Abstract
Further evidence is provided that the Calvin cycle enzymes ribose-5-phosphate isomerase (EC 5.3.1.6), ribulose-5-phosphate kinase (Ru-5-P-K, EC 2.7.1.19), ribulose-1,5-bisphosphate carboxylase (RuP2Case, EC 4.1.1.39), glyceraldehyde-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12), sedoheptulose-1,7-bisphosphatase (Sed-1,7-bPase, EC 3.1.3.37), and electron transport protein ferredoxin-NADP+ reductase (FNR, EC 1.18.1.1) are organized into stable CO2-fixing multienzyme complexes with a molecular mass of 900 kDa. Limited trypsinolysis combined with immunoblotting revealed that all of chloroplast stromal Ru-5-P-K and GAPDH is located in enzyme complexes. The Calvin cycle enzyme complexes remain intact indefinitely at lower ionic strength but dissociate into components at KCl concentrations >250 mM. Immunoelectron microscopy showed that Ru-5-P-K, GAPDH, Sed-1,7-bPase, and FNR are bound to stroma-faced thylakoid membranes in situ, whereas RuP2Case and RuP2Case activase are randomly distributed throughout chloroplasts. The results indicate that membrane-bound enzyme supercomplexes may play an important role in photosynthesis.
Full text
PDF![5514](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bf/46751/e5c7d28ca280/pnas01469-0145.png)
![5515](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bf/46751/491d0b258bee/pnas01469-0146.png)
![5516](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bf/46751/30583b46c5c5/pnas01469-0147.png)
![5517](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bf/46751/38100d5c32a4/pnas01469-0148.png)
![5518](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29bf/46751/161b4bb0a56e/pnas01469-0149.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berzborn R. J. Untersuchungen über die Oberflächenstruktur des Thylokoidystems der Chloroplasten mit Hilfe von Antikörpern gegen die Ferredoxin-NADP-Reduktase. Z Naturforsch B. 1969 Apr;24(4):436–446. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Cadet F., Meunier J. C., Ferté N. Isolation and purification of chloroplastic spinach (Spinacia oleracea) sedoheptulose-1,7-bisphosphatase. Biochem J. 1987 Jan 1;241(1):71–74. doi: 10.1042/bj2410071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clasper S., Easterby J. S., Powls R. Properties of two high-molecular-mass forms of glyceraldehyde-3-phosphate dehydrogenase from spinach leaf, one of which also possesses latent phosphoribulokinase activity. Eur J Biochem. 1991 Dec 18;202(3):1239–1246. doi: 10.1111/j.1432-1033.1991.tb16496.x. [DOI] [PubMed] [Google Scholar]
- Gontero B., Cárdenas M. L., Ricard J. A functional five-enzyme complex of chloroplasts involved in the Calvin cycle. Eur J Biochem. 1988 Apr 15;173(2):437–443. doi: 10.1111/j.1432-1033.1988.tb14018.x. [DOI] [PubMed] [Google Scholar]
- Hermoso R., de Felipe M. R., Vivó A., Chueca A., Lázaro J. J., Gorge J. L. Immunogold localization of photosynthetic fructose-1,6-bisphosphatase in pea leaf tissue. Plant Physiol. 1989 Jan;89(1):381–385. doi: 10.1104/pp.89.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janin J., Miller S., Chothia C. Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol. 1988 Nov 5;204(1):155–164. doi: 10.1016/0022-2836(88)90606-7. [DOI] [PubMed] [Google Scholar]
- Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuntz G. W., Krietsch W. K. Phosphoglycerate kinase from animal tissue. Methods Enzymol. 1982;90(Pt E):103–110. doi: 10.1016/s0076-6879(82)90114-8. [DOI] [PubMed] [Google Scholar]
- Lazaro J. J., Sutton C. W., Nicholson S., Powls R. Characterisation of two forms of phosphoribulokinase isolated from the green alga, Scenedesmus obliquus. Eur J Biochem. 1986 Apr 15;156(2):423–429. doi: 10.1111/j.1432-1033.1986.tb09599.x. [DOI] [PubMed] [Google Scholar]
- Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
- Mangeney E., Hawthornthwaite A. M., Codd G. A., Gibbs S. P. Immunocytochemical Localization of Phosphoribulose Kinase in the Cyanelles of Cyanophora paradoxa and Glaucocystis nostochinearum. Plant Physiol. 1987 Aug;84(4):1028–1032. doi: 10.1104/pp.84.4.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Persson L. O., Johansson G. Studies of protein-protein interaction using countercurrent distribution in aqueous two-phase systems. Partition behaviour of six Calvin-cycle enzymes from a crude spinach (Spinacia oleracea) chloroplast extract. Biochem J. 1989 May 1;259(3):863–870. doi: 10.1042/bj2590863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robinson S. P., Streusand V. J., Chatfield J. M., Portis A. R. Purification and assay of rubisco activase from leaves. Plant Physiol. 1988 Dec;88(4):1008–1014. doi: 10.1104/pp.88.4.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saalbach G., Jung R., Kunze G., Saalbach I., Adler K., Müntz K. Different legumin protein domains act as vacuolar targeting signals. Plant Cell. 1991 Jul;3(7):695–708. doi: 10.1105/tpc.3.7.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sainis J. K., Harris G. C. The association of ribulose-1,5-bisphosphate carboxylase with phosphoriboisomerase and phosphoribulokinase. Biochem Biophys Res Commun. 1986 Sep 30;139(3):947–954. doi: 10.1016/s0006-291x(86)80269-8. [DOI] [PubMed] [Google Scholar]
- Sainis J. K., Merriam K., Harris G. C. The Association of d-Ribulose- 1,5-Bisphosphate Carboxylase/Oxygenase with Phosphoribulokinase. Plant Physiol. 1989 Jan;89(1):368–374. doi: 10.1104/pp.89.1.368. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srere P. A. Complexes of sequential metabolic enzymes. Annu Rev Biochem. 1987;56:89–124. doi: 10.1146/annurev.bi.56.070187.000513. [DOI] [PubMed] [Google Scholar]