMed] [Google Scholar]
  23. McGuire E. A., Rintoul C. E., Sclar G. M., Korsmeyer S. J. Thymic overexpression of Ttg-1 in transgenic mice results in T-cell acute lymphoblastic leukemia/lymphoma. Mol Cell Biol. 1992 Sep;12(9):4186–4196. doi: 10.1128/mcb.12.9.4186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nar H., Huber R., Messerschmidt A., Filippou A. C., Barth M., Jaquinod M., van de Kamp M., Canters G. W. Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in Escherichia coli of Pseudomonas aeruginosa copper azurin. Eur J Biochem. 1992 May 1;205(3):1123–1129. doi: 10.1111/j.1432-1033.1992.tb16881.x. [DOI] [PubMed] [Google Scholar]
  25. Pan T., Freedman L. P., Coleman J. E. Cadmium-113 NMR studies of the DNA binding domain of the mammalian glucocorticoid receptor. Biochemistry. 1990 Oct 2;29(39):9218–9225. doi: 10.1021/bi00491a016. [DOI] [PubMed] [Google Scholar]
  26. Sadler I., Crawford A. W., Michelsen J. W., Beckerle M. C. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton. J Cell Biol. 1992 Dec;119(6):1573–1587. doi: 10.1083/jcb.119.6.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 1990;185:60–89. doi: 10.1016/0076-6879(90)85008-c. [DOI] [PubMed] [Google Scholar]
  28. Taira M., Jamrich M., Good P. J., Dawid I. B. The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos. Genes Dev. 1992 Mar;6(3):356–366. doi: 10.1101/gad.6.3.356. [DOI] [PubMed] [Google Scholar]
  29. Tamkun J. W., DeSimone D. W., Fonda D., Patel R. S., Buck C., Horwitz A. F., Hynes R. O. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986 Jul 18;46(2):271–282. doi: 10.1016/0092-8674(86)90744-0. [DOI] [PubMed] [Google Scholar]
  30. Way J. C., Chalfie M. mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell. 1988 Jul 1;54(1):5–16. doi: 10.1016/0092-8674(88)90174-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES