Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 15;90(10):4426–4430. doi: 10.1073/pnas.90.10.4426

Association of casein kinase 2 with nuclear chromatin in relation to androgenic regulation of rat prostate.

K Ahmed 1, S Yenice 1, A Davis 1, S A Goueli 1
PMCID: PMC46524  PMID: 8506283

Abstract

Casein kinase 2 (CK-2) is a ubiquitous messenger-independent protein serine/threonine kinase that has been implicated in growth control. We have studied the activity and subcellular location of CK-2 in adult rat ventral prostate in relation to androgen withdrawal and administration. Androgen deprivation by castration results in a faster decline in CK-2 activity associated with prostatic nuclei than that in the cytosol. Nuclear CK-2 associated with chromatin is reduced at an even greater rate than that in the total nucleus. Reversal of these events by administration of a single dose of 5 alpha-dihydrotestosterone to adult rats castrated 144 hr previously was accompanied by a differential early enhancement of chromatin-associated CK-2 activity, with a concomitant decrease in the CK-2 activity present in the cytosol. Changes in the nuclear CK-2 activity correlated with the immunostainable enzyme protein in the nucleus. We propose that androgens evoke translocation of CK-2 from the cytoplasm to the nucleus (nucleoplasm) where its enhanced association with the chromatin constituents takes place. Conversely, withdrawal of circulating androgens due to castration evokes a dissociation of CK-2 from chromatin and eventual translocation of nucleoplasmic CK-2 to the cytoplasm. Modulations in the association of CK-2 with nuclear chromatin may represent an important mechanism of post-transcriptional regulation of nuclear CK-2 in relation to androgen action in the prostate.

Full text

PDF
4426

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed K., Wilson M. J., Goueli S. A. Biochemistry of protein kinase reactions in the prostate in relation to androgen action. Prog Clin Biol Res. 1981;75A:55–74. [PubMed] [Google Scholar]
  2. Boldyreff B., Piontek K., Schmidt-Spaniol I., Issinger O. G. The beta subunit of casein kinase II: cloning of cDNAs from murine and porcine origin and expression of the porcine sequence as a fusion protein. Biochim Biophys Acta. 1991 Mar 26;1088(3):439–441. doi: 10.1016/0167-4781(91)90140-h. [DOI] [PubMed] [Google Scholar]
  3. Bruchovsky N., Lesser B., Van Doorn E., Craven S. Hormonal effects on cell proliferation in rat prostate. Vitam Horm. 1975;33:61–102. doi: 10.1016/s0083-6729(08)60951-6. [DOI] [PubMed] [Google Scholar]
  4. Edelman A. M., Blumenthal D. K., Krebs E. G. Protein serine/threonine kinases. Annu Rev Biochem. 1987;56:567–613. doi: 10.1146/annurev.bi.56.070187.003031. [DOI] [PubMed] [Google Scholar]
  5. Filhol O., Cochet C., Chambaz E. M. Cytoplasmic and nuclear distribution of casein kinase II: characterization of the enzyme uptake by bovine adrenocortical nuclear preparation. Biochemistry. 1990 Oct 23;29(42):9928–9936. doi: 10.1021/bi00494a025. [DOI] [PubMed] [Google Scholar]
  6. Goueli S. A., Ahmed K. Nature of the intrinsic protein kinases involved in phosphorylation of non-histone proteins in intact prostatic nuclei: further identification of androgen-sensitive protein kinase reactions. Mol Cell Biochem. 1991 Mar 13;101(2):145–155. doi: 10.1007/BF00229531. [DOI] [PubMed] [Google Scholar]
  7. Goueli S. A., Davis A. T., Ahmed K. Purification of nuclear cAMP-independent protein kinases from rat ventral prostate. Int J Biochem. 1986;18(10):861–873. doi: 10.1016/0020-711x(86)90067-4. [DOI] [PubMed] [Google Scholar]
  8. Goueli S. A., Davis A. T., Arfman E., Vessella R., Ahmed K. Monoclonal antibodies against nuclear casein kinase NII (PK-N2). Hybridoma. 1990 Dec;9(6):609–618. doi: 10.1089/hyb.1990.9.609. [DOI] [PubMed] [Google Scholar]
  9. Goueli S. A., Ferkul K. M., Ahmed K. Purification of cytosolic cAMP-independent protein kinases from rat ventral prostate. Int J Biochem. 1986;18(10):875–884. doi: 10.1016/0020-711x(86)90068-6. [DOI] [PubMed] [Google Scholar]
  10. Goueli S. A., Hanten J., Davis A., Ahmed K. Polyclonal antibodies against rat liver cytosolic casein kinase II (CK-2) cross-react with CK-2 from other tissues and nuclear form (PK-N2) of the enzyme. Biochem Int. 1990;21(4):685–694. [PubMed] [Google Scholar]
  11. Hanks S. K., Quinn A. M., Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. doi: 10.1126/science.3291115. [DOI] [PubMed] [Google Scholar]
  12. Heller-Harrison R. A., Meisner H., Czech M. P. Cloning and characterization of a cDNA encoding the beta subunit of human casein kinase II. Biochemistry. 1989 Nov 14;28(23):9053–9058. doi: 10.1021/bi00449a014. [DOI] [PubMed] [Google Scholar]
  13. Krek W., Maridor G., Nigg E. A. Casein kinase II is a predominantly nuclear enzyme. J Cell Biol. 1992 Jan;116(1):43–55. doi: 10.1083/jcb.116.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuenzel E. A., Krebs E. G. A synthetic peptide substrate specific for casein kinase II. Proc Natl Acad Sci U S A. 1985 Feb;82(3):737–741. doi: 10.1073/pnas.82.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Loor R. M., Hu A. L., Wang T. Y. Structurally altered and transcriptionally activated rat prostate chromatin induced by androgens. Biochim Biophys Acta. 1977 Aug 2;477(3):312–321. doi: 10.1016/0005-2787(77)90055-7. [DOI] [PubMed] [Google Scholar]
  16. Lozeman F. J., Litchfield D. W., Piening C., Takio K., Walsh K. A., Krebs E. G. Isolation and characterization of human cDNA clones encoding the alpha and the alpha' subunits of casein kinase II. Biochemistry. 1990 Sep 11;29(36):8436–8447. doi: 10.1021/bi00488a034. [DOI] [PubMed] [Google Scholar]
  17. Maridor G., Park W., Krek W., Nigg E. A. Casein kinase II. cDNA sequences, developmental expression, and tissue distribution of mRNAs for alpha, alpha', and beta subunits of the chicken enzyme. J Biol Chem. 1991 Feb 5;266(4):2362–2368. [PubMed] [Google Scholar]
  18. Mathis D., Oudet P., Chambon P. Structure of transcribing chromatin. Prog Nucleic Acid Res Mol Biol. 1980;24:1–55. doi: 10.1016/s0079-6603(08)60670-4. [DOI] [PubMed] [Google Scholar]
  19. Meisner H., Heller-Harrison R., Buxton J., Czech M. P. Molecular cloning of the human casein kinase II alpha subunit. Biochemistry. 1989 May 2;28(9):4072–4076. doi: 10.1021/bi00435a066. [DOI] [PubMed] [Google Scholar]
  20. Miyata Y., Yahara I. The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. J Biol Chem. 1992 Apr 5;267(10):7042–7047. [PubMed] [Google Scholar]
  21. Morse R. H. Transcribed chromatin. Trends Biochem Sci. 1992 Jan;17(1):23–26. doi: 10.1016/0968-0004(92)90422-6. [DOI] [PubMed] [Google Scholar]
  22. Padmanabha R., Chen-Wu J. L., Hanna D. E., Glover C. V. Isolation, sequencing, and disruption of the yeast CKA2 gene: casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol Cell Biol. 1990 Aug;10(8):4089–4099. doi: 10.1128/mcb.10.8.4089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pham T. A., Hwung Y. P., McDonnell D. P., O'Malley B. W. Transactivation functions facilitate the disruption of chromatin structure by estrogen receptor derivatives in vivo. J Biol Chem. 1991 Sep 25;266(27):18179–18187. [PubMed] [Google Scholar]
  24. Pinna L. A. Casein kinase 2: an 'eminence grise' in cellular regulation? Biochim Biophys Acta. 1990 Sep 24;1054(3):267–284. doi: 10.1016/0167-4889(90)90098-x. [DOI] [PubMed] [Google Scholar]
  25. Rories C., Spelsberg T. C. Ovarian steroid action on gene expression: mechanisms and models. Annu Rev Physiol. 1989;51:653–681. doi: 10.1146/annurev.ph.51.030189.003253. [DOI] [PubMed] [Google Scholar]
  26. Rowles J., Slaughter C., Moomaw C., Hsu J., Cobb M. H. Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9548–9552. doi: 10.1073/pnas.88.21.9548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Saxena A., Padmanabha R., Glover C. V. Isolation and sequencing of cDNA clones encoding alpha and beta subunits of Drosophila melanogaster casein kinase II. Mol Cell Biol. 1987 Oct;7(10):3409–3417. doi: 10.1128/mcb.7.10.3409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sommercorn J., Krebs E. G. Induction of casein kinase II during differentiation of 3T3-L1 cells. J Biol Chem. 1987 Mar 15;262(8):3839–3843. [PubMed] [Google Scholar]
  29. Tuazon P. T., Traugh J. A. Casein kinase I and II--multipotential serine protein kinases: structure, function, and regulation. Adv Second Messenger Phosphoprotein Res. 1991;23:123–164. [PubMed] [Google Scholar]
  30. Voss H., Wirkner U., Jakobi R., Hewitt N. A., Schwager C., Zimmermann J., Ansorge W., Pyerin W. Structure of the gene encoding human casein kinase II subunit beta. J Biol Chem. 1991 Jul 25;266(21):13706–13711. [PubMed] [Google Scholar]
  31. Yu I. J., Spector D. L., Bae Y. S., Marshak D. R. Immunocytochemical localization of casein kinase II during interphase and mitosis. J Cell Biol. 1991 Sep;114(6):1217–1232. doi: 10.1083/jcb.114.6.1217. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES