Abstract
We investigated the occurrence and distribution of oscillatory activity in local field potentials (LFPs) recorded from the frontal motor cortex of behaving monkeys performing skilled voluntary movements. LFPs were recorded simultaneously from up to 12 sites distributed throughout motor cortex while monkeys performed a visually guided, instructed delay task using the wrist or digits. Oscillatory activity between 15 and 50 Hz was evident in the LFP recorded from both primary motor cortex and premotor areas. Oscillations occurred preferentially before the visual cue to initiate movement but were infrequent during movement. Oscillations typically stopped before movement initiation during the wrist task, although they often continued into the initial phases of movement during the digit task. The relationship of oscillations to task performance was consistent across trials over periods of many months, although the amplitude and duration of oscillations varied across trials and days. Interactions between pairs of LFP recordings, evaluated with cross-correlation analysis, revealed synchronous oscillations over long distances (> 7 mm) and across primary motor cortex and premotor recording sites. These studies demonstrate that oscillations recorded in the LFP in motor cortex during trained motor tasks are not related to the details of movement execution but may be related to aspects of movement preparation.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ahissar E., Vaadia E. Oscillatory activity of single units in a somatosensory cortex of an awake monkey and their possible role in texture analysis. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8935–8939. doi: 10.1073/pnas.87.22.8935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alexander G. E., Crutcher M. D. Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol. 1990 Jul;64(1):133–150. doi: 10.1152/jn.1990.64.1.133. [DOI] [PubMed] [Google Scholar]
- Bouyer J. J., Montaron M. F., Vahnée J. M., Albert M. P., Rougeul A. Anatomical localization of cortical beta rhythms in cat. Neuroscience. 1987 Sep;22(3):863–869. doi: 10.1016/0306-4522(87)92965-4. [DOI] [PubMed] [Google Scholar]
- Caminiti R., Zeger S., Johnson P. B., Urbano A., Georgopoulos A. P. Corticocortical efferent systems in the monkey: a quantitative spatial analysis of the tangential distribution of cells of origin. J Comp Neurol. 1985 Nov 22;241(4):405–419. doi: 10.1002/cne.902410402. [DOI] [PubMed] [Google Scholar]
- Eckhorn R., Bauer R., Jordan W., Brosch M., Kruse W., Munk M., Reitboeck H. J. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern. 1988;60(2):121–130. doi: 10.1007/BF00202899. [DOI] [PubMed] [Google Scholar]
- Engel A. K., Kreiter A. K., König P., Singer W. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6048–6052. doi: 10.1073/pnas.88.14.6048. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freeman W. J. Spatial properties of an EEG event in the olfactory bulb and cortex. Electroencephalogr Clin Neurophysiol. 1978 May;44(5):586–605. doi: 10.1016/0013-4694(78)90126-8. [DOI] [PubMed] [Google Scholar]
- Gray C. M., König P., Engel A. K., Singer W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature. 1989 Mar 23;338(6213):334–337. doi: 10.1038/338334a0. [DOI] [PubMed] [Google Scholar]
- Gray C. M., Singer W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1698–1702. doi: 10.1073/pnas.86.5.1698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gray Charles M., Engel Andreas K., König Peter, Singer Wolf. Stimulus-Dependent Neuronal Oscillations in Cat Visual Cortex: Receptive Field Properties and Feature Dependence. Eur J Neurosci. 1990;2(7):607–619. doi: 10.1111/j.1460-9568.1990.tb00450.x. [DOI] [PubMed] [Google Scholar]
- Huntley G. W., Jones E. G. Relationship of intrinsic connections to forelimb movement representations in monkey motor cortex: a correlative anatomic and physiological study. J Neurophysiol. 1991 Aug;66(2):390–413. doi: 10.1152/jn.1991.66.2.390. [DOI] [PubMed] [Google Scholar]
- Johnson P. B., Angelucci A., Ziparo R. M., Minciacchi D., Bentivoglio M., Caminiti R. Segregation and overlap of callosal and association neurons in frontal and parietal cortices of primates: a spectral and coherency analysis. J Neurosci. 1989 Jul;9(7):2313–2326. doi: 10.1523/JNEUROSCI.09-07-02313.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalaska J. F., Crammond D. J. Cerebral cortical mechanisms of reaching movements. Science. 1992 Mar 20;255(5051):1517–1523. doi: 10.1126/science.1549781. [DOI] [PubMed] [Google Scholar]
- Kreiter A. K., Singer W. Oscillatory Neuronal Responses in the Visual Cortex of the Awake Macaque Monkey. Eur J Neurosci. 1992;4(4):369–375. doi: 10.1111/j.1460-9568.1992.tb00884.x. [DOI] [PubMed] [Google Scholar]
- Milner P. M. A model for visual shape recognition. Psychol Rev. 1974 Nov;81(6):521–535. doi: 10.1037/h0037149. [DOI] [PubMed] [Google Scholar]
- Murthy V. N., Fetz E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5670–5674. doi: 10.1073/pnas.89.12.5670. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ribary U., Ioannides A. A., Singh K. D., Hasson R., Bolton J. P., Lado F., Mogilner A., Llinás R. Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11037–11041. doi: 10.1073/pnas.88.24.11037. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rougeul A., Bouyer J. J., Dedet L., Debray O. Fast somato-parietal rhythms during combined focal attention and immobility in baboon and squirrel monkey. Electroencephalogr Clin Neurophysiol. 1979 Mar;46(3):310–319. doi: 10.1016/0013-4694(79)90205-0. [DOI] [PubMed] [Google Scholar]
- Tanji J., Evarts E. V. Anticipatory activity of motor cortex neurons in relation to direction of an intended movement. J Neurophysiol. 1976 Sep;39(5):1062–1068. doi: 10.1152/jn.1976.39.5.1062. [DOI] [PubMed] [Google Scholar]
- Wannier T. M., Maier M. A., Hepp-Reymond M. C. Contrasting properties of monkey somatosensory and motor cortex neurons activated during the control of force in precision grip. J Neurophysiol. 1991 Mar;65(3):572–589. doi: 10.1152/jn.1991.65.3.572. [DOI] [PubMed] [Google Scholar]
- Weinrich M., Wise S. P., Mauritz K. H. A neurophysiological study of the premotor cortex in the rhesus monkey. Brain. 1984 Jun;107(Pt 2):385–414. doi: 10.1093/brain/107.2.385. [DOI] [PubMed] [Google Scholar]
- Wise S. P. The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci. 1985;8:1–19. doi: 10.1146/annurev.ne.08.030185.000245. [DOI] [PubMed] [Google Scholar]
- Young M. P., Tanaka K., Yamane S. On oscillating neuronal responses in the visual cortex of the monkey. J Neurophysiol. 1992 Jun;67(6):1464–1474. doi: 10.1152/jn.1992.67.6.1464. [DOI] [PubMed] [Google Scholar]