Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jun 1;90(11):4827–4834. doi: 10.1073/pnas.90.11.4827

Dark matter: theoretical perspectives.

M S Turner 1
PMCID: PMC46608  PMID: 11607395

Abstract

I both review and make the case for the current theoretical prejudice: a flat Universe whose dominant constituent is nonbaryonic dark matter, emphasizing that this is still a prejudice and not yet fact. The theoretical motivation for nonbaryonic dark matter is discussed in the context of current elementary-particle theory, stressing that (i) there are no dark-matter candidates within the "standard model" of particle physics, (ii) there are several compelling candidates within attractive extensions of the standard model of particle physics, and (iii) the motivation for these compelling candidates comes first and foremost from particle physics. The dark-matter problem is now a pressing issue in both cosmology and particle physics, and the detection of particle dark matter would provide evidence for "new physics." The compelling candidates are a very light axion (10(-6)-10(-4) eV), a light neutrino (20-90 eV), and a heavy neutralino (10 GeV-2 TeV). The production of these particles in the early Universe and the prospects for their detection are also discussed. I briefly mention more exotic possibilities for the dark matter, including a nonzero cosmological constant, superheavy magnetic monopoles, and decaying neutrinos.

Full text

PDF
4827

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bershady MA, Ressell MT, Turner MS. Telescope search for a 3-eV to 8-eV axion. Phys Rev Lett. 1991 Mar 18;66(11):1398–1401. doi: 10.1103/PhysRevLett.66.1398. [DOI] [PubMed] [Google Scholar]
  2. Caldwell DO, Eisberg RM, Grumm DM, Witherell MS, Sadoulet B, Goulding FS, Smith AR. Laboratory limits on galactic cold dark matter. Phys Rev Lett. 1988 Aug 1;61(5):510–513. doi: 10.1103/PhysRevLett.61.510. [DOI] [PubMed] [Google Scholar]
  3. Caldwell DO, Magnusson B, Witherell MS, Da Silva A, Sadoulet B, Cork C, Goulding FS, Landis DA, Madden NW, Pehl RH. Searching for the cosmion by scattering in Si detectors. Phys Rev Lett. 1990 Sep 10;65(11):1305–1308. doi: 10.1103/PhysRevLett.65.1305. [DOI] [PubMed] [Google Scholar]
  4. Caldwell DO, Magnusson B, Witherell MS, Da Silva A, Sadoulet B, Cork C, Goulding FS, Landis DA, Madden NW, Pehl RH. Searching for the cosmion by scattering in Si detectors. Phys Rev Lett. 1990 Sep 10;65(11):1305–1308. doi: 10.1103/PhysRevLett.65.1305. [DOI] [PubMed] [Google Scholar]
  5. Cowie L. L., Songaila A. Faint galaxy surveys. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4867–4870. doi: 10.1073/pnas.90.11.4867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dodelson S, Jubas JM. Reionization and decaying dark matter. Phys Rev D Part Fields. 1992 Feb 15;45(4):1076–1090. doi: 10.1103/physrevd.45.1076. [DOI] [PubMed] [Google Scholar]
  7. Griest K. Cross sections, relic abundance, and detection rates for neutralino dark matter. Phys Rev D Part Fields. 1988 Oct 15;38(8):2357–2375. doi: 10.1103/physrevd.38.2357. [DOI] [PubMed] [Google Scholar]
  8. Griest K, Kamionkowski M, Turner MS. Supersymmetric dark matter above the W mass. Phys Rev D Part Fields. 1990 Jun 15;41(12):3565–3582. doi: 10.1103/physrevd.41.3565. [DOI] [PubMed] [Google Scholar]
  9. Kamionkowski M. Energetic neutrinos from heavy-neutralino annihilation in the Sun. Phys Rev D Part Fields. 1991 Nov 15;44(10):3021–3042. doi: 10.1103/physrevd.44.3021. [DOI] [PubMed] [Google Scholar]
  10. Kamionkowski M, Turner MS. Distinctive positron feature from particle dark-matter annihilations in the galactic halo. Phys Rev D Part Fields. 1991 Mar 15;43(6):1774–1780. doi: 10.1103/physrevd.43.1774. [DOI] [PubMed] [Google Scholar]
  11. Krauss LM, Srednicki M, Wilczek F. Solar System constraints and signatures for dark-matter candidates. Phys Rev D Part Fields. 1986 Apr 15;33(8):2079–2083. doi: 10.1103/physrevd.33.2079. [DOI] [PubMed] [Google Scholar]
  12. Pagel B. E. Abundances of light elements. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4789–4792. doi: 10.1073/pnas.90.11.4789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rowan-Robinson M. Derivation of the cosmological density parameter Omega0 from large-scale flows. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4822–4826. doi: 10.1073/pnas.90.11.4822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rubin V. C. Galaxy dynamics and the mass density of the universe. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4814–4821. doi: 10.1073/pnas.90.11.4814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schramm D. N. Cosmological implications of light element abundances: theory. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4782–4788. doi: 10.1073/pnas.90.11.4782. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sciama DW. Precision estimate of cosmological and particle parameters in the decaying-dark-matter hypothesis. Phys Rev Lett. 1990 Dec 3;65(23):2839–2841. doi: 10.1103/PhysRevLett.65.2839. [DOI] [PubMed] [Google Scholar]
  17. Silk J, Olive K, Srednicki M. The photino, the sun, and high-energy neutrinos. Phys Rev Lett. 1985 Jul 8;55(2):257–259. doi: 10.1103/PhysRevLett.55.257. [DOI] [PubMed] [Google Scholar]
  18. Steigman G. Challenges to the standard model of Big Bang nucleosynthesis. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):4779–4781. doi: 10.1073/pnas.90.11.4779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Turner MS. Early-Universe thermal production of not-so-invisible axions. Phys Rev Lett. 1987 Nov 23;59(21):2489–2492. doi: 10.1103/PhysRevLett.59.2489. [DOI] [PubMed] [Google Scholar]
  20. Turner MS, Wilczek F. Positron line radiation as a signature of particle dark matter in the halo. Phys Rev D Part Fields. 1990 Aug 15;42(4):1001–1007. doi: 10.1103/physrevd.42.1001. [DOI] [PubMed] [Google Scholar]
  21. Tylka AJ. Cosmic-ray positrons from annihilation of weakly interacting massive particles in the galaxy. Phys Rev Lett. 1989 Aug 21;63(8):840–843. doi: 10.1103/PhysRevLett.63.840. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES