Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jun 15;90(12):5757–5761. doi: 10.1073/pnas.90.12.5757

Increased expression of apolipoprotein genes accompanies differentiation in the intestinal cell line Caco-2.

S R Reisher 1, T E Hughes 1, J M Ordovas 1, E J Schaefer 1, S I Feinstein 1
PMCID: PMC46801  PMID: 8516325

Abstract

We have analyzed determinants of the synthesis and secretion of apolipoproteins including mRNA for apolipoproteins, in the human colon carcinoma cell line Caco-2 during differentiation in continuous culture. Significant increases in both cellular and secreted apolipoprotein A-I were observed early in the differentiation process. Increases in apolipoprotein B were limited to secreted protein and started later in the differentiation process. Levels of mRNA for apolipoproteins A-I, A-IV, B, C-III, and E increased significantly between the time cells reached confluence and 1 week postconfluence. The kinetics of mRNA accumulation were influenced by culture conditions. Nuclear extracts from postconfluent Caco-2 cells contained increased amounts of protein that bound to oligonucleotides containing the control regions of the apolipoprotein A-I and B genes. A competition experiment suggested that this protein recognized the control regions of both genes. We propose to name this protein DRIFT-1 (differentiation-related intestinal factor for transcription 1).

Full text

PDF
5757

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carlsson P., Bjursell G. Negative and positive promoter elements contribute to tissue specificity of apolipoprotein B expression. Gene. 1989 Apr 15;77(1):113–121. doi: 10.1016/0378-1119(89)90365-x. [DOI] [PubMed] [Google Scholar]
  2. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  3. Chung Y. S., Song I. S., Erickson R. H., Sleisenger M. H., Kim Y. S. Effect of growth and sodium butyrate on brush border membrane-associated hydrolases in human colorectal cancer cell lines. Cancer Res. 1985 Jul;45(7):2976–2982. [PubMed] [Google Scholar]
  4. Cohen T., Karathanasis S. K., Kazazian H. H., Jr, Antonarakis S. E. DNA polymorphic sites in the human ApoAI-CIII-AIV cluster: Taq I and Ava I. Nucleic Acids Res. 1986 Feb 25;14(4):1924–1924. doi: 10.1093/nar/14.4.1924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem. 1968 Jan;22(1):99–107. doi: 10.1016/0003-2697(68)90263-7. [DOI] [PubMed] [Google Scholar]
  6. Das H. K., Leff T., Breslow J. L. Cell type-specific expression of the human apoB gene is controlled by two cis-acting regulatory regions. J Biol Chem. 1988 Aug 15;263(23):11452–11458. [PubMed] [Google Scholar]
  7. Das H. K., McPherson J., Bruns G. A., Karathanasis S. K., Breslow J. L. Isolation, characterization, and mapping to chromosome 19 of the human apolipoprotein E gene. J Biol Chem. 1985 May 25;260(10):6240–6247. [PubMed] [Google Scholar]
  8. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higuchi K., Law S. W., Hoeg J. M., Schumacher U. K., Meglin N., Brewer H. B., Jr Tissue-specific expression of apolipoprotein A-I (ApoA-I) is regulated by the 5'-flanking region of the human ApoA-I gene. J Biol Chem. 1988 Dec 5;263(34):18530–18536. [PubMed] [Google Scholar]
  10. Huang L. S., Bock S. C., Feinstein S. I., Breslow J. L. Human apolipoprotein B cDNA clone isolation and demonstration that liver apolipoprotein B mRNA is 22 kilobases in length. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6825–6829. doi: 10.1073/pnas.82.20.6825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hughes T. E., Ordovas J. M., Schaefer E. J. Regulation of intestinal apolipoprotein B synthesis and secretion by Caco-2 cells. Lack of fatty acid effects and control by intracellular calcium ion. J Biol Chem. 1988 Mar 5;263(7):3425–3431. [PubMed] [Google Scholar]
  12. Hughes T. E., Sasak W. V., Ordovas J. M., Forte T. M., Lamon-Fava S., Schaefer E. J. A novel cell line (Caco-2) for the study of intestinal lipoprotein synthesis. J Biol Chem. 1987 Mar 15;262(8):3762–3767. [PubMed] [Google Scholar]
  13. Karathanasis S. K., Zannis V. I., Breslow J. L. Isolation and characterization of cDNA clones corresponding to two different human apoC-III alleles. J Lipid Res. 1985 Apr;26(4):451–456. [PubMed] [Google Scholar]
  14. Karathanasis S. K., Zannis V. I., Breslow J. L. Isolation and characterization of the human apolipoprotein A-I gene. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6147–6151. doi: 10.1073/pnas.80.20.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kardassis D., Hadzopoulou-Cladaras M., Ramji D. P., Cortese R., Zannis V. I., Cladaras C. Characterization of the promoter elements required for hepatic and intestinal transcription of the human apoB gene: definition of the DNA-binding site of a tissue-specific transcriptional factor. Mol Cell Biol. 1990 Jun;10(6):2653–2659. doi: 10.1128/mcb.10.6.2653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kardassis D., Zannis V. I., Cladaras C. Purification and characterization of the nuclear factor BA1. A transcriptional activator of the human apoB gene. J Biol Chem. 1990 Dec 15;265(35):21733–21740. [PubMed] [Google Scholar]
  17. Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Laburthe M., Rousset M., Rouyer-Fessard C., Couvineau A., Chantret I., Chevalier G., Zweibaum A. Development of vasoactive intestinal peptide-responsive adenylate cyclase during enterocytic differentiation of Caco-2 cells in culture. Evidence for an increased receptor level. J Biol Chem. 1987 Jul 25;262(21):10180–10184. [PubMed] [Google Scholar]
  20. Ladias J. A., Karathanasis S. K. Regulation of the apolipoprotein AI gene by ARP-1, a novel member of the steroid receptor superfamily. Science. 1991 Feb 1;251(4993):561–565. doi: 10.1126/science.1899293. [DOI] [PubMed] [Google Scholar]
  21. Mietus-Snyder M., Sladek F. M., Ginsburg G. S., Kuo C. F., Ladias J. A., Darnell J. E., Jr, Karathanasis S. K. Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol. 1992 Apr;12(4):1708–1718. doi: 10.1128/mcb.12.4.1708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murthy S., Albright E., Mathur S. N., Field F. J. Modification of CaCo-2 cell membrane fatty acid composition by eicosapentaenoic acid and palmitic acid: effect on cholesterol metabolism. J Lipid Res. 1988 Jun;29(6):773–780. [PubMed] [Google Scholar]
  23. Papazafiri P., Ogami K., Ramji D. P., Nicosia A., Monaci P., Cladaras C., Zannis V. I. Promoter elements and factors involved in hepatic transcription of the human ApoA-I gene positive and negative regulators bind to overlapping sites. J Biol Chem. 1991 Mar 25;266(9):5790–5797. [PubMed] [Google Scholar]
  24. Protter A. A., Hardman D. A., Sato K. Y., Schilling J. W., Yamanaka M., Hort Y. J., Hjerrild K. A., Chen G. C., Kane J. P. Analysis of cDNA clones encoding the entire B-26 region of human apolipoprotein B. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5678–5682. doi: 10.1073/pnas.83.15.5678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Reue K., Leff T., Breslow J. L. Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors. J Biol Chem. 1988 May 15;263(14):6857–6864. [PubMed] [Google Scholar]
  26. Rottman J. N., Widom R. L., Nadal-Ginard B., Mahdavi V., Karathanasis S. K. A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol. 1991 Jul;11(7):3814–3820. doi: 10.1128/mcb.11.7.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rousset M. The human colon carcinoma cell lines HT-29 and Caco-2: two in vitro models for the study of intestinal differentiation. Biochimie. 1986 Sep;68(9):1035–1040. doi: 10.1016/s0300-9084(86)80177-8. [DOI] [PubMed] [Google Scholar]
  28. Roy C. C., Levy E., Green P. H., Sniderman A., Letarte J., Buts J. P., Orquin J., Brochu P., Weber A. M., Morin C. L. Malabsorption, hypocholesterolemia, and fat-filled enterocytes with increased intestinal apoprotein B. Chylomicron retention disease. Gastroenterology. 1987 Feb;92(2):390–399. doi: 10.1016/0016-5085(87)90133-8. [DOI] [PubMed] [Google Scholar]
  29. Sastry K. N., Seedorf U., Karathanasis S. K. Different cis-acting DNA elements control expression of the human apolipoprotein AI gene in different cell types. Mol Cell Biol. 1988 Feb;8(2):605–614. doi: 10.1128/mcb.8.2.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Teng B., Verp M., Salomon J., Davidson N. O. Apolipoprotein B messenger RNA editing is developmentally regulated and widely expressed in human tissues. J Biol Chem. 1990 Nov 25;265(33):20616–20620. [PubMed] [Google Scholar]
  31. Traber M. G., Kayden H. J., Rindler M. J. Polarized secretion of newly synthesized lipoproteins by the Caco-2 human intestinal cell line. J Lipid Res. 1987 Nov;28(11):1350–1363. [PubMed] [Google Scholar]
  32. Wagner R. D., Krul E. S., Moberly J. B., Alpers D. H., Schonfeld G. Apolipoprotein expression and cellular differentiation in Caco-2 intestinal cells. Am J Physiol. 1992 Aug;263(2 Pt 1):E374–E382. doi: 10.1152/ajpendo.1992.263.2.E374. [DOI] [PubMed] [Google Scholar]
  33. Weinberger J., Baltimore D., Sharp P. A. Distinct factors bind to apparently homologous sequences in the immunoglobulin heavy-chain enhancer. 1986 Aug 28-Sep 3Nature. 322(6082):846–848. doi: 10.1038/322846a0. [DOI] [PubMed] [Google Scholar]
  34. Widom R. L., Ladias J. A., Kouidou S., Karathanasis S. K. Synergistic interactions between transcription factors control expression of the apolipoprotein AI gene in liver cells. Mol Cell Biol. 1991 Feb;11(2):677–687. doi: 10.1128/mcb.11.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zannis V. I., Cole F. S., Jackson C. L., Kurnit D. M., Karathanasis S. K. Distribution of apolipoprotein A-I, C-II, C-III, and E mRNA in fetal human tissues. Time-dependent induction of apolipoprotein E mRNA by cultures of human monocyte-macrophages. Biochemistry. 1985 Jul 30;24(16):4450–4455. doi: 10.1021/bi00337a028. [DOI] [PubMed] [Google Scholar]
  36. Zweibaum A., Triadou N., Kedinger M., Augeron C., Robine-Léon S., Pinto M., Rousset M., Haffen K. Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer. 1983 Oct 15;32(4):407–412. doi: 10.1002/ijc.2910320403. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES