Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Dec 10;3(6):e01453-15. doi: 10.1128/genomeA.01453-15

Complete Genome Sequence of Pseudomonas aeruginosa PA1, Isolated from a Patient with a Respiratory Tract Infection

Shuguang Lu 1, Shuai Le 1, Gang Li 1, Mengyu Shen 1, Yinling Tan 1, Xia Zhao 1, Jing Wang 1, Wei Shen 1, Keke Guo 1, Yuhui Yang 1, Hongbin Zhu 1, Shu Li 1, Ming Li 1, Junmin Zhu 1, Xiancai Rao 1, Fuquan Hu 1,
PMCID: PMC4675953  PMID: 26659688

Abstract

We report the 6,498,072-bp complete genome sequence of Pseudomonas aeruginosa PA1, which was isolated from a patient with a respiratory tract infection in Chongqing, People's Republic of China. Whole-genome sequencing was performed using single-molecule real-time (SMRT) technology, and de novo assembly revealed a single contig with 396-fold sequence coverage.

GENOME ANNOUNCEMENT

Pseudomonas aeruginosa is a Gram-negative rod-shaped gammaproteobacterium that grows in a wide range of ecological niches, such as soil, marshes, and coastal marine habitats, as well as on plant and animal tissues (13). As an opportunistic pathogen, P. aeruginosa causes a wide range of syndromes in humans that can vary from local to systemic, and sometimes its infection is life-threatening (4). P. aeruginosa is a significant pathogen associated with infections of burn victims, urinary tract infections in catheterized patients, and respiratory tract infections (2, 5). When infecting immunocompromised or cystic fibrosis (CF) patients, P. aeruginosa can lead to deadly pneumonia (6, 7). Notably, intrinsic drug resistance of P. aeruginosa makes it difficult to treat P. aeruginosa infections with antibiotics (8, 9).

As of 20 October 2015, 27 complete genome sequences of different P. aeruginosa stains have been released from the GenBank database (10) (http://www.ncbi.nlm.nih.gov/genome/genomes/187). Different P. aeruginosa genomes share a remarkable amount of sequence similarity, despite having been isolated from various niches or different clinical origins (1113). The P. aeruginosa pangenome consists of at least 4,000 core genes, approximately 10,000 accessory genes, and 30,000 or more rare genes that are present in only a few strains or clonal complexes (4). These genome sequences have provided insight into virulence, drug resistance, and biofilm formation that are related to the pathogenicity of P. aeruginosa (2, 14, 15). However, hitherto the genomic information of P. aeruginosa is still very limited for researchers to analyze, compare, and evaluate the characteristics of the species. Thus, more P. aeruginosa genome sequences are required to explore potential ways to control this versatile opportunistic pathogen.

P. aeruginosa PA1 was originally isolated from a respiratory tract infection patient in Chongqing, China. It has a lytic bacteriophage that belongs to the PaP1-like phage genus (16). The genomic DNA of P. aeruginosa PA1 was extracted from the stationary-phase cultures grown in LB broth and purified using the TIANamp bacteria DNA kit (Tiangen Biotech, Beijing, China). PacBio single-molecule real-time (SMRT) sequencing of the PA1 genome was carried out at the Institute of Medicinal Plant Development (IMPLAD) (Beijing, China) using the PacBio RS II Instrument (Pacific Biosciences, Menlo Park, CA, USA) (17, 18). Libraries of 5-kb were constructed and 4 SMRT cells of the libraries were sequenced with 180-min movies. De novo assembly was performed using RS_HGAP_Assembly v. 2.0 (19), revealing a single contig with an average sequence coverage of 396-fold. The length of the PA1 genome is 6,498,072 bp, with an average G+C content of 66.35%. Genome annotation of P. aeruginosa PA1 was performed through the NCBI Prokaryotic Genome Annotation Pipeline (20) (released 2013) (http://www.ncbi.nlm.nih.gov/genome/annotation_prok/).

Nucleotide sequence accession number.

The complete genome sequence of P. aeruginosa PA1 has been deposited in GenBank under the accession number CP004054.

ACKNOWLEDGMENTS

This work was supported by grant 31400163 from the National Natural Science Foundation of China.

We thank Leigh A. Riley from the GenBank direct submission staff for helping us annotate the P. aeruginosa PA1 genome.

Footnotes

Citation Lu S, Le S, Li G, Shen M, Tan Y, Zhao X, Wang J, Shen W, Guo K, Yang Y, Zhu H, Li S, Li M, Zhu J, Rao X, Hu F. 2015. Complete genome sequence of Pseudomonas aeruginosa PA1, isolated from a patient with a respiratory tract infection. Genome Announc 3(6):e01453-15. doi:10.1128/genomeA.01453-15.

REFERENCES

  • 1.Hardalo C, Edberg SC. 1997. Pseudomonas aeruginosa: assessment of risk from drinking water. Crit Rev Microbiol 23:47–75. doi: 10.3109/10408419709115130. [DOI] [PubMed] [Google Scholar]
  • 2.Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, Hickey MJ, Brinkman FS, Hufnagle WO, Kowalik DJ, Lagrou M, Garber RL, Goltry L, Tolentino E, Westbrock-Wadman S, Yuan Y, Brody LL, Coulter SN, Folger KR, Kas A, Larbig K, Lim R, Smith K, Spencer D, Wong GK, Wu Z, Paulsen IT, Reizer J, Saier MH, Hancock RE, Lory S, Olson MV. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964. doi: 10.1038/35023079. [DOI] [PubMed] [Google Scholar]
  • 3.Nakano K, Terabayashi Y, Shiroma A, Shimoji M, Tamotsu H, Ashimine N, Ohki S, Shinzato M, Teruya K, Satou K, Hirano T. 2015. First complete genome sequence of Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 (DSM 50071T), determined using PacBio single-molecule real-time technology. Genome Announc 3(4):e00932-15. doi: 10.1128/genomeA.00932-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Hilker R, Munder A, Klockgether J, Losada PM, Chouvarine P, Cramer N, Davenport CF, Dethlefsen S, Fischer S, Peng H, Schönfelder T, Türk O, Wiehlmann L, Wölbeling F, Gulbins E, Goesmann A, Tümmler B. 2015. Interclonal gradient of virulence in the Pseudomonas aeruginosa pangenome from disease and environment. Environ Microbiol 17:29–46. doi: 10.1111/1462-2920.12606. [DOI] [PubMed] [Google Scholar]
  • 5.Wibberg D, Tielen P, Narten M, Schobert M, Blom J, Schatschneider S, Meyer A, Neubauer R, Albersmeier A, Albaum S, Jahn M, Goesmann A, Vorhölter F, Pühler A, Jahn D. 2015. Genome sequence of the urethral isolate Pseudomonas aeruginosa RN21. Genome Announc 3(4):e00788-15. doi: 10.1128/genomeA.00788-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Lorè NI, Cigana C, De Fino I, Riva C, Juhas M, Schwager S, Eberl L, Bragonzi A. 2012. Cystic fibrosis-niche adaptation of Pseudomonas aeruginosa reduces virulence in multiple infection hosts. PLoS One 7:e35648. doi: 10.1371/journal.pone.0035648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Stuart B, Lin JH, Mogayzel PJ Jr. 2010. Early eradication of Pseudomonas aeruginosa in patients with cystic fibrosis. Paediatr Respir Rev 11:177–184. doi: 10.1016/j.prrv.2010.05.003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Breidenstein EBM, de la Fuente-Núñez C, Hancock REW. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi: 10.1016/j.tim.2011.04.005. [DOI] [PubMed] [Google Scholar]
  • 9.Fernandez L, Hancock REW. 2012. Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance. Clin Microbiol Rev 25:661–681. doi: 10.1128/CMR.00043-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2015. GenBank. Nucleic Acids Res 43:D30–D35. doi: 10.1093/nar/gku1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Lee DG, Urbach JM, Wu G, Liberati NT, Feinbaum RL, Miyata S, Diggins LT, He J, Saucier M, Deziel E, Friedman L, Li L, Grills G, Montgomery K, Kucherlapati R, Rahme LG, Ausubel FM. 2006. Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7:R90. doi: 10.1186/gb-2006-7-10-r90. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Haenni M, Hocquet D, Ponsin C, Cholley P, Guyeux C, Madec J, Bertrand X. 2015. Population structure and antimicrobial susceptibility of Pseudomonas aeruginosa from animal infections in France. BMC Vet Res 11:9. doi: 10.1186/s12917-015-0324-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wiehlmann L, Wagner G, Cramer N, Siebert B, Gudowius P, Morales G, Kohler T, van Delden C, Weinel C, Slickers P, Tummler B. 2007. Population structure of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 104:8101–8106. doi: 10.1073/pnas.0609213104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Gao C, Hu C, Ma C, Su F, Yu H, Jiang T, Dou P, Wang Y, Qin T, Lv M, Xu P. 2012. Genome sequence of the lactate-utilizing Pseudomonas aeruginosa strain xmg. J Bacteriol 194:4751–4752. doi: 10.1128/JB.00943-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Roy PH, Tetu SG, Larouche A, Elbourne L, Tremblay S, Ren Q, Dodson R, Harkins D, Shay R, Watkins K, Mahamoud Y, Paulsen IT. 2010. Complete genome sequence of the multiresistant taxonomic outlier Pseudomonas aeruginosa PA7. PLoS One 5:e8842. doi: 10.1371/journal.pone.0008842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Lu S, Le S, Tan Y, Zhu J, Li M, Rao X, Zou L, Li S, Wang J, Jin X, Huang G, Zhang L, Zhao X, Hu F. 2013. Genomic and proteomic analyses of the terminally redundant genome of the Pseudomonas aeruginosa phage PaP1: establishment of genus PaP1-like phages. PLoS One 8:e62933. doi: 10.1371/journal.pone.0062933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Roberts RJ, Carneiro MO, Schatz MC. 2013. The advantages of SMRT sequencing. Genome Biol 14:405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Gulati A, Swarnkar MK, Vyas P, Rahi P, Thakur R, Thakur N, Singh AK. 2015. Complete genome sequence of the rhizobacterium Pseudomonas trivialis strain IHBB745 with multiple plant growth-promoting activities and tolerance to desiccation and alkalinity. Genome Announc 3(5):e00943-15. doi: 10.1128/genomeA.00943-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Chin C, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi: 10.1038/nmeth.2474. [DOI] [PubMed] [Google Scholar]
  • 20.Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity GM, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O. 2008. Toward an online repository of standard operating procedures (SOPs) for (Meta) genomic annotation. Omics J Integr Biol 12:137–141. doi: 10.1089/omi.2008.0017. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES