Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 May 15;90(10):4698–4702. doi: 10.1073/pnas.90.10.4698

Tissue-specific versus cell type-specific expression of the glial fibrillary acidic protein.

R Kaneko 1, N Sueoka 1
PMCID: PMC46580  PMID: 8506321

Abstract

Expression of the glial cell-specific gene encoding glial fibrillary acidic protein (GFAP) is regulated in a tissue-specific (neural tissue versus other tissues) as well as a cell type-specific (glial cell versus neuron) manner. Using a family of rat neurotumor RT4 cell lines in which neuronal/glial differentiation occurs in vitro, along with cell lines of different tissue origins, we identified by transient- and permanent-transfection assays two negative regulatory regions, GFAP downstream regulators 1 and 2 (GDR1 and GDR2). Both regions lie 3' of the transcription start site; GDR1 is in a 2.7-kb region extending from the first intron through the fifth exon, and GDR2 is within 1.7 kb 3' of the polyadenylylation site. GDR1 alone is responsible for tissue-specific expression (suppression in nonneural tissues), while both GDR1 and GDR2 are necessary for cell type-specific expression (suppression in neuronal cells).

Full text

PDF
4698

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balcarek J. M., Cowan N. J. Structure of the mouse glial fibrillary acidic protein gene: implications for the evolution of the intermediate filament multigene family. Nucleic Acids Res. 1985 Aug 12;13(15):5527–5543. doi: 10.1093/nar/13.15.5527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Besnard F., Brenner M., Nakatani Y., Chao R., Purohit H. J., Freese E. Multiple interacting sites regulate astrocyte-specific transcription of the human gene for glial fibrillary acidic protein. J Biol Chem. 1991 Oct 5;266(28):18877–18883. [PubMed] [Google Scholar]
  3. Cattaneo E., McKay R. Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature. 1990 Oct 25;347(6295):762–765. doi: 10.1038/347762a0. [DOI] [PubMed] [Google Scholar]
  4. De Vitry F., Picart R., Jacque C., Legault L., Dupouey P., Tixier-Vidal A. Presumptive common precursor for neuronal and glial cell lineages in mouse hypothalamus. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4165–4169. doi: 10.1073/pnas.77.7.4165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Donahue L. M., Schaller K., Sueoka N. Segregation of Na(+)-channel gene expression during neuronal-glial branching of a rat PNS-derived stem cell line, RT4-AC. Dev Biol. 1991 Oct;147(2):415–424. doi: 10.1016/0012-1606(91)90299-i. [DOI] [PubMed] [Google Scholar]
  6. Droms K., Sueoka N. Cell-type-specific responses of RT4 neural cell lines to dibutyryl-cAMP: branch determination versus maturation. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1309–1313. doi: 10.1073/pnas.84.5.1309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Duff R. S., Langtimm C. J., Richardson M. K., Sieber-Blum M. In vitro clonal analysis of progenitor cell patterns in dorsal root and sympathetic ganglia of the quail embryo. Dev Biol. 1991 Oct;147(2):451–459. doi: 10.1016/0012-1606(91)90303-k. [DOI] [PubMed] [Google Scholar]
  8. Elgin S. C. Chromatin structure and gene activity. Curr Opin Cell Biol. 1990 Jun;2(3):437–445. doi: 10.1016/0955-0674(90)90125-x. [DOI] [PubMed] [Google Scholar]
  9. Frank E., Sanes J. R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development. 1991 Apr;111(4):895–908. doi: 10.1242/dev.111.4.895. [DOI] [PubMed] [Google Scholar]
  10. Fraser S. E., Bronner-Fraser M. Migrating neural crest cells in the trunk of the avian embryo are multipotent. Development. 1991 Aug;112(4):913–920. doi: 10.1242/dev.112.4.913. [DOI] [PubMed] [Google Scholar]
  11. Freeman M. R., Beckmann S. L., Sueoka N. Regulation of the S100 protein and GFAP genes is mediated by two common mechanisms in RT4 neuro-glial cell lines. Exp Cell Res. 1989 Jun;182(2):370–383. doi: 10.1016/0014-4827(89)90242-5. [DOI] [PubMed] [Google Scholar]
  12. Freeman M. R., Sueoka N. Induction and segregation of glial intermediate filament expression in the RT4 family of peripheral nervous system cell lines. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5808–5812. doi: 10.1073/pnas.84.16.5808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gandelman K. Y., Pfeiffer S. E., Carson J. H. Cyclic AMP regulation of P0 glycoprotein and myelin basic protein gene expression in semi-differentiated peripheral neurinoma cell line D6P2T. Development. 1989 Jun;106(2):389–398. doi: 10.1242/dev.106.2.389. [DOI] [PubMed] [Google Scholar]
  14. Goodbourn S. Negative regulation of transcriptional initiation in eukaryotes. Biochim Biophys Acta. 1990 Jun 1;1032(1):53–77. doi: 10.1016/0304-419x(90)90012-p. [DOI] [PubMed] [Google Scholar]
  15. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  16. Imada M., Sueoka N. Clonal sublines of rat neurotumor RT4 and cell differentiation. I. Isolation and characterization of cell lines and cell type conversion. Dev Biol. 1978 Sep;66(1):97–108. doi: 10.1016/0012-1606(78)90276-2. [DOI] [PubMed] [Google Scholar]
  17. Kano-Sueoka T., Hsieh P. A rat mammary carcinoma in vivo and in vitro: establishment of clonal lines of the tumor. Proc Natl Acad Sci U S A. 1973 Jul;70(7):1922–1926. doi: 10.1073/pnas.70.7.1922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lazarides E. Intermediate filaments as mechanical integrators of cellular space. Nature. 1980 Jan 17;283(5744):249–256. doi: 10.1038/283249a0. [DOI] [PubMed] [Google Scholar]
  19. Le Douarin N., Dulac C., Dupin E., Cameron-Curry P. Glial cell lineages in the neural crest. Glia. 1991;4(2):175–184. doi: 10.1002/glia.440040209. [DOI] [PubMed] [Google Scholar]
  20. Lewis S. A., Balcarek J. M., Krek V., Shelanski M., Cowan N. J. Sequence of a cDNA clone encoding mouse glial fibrillary acidic protein: structural conservation of intermediate filaments. Proc Natl Acad Sci U S A. 1984 May;81(9):2743–2746. doi: 10.1073/pnas.81.9.2743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mason P., Attema B., DeVries G. H. In vitro use of Schwann cells to elucidate neurotoxic injury. Neurotoxicology. 1991 Fall;12(3):459–471. [PubMed] [Google Scholar]
  22. Miura M., Tamura T., Mikoshiba K. Cell-specific expression of the mouse glial fibrillary acidic protein gene: identification of the cis- and trans-acting promoter elements for astrocyte-specific expression. J Neurochem. 1990 Oct;55(4):1180–1188. doi: 10.1111/j.1471-4159.1990.tb03123.x. [DOI] [PubMed] [Google Scholar]
  23. Mokuno K., Kamholz J., Behrman T., Black C., Sessa M., Feinstein D., Lee V., Pleasure D. Neuronal modulation of Schwann cell glial fibrillary acidic protein (GFAP). J Neurosci Res. 1989 Aug;23(4):396–405. doi: 10.1002/jnr.490230405. [DOI] [PubMed] [Google Scholar]
  24. Nordeen S. K. Luciferase reporter gene vectors for analysis of promoters and enhancers. Biotechniques. 1988 May;6(5):454–458. [PubMed] [Google Scholar]
  25. O'Callaghan J. P. Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker. Biomed Environ Sci. 1991 Jun;4(1-2):197–206. [PubMed] [Google Scholar]
  26. Sarid J. Identification of a cis-acting positive regulatory element of the glial fibrillary acidic protein gene. J Neurosci Res. 1991 Feb;28(2):217–228. doi: 10.1002/jnr.490280209. [DOI] [PubMed] [Google Scholar]
  27. Sarkar S., Cowan N. J. Intragenic sequences affect the expression of the gene encoding glial fibrillary acidic protein. J Neurochem. 1991 Aug;57(2):675–684. doi: 10.1111/j.1471-4159.1991.tb03799.x. [DOI] [PubMed] [Google Scholar]
  28. Stemple D. L., Anderson D. J. Isolation of a stem cell for neurons and glia from the mammalian neural crest. Cell. 1992 Dec 11;71(6):973–985. doi: 10.1016/0092-8674(92)90393-q. [DOI] [PubMed] [Google Scholar]
  29. Sueoka N., Droms K. On neuronal and glial differentiation of a pluripotent stem cell line, RT4-AC: a branch determination. Curr Top Dev Biol. 1986;20:211–221. doi: 10.1016/s0070-2153(08)60665-1. [DOI] [PubMed] [Google Scholar]
  30. Tardy M., Fages C., Le Prince G., Rolland B., Nunez J. Regulation of the glial fibrillary acidic protein (GFAP) and of its encoding mRNA in the developing brain and in cultured astrocytes. Adv Exp Med Biol. 1990;265:41–52. doi: 10.1007/978-1-4757-5876-4_4. [DOI] [PubMed] [Google Scholar]
  31. Temple S. Division and differentiation of isolated CNS blast cells in microculture. Nature. 1989 Aug 10;340(6233):471–473. doi: 10.1038/340471a0. [DOI] [PubMed] [Google Scholar]
  32. Tomozawa Y., Sueoka N. In vitro segregation of different cell lines with neuronal and glial properties from a stem cell line of rat neurotumor RT4. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6305–6309. doi: 10.1073/pnas.75.12.6305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Turner D. L., Cepko C. L. A common progenitor for neurons and glia persists in rat retina late in development. Nature. 1987 Jul 9;328(6126):131–136. doi: 10.1038/328131a0. [DOI] [PubMed] [Google Scholar]
  34. de Wet J. R., Wood K. V., DeLuca M., Helinski D. R., Subramani S. Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol. 1987 Feb;7(2):725–737. doi: 10.1128/mcb.7.2.725. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES