Skip to main content
. 2015 Nov 24;4(1):716. doi: 10.1186/s40064-015-1523-4

Table 6.

Classification comparison

Existing approaches Feature # Run # D-66 D-160 D-255
DWT + SOM (Chaplot et al. 2006) 4761 5 94.00 93.17 91.65
DWT + SVM (Chaplot et al. 2006) 4761 5 96.15 95.38 94.05
DWT + SVM + RBF (Chaplot et al. 2006) 4761 5 98.00 97.33 96.18
DWT + SVM + POLY (Chaplot et al. 2006) 4761 5 98.00 97.15 96.37
DWT + PCA + KNN (El-Dahshan et al. 2010) 7 5 98.00 97.54 96.79
DWT + PCA + FP-ANN (El-Dahshan et al. 2010) 7 5 97.00 96.98 95.29
DWT + PCA + SCG-FNN (Dong et al. 2011) 19 5 100.00 99.27 98.82
DWT + PCA + SVM (Zhang and Wu 2012) 19 5 96.01 95.00 94.29
DWT + PCA + SVM + RBF (Zhang and Wu 2012) 19 5 100.00 99.38 98.82
DWT + PCA + SVM + IPOL (Zhang and Wu 2012) 19 5 100.00 98.12 97.73
DWT + PCA + SVM + HPOL (Zhang and Wu 2012) 19 5 98.34 96.88 95.61
RT + PCA + LS-SVM (Das et al. 2013) 9 5 100.00 100.00 99.39
DWT + SE + SWP + PNN (Saritha et al. 2013) 3 5 100.00 99.88 98.90
PCNN + DWT + PCA + BPNN (El-Dahshan et al. 2014) 7 10 100.00 98.88 98.24
SWT + PCA + IABAP-FNN (Wang et al. 2015a) 7 10 100.00 99.44 99.18
SWT + PCA + ABC-SPSO-FNN (Wang et al. 2015a) 7 10 100.00 99.75 99.02
WE + HMI + GEPSVM (Zhang et al. 2015d) 14 10 100.00 99.56 98.63
Proposed approach Feature # Run # D-66 D-160 D-255
WPTE + FSVM 16 10 100.00 100.00 99.49

The italic represents the highest accuracy among all algorithms