Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jun 15;90(12):5718–5722. doi: 10.1073/pnas.90.12.5718

Attentional control of early perceptual learning.

M Ahissar 1, S Hochstein 1
PMCID: PMC46793  PMID: 8516322

Abstract

The performance of adult humans in simple visual tasks improves dramatically with practice. This improvement is highly specific to basic attributes of the trained stimulus, suggesting that the underlying changes occur at low-level processing stages in the brain, where different orientations and spatial frequencies are handled by separate channels. We asked whether these practice effects are determined solely by activity in stimulus-driven mechanisms or whether high-level attentional mechanisms, which are linked to the perceptual task, might control the learning process. We found that practicing one task did not improve performance in an alternative task, even though both tasks used exactly the same visual stimuli but depended on different stimulus attributes (either orientation of local elements or global shape). Moreover, even when the experiment was designed so that the same responses were associated with the same stimuli (although subjects were instructed to attend to the attribute underlying one task), learning did not transfer from one task to the other. These results suggest that specific high-level attentional mechanisms, controlling changes at early visual processing levels, are essential in perceptual learning.

Full text

PDF
5718

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahissar E., Vaadia E., Ahissar M., Bergman H., Arieli A., Abeles M. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science. 1992 Sep 4;257(5075):1412–1415. doi: 10.1126/science.1529342. [DOI] [PubMed] [Google Scholar]
  2. Ball K., Sekuler R. A specific and enduring improvement in visual motion discrimination. Science. 1982 Nov 12;218(4573):697–698. doi: 10.1126/science.7134968. [DOI] [PubMed] [Google Scholar]
  3. Ball K., Sekuler R. Direction-specific improvement in motion discrimination. Vision Res. 1987;27(6):953–965. doi: 10.1016/0042-6989(87)90011-3. [DOI] [PubMed] [Google Scholar]
  4. Berardi N., Fiorentini A. Interhemispheric transfer of visual information in humans: spatial characteristics. J Physiol. 1987 Mar;384:633–647. doi: 10.1113/jphysiol.1987.sp016474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergen J. R., Julesz B. Parallel versus serial processing in rapid pattern discrimination. Nature. 1983 Jun 23;303(5919):696–698. doi: 10.1038/303696a0. [DOI] [PubMed] [Google Scholar]
  6. Braun J., Sagi D. Vision outside the focus of attention. Percept Psychophys. 1990 Jul;48(1):45–58. doi: 10.3758/bf03205010. [DOI] [PubMed] [Google Scholar]
  7. Desimone R., Schein S. J., Moran J., Ungerleider L. G. Contour, color and shape analysis beyond the striate cortex. Vision Res. 1985;25(3):441–452. doi: 10.1016/0042-6989(85)90069-0. [DOI] [PubMed] [Google Scholar]
  8. Desimone R., Wessinger M., Thomas L., Schneider W. Attentional control of visual perception: cortical and subcortical mechanisms. Cold Spring Harb Symp Quant Biol. 1990;55:963–971. doi: 10.1101/sqb.1990.055.01.090. [DOI] [PubMed] [Google Scholar]
  9. Felleman D. J., Van Essen D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex. 1991 Jan-Feb;1(1):1–47. doi: 10.1093/cercor/1.1.1-a. [DOI] [PubMed] [Google Scholar]
  10. Fiorentini A., Berardi N. Perceptual learning specific for orientation and spatial frequency. Nature. 1980 Sep 4;287(5777):43–44. doi: 10.1038/287043a0. [DOI] [PubMed] [Google Scholar]
  11. Haenny P. E., Maunsell J. H., Schiller P. H. State dependent activity in monkey visual cortex. II. Retinal and extraretinal factors in V4. Exp Brain Res. 1988;69(2):245–259. doi: 10.1007/BF00247570. [DOI] [PubMed] [Google Scholar]
  12. Haenny P. E., Schiller P. H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp Brain Res. 1988;69(2):225–244. doi: 10.1007/BF00247569. [DOI] [PubMed] [Google Scholar]
  13. Karni A., Sagi D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4966–4970. doi: 10.1073/pnas.88.11.4966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Marshall E. "Spy dust" irritates diplomats. Science. 1985 Sep 6;229(4717):952–952. doi: 10.1126/science.229.4717.952. [DOI] [PubMed] [Google Scholar]
  15. Maunsell J. H., Newsome W. T. Visual processing in monkey extrastriate cortex. Annu Rev Neurosci. 1987;10:363–401. doi: 10.1146/annurev.ne.10.030187.002051. [DOI] [PubMed] [Google Scholar]
  16. Nazir T. A., O'Regan J. K. Some results on translation invariance in the human visual system. Spat Vis. 1990;5(2):81–100. doi: 10.1163/156856890x00011. [DOI] [PubMed] [Google Scholar]
  17. Poggio T., Fahle M., Edelman S. Fast perceptual learning in visual hyperacuity. Science. 1992 May 15;256(5059):1018–1021. doi: 10.1126/science.1589770. [DOI] [PubMed] [Google Scholar]
  18. Quick R. F., Jr A vector-magnitude model of contrast detection. Kybernetik. 1974;16(2):65–67. doi: 10.1007/BF00271628. [DOI] [PubMed] [Google Scholar]
  19. Recanzone G. H., Merzenich M. M., Schreiner C. E. Changes in the distributed temporal response properties of SI cortical neurons reflect improvements in performance on a temporally based tactile discrimination task. J Neurophysiol. 1992 May;67(5):1071–1091. doi: 10.1152/jn.1992.67.5.1071. [DOI] [PubMed] [Google Scholar]
  20. Sagi D., Julesz B. "Where" and "what" in vision. Science. 1985 Jun 7;228(4704):1217–1219. doi: 10.1126/science.4001937. [DOI] [PubMed] [Google Scholar]
  21. Shiu L. P., Pashler H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept Psychophys. 1992 Nov;52(5):582–588. doi: 10.3758/bf03206720. [DOI] [PubMed] [Google Scholar]
  22. Spitzer H., Desimone R., Moran J. Increased attention enhances both behavioral and neuronal performance. Science. 1988 Apr 15;240(4850):338–340. doi: 10.1126/science.3353728. [DOI] [PubMed] [Google Scholar]
  23. Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
  24. Treisman A., Vieira A., Hayes A. Automaticity and preattentive processing. Am J Psychol. 1992 Summer;105(2):341–362. [PubMed] [Google Scholar]
  25. Ullman S. Visual routines. Cognition. 1984 Dec;18(1-3):97–159. doi: 10.1016/0010-0277(84)90023-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES