Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jun 15;90(12):5539–5543. doi: 10.1073/pnas.90.12.5539

Inactivation of the NF1 gene in human melanoma and neuroblastoma cell lines without impaired regulation of GTP.Ras.

M R Johnson 1, A T Look 1, J E DeClue 1, M B Valentine 1, D R Lowy 1
PMCID: PMC46756  PMID: 8516298

Abstract

The NF1 gene, which is altered in patients with type 1 neurofibromatosis, encodes neurofibromin, a protein whose GTPase-activating function can negatively regulate GTP-Ras by accelerating its conversion to inactive GDP-Ras. In schwannoma cell lines from patients with neurofibromatosis, loss of neurofibromin was previously shown to be associated with impaired regulation of GTP-Ras. Our analysis of other neural crest-derived tumor cell lines has shown that some melanoma and neuroblastoma cell lines established from tumors occurring in patients without neurofibromatosis contain reduced or undetectable levels of neurofibromin, with concomitant genetic abnormalities of the NF1 locus. In contrast to the schwannoma cell lines, GTP-Ras was appropriately regulated in the melanoma and neuroblastoma lines that were deficient in neurofibromin, even when c-H-ras was overexpressed in the lines. These results demonstrate that some neural crest tumors not associated with neurofibromatosis have acquired somatically inactivated NF1 genes and suggest a tumor-suppressor function for neurofibromin that is independent of Ras GTPase activation.

Full text

PDF
5539

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albino A. P., Nanus D. M., Mentle I. R., Cordon-Cardo C., McNutt N. S., Bressler J., Andreeff M. Analysis of ras oncogenes in malignant melanoma and precursor lesions: correlation of point mutations with differentiation phenotype. Oncogene. 1989 Nov;4(11):1363–1374. [PubMed] [Google Scholar]
  2. Ballester R., Marchuk D., Boguski M., Saulino A., Letcher R., Wigler M., Collins F. The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell. 1990 Nov 16;63(4):851–859. doi: 10.1016/0092-8674(90)90151-4. [DOI] [PubMed] [Google Scholar]
  3. Bar-Sagi D., Feramisco J. R. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell. 1985 Oct;42(3):841–848. doi: 10.1016/0092-8674(85)90280-6. [DOI] [PubMed] [Google Scholar]
  4. Basu T. N., Gutmann D. H., Fletcher J. A., Glover T. W., Collins F. S., Downward J. Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature. 1992 Apr 23;356(6371):713–715. doi: 10.1038/356713a0. [DOI] [PubMed] [Google Scholar]
  5. Bollag G., McCormick F. Regulators and effectors of ras proteins. Annu Rev Cell Biol. 1991;7:601–632. doi: 10.1146/annurev.cb.07.110191.003125. [DOI] [PubMed] [Google Scholar]
  6. Brodeur G. M., Green A. A., Hayes F. A., Williams K. J., Williams D. L., Tsiatis A. A. Cytogenetic features of human neuroblastomas and cell lines. Cancer Res. 1981 Nov;41(11 Pt 1):4678–4686. [PubMed] [Google Scholar]
  7. DeClue J. E., Papageorge A. G., Fletcher J. A., Diehl S. R., Ratner N., Vass W. C., Lowy D. R. Abnormal regulation of mammalian p21ras contributes to malignant tumor growth in von Recklinghausen (type 1) neurofibromatosis. Cell. 1992 Apr 17;69(2):265–273. doi: 10.1016/0092-8674(92)90407-4. [DOI] [PubMed] [Google Scholar]
  8. Douglass E. C., Rowe S. T., Valentine M., Parham D., Meyer W. H., Thompson E. I. A second nonrandom translocation, der(16)t(1;16)(q21;q13), in Ewing sarcoma and peripheral neuroectodermal tumor. Cytogenet Cell Genet. 1990;53(2-3):87–90. doi: 10.1159/000132901. [DOI] [PubMed] [Google Scholar]
  9. Douglass E. C., Valentine M., Etcubanas E., Parham D., Webber B. L., Houghton P. J., Houghton J. A., Green A. A. A specific chromosomal abnormality in rhabdomyosarcoma. Cytogenet Cell Genet. 1987;45(3-4):148–155. doi: 10.1159/000132446. [DOI] [PubMed] [Google Scholar]
  10. Douglass E. C., Valentine M., Green A. A., Hayes F. A., Thompson E. I. t(11;22) and other chromosomal rearrangements in Ewing's sarcoma. J Natl Cancer Inst. 1986 Dec;77(6):1211–1215. [PubMed] [Google Scholar]
  11. Fletcher J. A., Kozakewich H. P., Hoffer F. A., Lage J. M., Weidner N., Tepper R., Pinkus G. S., Morton C. C., Corson J. M. Diagnostic relevance of clonal cytogenetic aberrations in malignant soft-tissue tumors. N Engl J Med. 1991 Feb 14;324(7):436–442. doi: 10.1056/NEJM199102143240702. [DOI] [PubMed] [Google Scholar]
  12. Furth M. E., Davis L. J., Fleurdelys B., Scolnick E. M. Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family. J Virol. 1982 Jul;43(1):294–304. doi: 10.1128/jvi.43.1.294-304.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Glover T. W., Stein C. K., Legius E., Andersen L. B., Brereton A., Johnson S. Molecular and cytogenetic analysis of tumors in von Recklinghausen neurofibromatosis. Genes Chromosomes Cancer. 1991 Jan;3(1):62–70. doi: 10.1002/gcc.2870030111. [DOI] [PubMed] [Google Scholar]
  14. Harbour J. W., Lai S. L., Whang-Peng J., Gazdar A. F., Minna J. D., Kaye F. J. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science. 1988 Jul 15;241(4863):353–357. doi: 10.1126/science.2838909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ireland C. M. Activated N-ras oncogenes in human neuroblastoma. Cancer Res. 1989 Oct 15;49(20):5530–5533. [PubMed] [Google Scholar]
  16. Kushner B. H., Hajdu S. I., Helson L. Synchronous neuroblastoma and von Recklinghausen's disease: a review of the literature. J Clin Oncol. 1985 Jan;3(1):117–120. doi: 10.1200/JCO.1985.3.1.117. [DOI] [PubMed] [Google Scholar]
  17. Li Y., Bollag G., Clark R., Stevens J., Conroy L., Fults D., Ward K., Friedman E., Samowitz W., Robertson M. Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell. 1992 Apr 17;69(2):275–281. doi: 10.1016/0092-8674(92)90408-5. [DOI] [PubMed] [Google Scholar]
  18. Malkin D., Li F. P., Strong L. C., Fraumeni J. F., Jr, Nelson C. E., Kim D. H., Kassel J., Gryka M. A., Bischoff F. Z., Tainsky M. A. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990 Nov 30;250(4985):1233–1238. doi: 10.1126/science.1978757. [DOI] [PubMed] [Google Scholar]
  19. Marshall C. J. Tumor suppressor genes. Cell. 1991 Jan 25;64(2):313–326. doi: 10.1016/0092-8674(91)90641-b. [DOI] [PubMed] [Google Scholar]
  20. Martin G. A., Viskochil D., Bollag G., McCabe P. C., Crosier W. J., Haubruck H., Conroy L., Clark R., O'Connell P., Cawthon R. M. The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell. 1990 Nov 16;63(4):843–849. doi: 10.1016/0092-8674(90)90150-d. [DOI] [PubMed] [Google Scholar]
  21. Moley J. F., Brother M. B., Wells S. A., Spengler B. A., Biedler J. L., Brodeur G. M. Low frequency of ras gene mutations in neuroblastomas, pheochromocytomas, and medullary thyroid cancers. Cancer Res. 1991 Mar 15;51(6):1596–1599. [PubMed] [Google Scholar]
  22. Morris S. W., Valentine M. B., Shapiro D. N., Sublett J. E., Deaven L. L., Foust J. T., Roberts W. M., Cerretti D. P., Look A. T. Reassignment of the human CSF1 gene to chromosome 1p13-p21. Blood. 1991 Oct 15;78(8):2013–2020. [PubMed] [Google Scholar]
  23. Noda M., Ko M., Ogura A., Liu D. G., Amano T., Takano T., Ikawa Y. Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature. 1985 Nov 7;318(6041):73–75. doi: 10.1038/318073a0. [DOI] [PubMed] [Google Scholar]
  24. O'Mara S. M., Todd A. V., Russell P. J. Analysis of expressed N-ras mutations in human melanoma short-term cell lines with allele specific restriction analysis induced by the polymerase chain reaction. Eur J Cancer. 1992;28(1):9–11. doi: 10.1016/0959-8049(92)90373-a. [DOI] [PubMed] [Google Scholar]
  25. Price J. E., Aukerman S. L., Ananthaswamy H. N., McIntyre B. W., Schackert G., Schackert H. K., Fidler I. J. Metastatic potential of cloned murine melanoma cells transfected with activated c-Ha-ras. Cancer Res. 1989 Aug 1;49(15):4274–4281. [PubMed] [Google Scholar]
  26. Ridley A. J., Paterson H. F., Noble M., Land H. Ras-mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. EMBO J. 1988 Jun;7(6):1635–1645. doi: 10.1002/j.1460-2075.1988.tb02990.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ritke M. K., Shah R., Valentine M., Douglass E. C., Tereba A. Molecular analysis of chromosome 1 abnormalities in neuroblastoma. Cytogenet Cell Genet. 1989;50(2-3):84–90. doi: 10.1159/000132729. [DOI] [PubMed] [Google Scholar]
  28. Roberts W. M., Douglass E. C., Peiper S. C., Houghton P. J., Look A. T. Amplification of the gli gene in childhood sarcomas. Cancer Res. 1989 Oct 1;49(19):5407–5413. [PubMed] [Google Scholar]
  29. Rodenhuis S. ras and human tumors. Semin Cancer Biol. 1992 Aug;3(4):241–247. [PubMed] [Google Scholar]
  30. Shukla V. K., Hughes D. C., Hughes L. E., McCormick F., Padua R. A. ras mutations in human melanotic lesions: K-ras activation is a frequent and early event in melanoma development. Oncogene Res. 1989;5(2):121–127. [PubMed] [Google Scholar]
  31. Skuse G. R., Kosciolek B. A., Rowley P. T. The neurofibroma in von Recklinghausen neurofibromatosis has a unicellular origin. Am J Hum Genet. 1991 Sep;49(3):600–607. [PMC free article] [PubMed] [Google Scholar]
  32. Sørensen S. A., Mulvihill J. J., Nielsen A. Long-term follow-up of von Recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med. 1986 Apr 17;314(16):1010–1015. doi: 10.1056/NEJM198604173141603. [DOI] [PubMed] [Google Scholar]
  33. Tanaka K., Nakafuku M., Satoh T., Marshall M. S., Gibbs J. B., Matsumoto K., Kaziro Y., Toh-e A. S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell. 1990 Mar 9;60(5):803–807. doi: 10.1016/0092-8674(90)90094-u. [DOI] [PubMed] [Google Scholar]
  34. Tanaka T., Slamon D. J., Shimada H., Shimoda H., Fujisawa T., Ida N., Seeger R. C. A significant association of Ha-ras p21 in neuroblastoma cells with patient prognosis. A retrospective study of 103 cases. Cancer. 1991 Sep 15;68(6):1296–1302. doi: 10.1002/1097-0142(19910915)68:6<1296::aid-cncr2820680619>3.0.co;2-z. [DOI] [PubMed] [Google Scholar]
  35. Trahey M., McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987 Oct 23;238(4826):542–545. doi: 10.1126/science.2821624. [DOI] [PubMed] [Google Scholar]
  36. Trahey M., Wong G., Halenbeck R., Rubinfeld B., Martin G. A., Ladner M., Long C. M., Crosier W. J., Watt K., Koths K. Molecular cloning of two types of GAP complementary DNA from human placenta. Science. 1988 Dec 23;242(4886):1697–1700. doi: 10.1126/science.3201259. [DOI] [PubMed] [Google Scholar]
  37. Viskochil D., Buchberg A. M., Xu G., Cawthon R. M., Stevens J., Wolff R. K., Culver M., Carey J. C., Copeland N. G., Jenkins N. A. Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus. Cell. 1990 Jul 13;62(1):187–192. doi: 10.1016/0092-8674(90)90252-a. [DOI] [PubMed] [Google Scholar]
  38. Wasson J. C., Saylors R. L., 3rd, Zeltzer P., Friedman H. S., Bigner S. H., Burger P. C., Bigner D. D., Look A. T., Douglass E. C., Brodeur G. M. Oncogene amplification in pediatric brain tumors. Cancer Res. 1990 May 15;50(10):2987–2990. [PubMed] [Google Scholar]
  39. Weinberg R. A. Tumor suppressor genes. Science. 1991 Nov 22;254(5035):1138–1146. doi: 10.1126/science.1659741. [DOI] [PubMed] [Google Scholar]
  40. Willumsen B. M., Vass W. C., Velu T. J., Papageorge A. G., Schiller J. T., Lowy D. R. The bovine papillomavirus E5 oncogene can cooperate with ras: identification of p21 amino acids critical for transformation by c-rasH but not v-rasH. Mol Cell Biol. 1991 Dec;11(12):6026–6033. doi: 10.1128/mcb.11.12.6026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Xu G. F., Lin B., Tanaka K., Dunn D., Wood D., Gesteland R., White R., Weiss R., Tamanoi F. The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell. 1990 Nov 16;63(4):835–841. doi: 10.1016/0092-8674(90)90149-9. [DOI] [PubMed] [Google Scholar]
  42. Xu G. F., O'Connell P., Viskochil D., Cawthon R., Robertson M., Culver M., Dunn D., Stevens J., Gesteland R., White R. The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell. 1990 Aug 10;62(3):599–608. doi: 10.1016/0092-8674(90)90024-9. [DOI] [PubMed] [Google Scholar]
  43. Xu W., Mulligan L. M., Ponder M. A., Liu L., Smith B. A., Mathew C. G., Ponder B. A. Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis. Genes Chromosomes Cancer. 1992 Jun;4(4):337–342. doi: 10.1002/gcc.2870040411. [DOI] [PubMed] [Google Scholar]
  44. Yokota J., Wada M., Shimosato Y., Terada M., Sugimura T. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9252–9256. doi: 10.1073/pnas.84.24.9252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zhang K., Papageorge A. G., Lowy D. R. Mechanistic aspects of signaling through Ras in NIH 3T3 cells. Science. 1992 Jul 31;257(5070):671–674. doi: 10.1126/science.1496380. [DOI] [PubMed] [Google Scholar]
  46. Zhang K., Papageorge A. G., Martin P., Vass W. C., Olah Z., Polakis P. G., McCormick F., Lowy D. R. Heterogeneous amino acids in Ras and Rap1A specifying sensitivity to GAP proteins. Science. 1991 Dec 13;254(5038):1630–1634. doi: 10.1126/science.1749934. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES