Skip to main content
Applications in Plant Sciences logoLink to Applications in Plant Sciences
. 2015 Dec 9;3(12):apps.1500052. doi: 10.3732/apps.1500052

Characterization and multiplexing of 21 microsatellite markers for the herb Noccaea caerulescens (Brassicaceae)1

Mathilde Mousset 2, Elodie Flaven 2,6, Fabienne Justy 2, Juliette Pouzadoux 2, Cécile Gode 3, Maxime Pauwels 3,6, Cédric Gonneau 4,5
PMCID: PMC4683039  PMID: 26697274

Abstract

Premise of the study:

Multiplexed microsatellite markers were developed for population genetic studies in the pseudometallophyte Noccaea caerulescens (Brassicaceae), a model species to investigate metal tolerance and hyperaccumulation in higher plants.

Methods and Results:

Microsatellite loci were isolated through pyrosequencing of an enriched DNA library. Three multiplexes combining four previously published and 17 newly designed markers were developed. The new markers were screened in metallicolous and nonmetallicolous populations from southern France. The total number of alleles per locus ranged from five to 18. The observed heterozygosity per locus and per population ranged from 0 to 0.83, and expected heterozygosity ranged from 0 to 0.89.

Conclusions:

The investigated loci showed reasonable to high levels of polymorphism at the regional scale. The multiplex set should be helpful in investigating genetic diversity, population structure, and demographic history in N. caerulescens at various spatial scales.

Keywords: Brassicaceae, heavy metal tolerance, microsatellite, Noccaea caerulescens, pseudometallophyte


The Alpine pennycress, Noccaea caerulescens (J. Presl & C. Presl) F. K. Mey. (Brassicaceae), occurs over a large range in Europe. The species is particularly known for its capacity to grow on soils with a high concentration of trace elements such as zinc, cadmium, and nickel. Considering its phylogenetic proximity with Arabidopsis thaliana, this characteristic makes N. caerulescens a favorite model plant for the study of the genetic bases of metal homeostasis, as well as of the ecological and evolutionary processes involved in local adaptation to extreme environments (Assunção et al., 2003). In order to understand the effect of soil metals on the evolution of N. caerulescens populations, it is necessary to study the population genetics of the species. So far, however, the low number of available molecular markers (Basic and Besnard, 2006; Jiménez-Ambriz et al., 2007), low polymorphism, presence of null alleles (Basic and Besnard, 2006; Besnard et al., 2009), and low amplification rate (E. Flaven, personal observation), as well as the absence of protocols for high-throughput genotyping, has not allowed the performance of deep population genetic studies. Here, we introduce 17 new microsatellite markers organized in three multiplexes to reduce genotyping time and costs. The multiplexes also include formerly published markers, thus providing a complete resource in this species.

METHODS AND RESULTS

Microsatellite library construction

Genomic DNA of three individuals from the Baraquette population (Appendix 1) was extracted using a cetyltrimethylammonium bromide (CTAB) protocol (Doyle and Doyle, 1990) followed by RNase treatment, and mixed. Development of the microsatellite library was outsourced to Genoscreen (Lille, France). It involved coupling multiplex microsatellite enrichment isolation techniques with 454 GS FLX Titanium pyrosequencing of the enriched DNA, according to the protocol of Malausa et al. (2011). Enrichment was performed using probes containing the following motifs: AG10, AC10, AAC8, AGG8, ACG8, AAG8, ACAT6, and ATCT6. Sequence data were automatically screened to detect microsatellite motifs, leading to 1852 candidate loci. Primers were designed in silico by Genoscreen, using the QDD pipeline (Meglécz et al., 2010).

Biological validation

Biological validation of a subset of these loci was simultaneously performed at Institut des Sciences de l’Évolution de Montpellier (ISEM) and at Laboratoire Évolution Écologie et Paléontologie (Evo-Eco-Paleo), with requirements for levels of genetic polymorphism at different spatial scales. At ISEM, amplification trials were performed on seven individuals from five populations from southern France (Appendix 1). DNA extraction followed a classic CTAB protocol (Doyle and Doyle, 1990). Based on type and number of repeat units, repeat structures, and amplicon size, 32 candidate loci from the library were selected and tested separately. The PCR reactions were carried out in a total volume of 10 μL, containing 1 μL of DNA template, forward and reverse primers (0.2 μM), and 1× QIAGEN Multiplex PCR Master Mix (QIAGEN, Courtaboeuf, France). Cycling conditions were: an initial denaturation step at 95°C for 15 min, then 30 cycles consisting of 30 s at 94°C, 90 s at 58°C, and 1 min at 72°C, followed by a final extension of 30 min at 60°C. PCRs were conducted on Eppendorf Mastercycler pro, Mastercycler nexus gradient (Eppendorf, Hamburg, Germany), and Techne TC-5000 (GMI, Ramsey, Minnesota, USA) machines. Amplification products were visualized with agarose gel (2%) with ethidium bromide stain. Due to inadequate amplification yield, low specificity, or unexpected size, only 15 markers were kept. Forward primers were labeled with one of the FAM, NED, VIC, or PET fluorescent dyes (Applied Biosystems, Waltham, Massachusetts, USA). PCR products were analyzed separately through electrophoresis on an ABI3130 Genetic Analyzer (Applied Biosystems). Nine loci were finally retained based on presence of polymorphism and quality of profiles.

At Evo-Eco-Paleo, 20 primer pairs corresponding to 20 additional loci from the library were selected. They were tested separately on 23 individuals scattered in the European species range (Koch and German, 2013; Appendix 1). Total DNA was extracted using the QIAGEN DNeasy kit (QIAGEN). Extraction and test PCR were performed according to Godé et al. (2012). Each primer pair was tested using FAM labeling. PCR reactions were carried out in a total volume of 10 μL, containing 1 μL of 1/20 diluted DNA template, 2 μM of forward and reverse primers, and 1× QIAGEN Multiplex PCR Master Mix. A final set of eight markers was selected based on the quality of genotyping profiles, compatibility of amplicon sizes for multiplexing, and relative positions on the genome (Table 1). Genomic positions of microsatellite loci were determined by BLASTN searches of microsatellite flanking sequences against the Arabidopsis thaliana genome and by using the synteny among chromosomal blocks determined for different Brassicaceae species and the ancestral karyotype (Schranz et al., 2006).

Table 1.

Characterization of 21 microsatellite loci in Noccaea caerulescens.

Locus Primer sequences (5′–3′) Repeat motif Ta (°C) Ct (µM) Multiplex Fluorescent dye Post-PCR dilution Position A.t.a Position N.c.a Chromosomal blocksb Allele size range (bp) GenBank accession no. Publication
Ncpm09 F: TAGACGCTGCGTTTTGAAGA CT18 58 0.4 NcM1 6-FAM 1/150 1 2 B 96–130 KR065729
R: CCTCTGTTGAGTGAATGGTTCTC
Ncpm13 F: CCAAAACTATGCCGATCTCA AG16 58 0.2 NcM1 VIC 1/150 NA NA NA 158–166 KR065730
R: CCACGAGCGAATCTTCTTGT
Ncpm21 F: GTCACCACTTGCTACGGGAT CTT10 58 0.2 NcM1 VIC 1/150 3 7 F 240–277 KR065731
R: CATTGGATAGCACAGAGGCA
Ncpm23 F: TTTCATGTCTCGGATCCTCC TTC11 58 0.4 NcM1 6-FAM 1/150 NA NA NA 197–263 KR065732
R: GCAGAGCGCAATCTAAGGAC
Ncpm31 F: GATTATCGAGCTTACTAAAAGCAGC CTT12 58 0.2 NcM1 NED 1/150 5 4 W 58–101 KR065733
R: GTGTTGAAGCGCAATGAAGA
Tc-up1 F: TGCTCTGTTTCTCTCCACATTC (CA)n(CT)n 50 0.2d NcM1 NED 1/160 NA NA NA 132–170 AJ746212 Basic and Besnard, 2006
R: TTCCTTGCTTCTTCTCTTCCA
Ncpm07 F: TGGAATGGTTCTGTGGACAA TCA18 58 0.4 NcM2 6-FAM 1/150 NA NA NA 109–139 KR065734
R: TTCTGGAATTGGCTGCTTCT
Ncpm14 F: GACCACATCTCGTCTTGCCT CTT15 58 0.4 NcM2 PET 1/150 NA NA NA 108–123 KR065735
R: GACCCTAACTACAGGCTGTGAAA
Ncpm19 F: CCAACAATGGATTGGGAGAG GTGTA(TG)14 58 0.4 NcM2 VIC 1/150 NA NA NA 100–124 KR065736
R: TCCCCATCACTCCAGCTAAG
Ncpm29 F: CTCCCTCTTCTCCTACCTACACATA AC17 58 0.4 NcM2 NED 1/150 NA NA NA 78–94 KR065737
R: GGTTGAAAGTAGGAGTGAGTCAAGA
Tc-up4 F: GTTTTGTCCGCTTTGCTTCC CT13 50 0.2d NcM2 VIC 1/140 NA NA NA 253–262 AJ746216.1 Basic and Besnard, 2006
R: GCCATAGACTTTCTCATTGATTC
9C7/Thlc3 F: GTCACGAGTTTCACCATT AG13 58 0.4 NcM2 VIC 1/150 NA NA NA 152–191 Jiménez-Ambriz et al., 2007
R: ATCTTCCACAATTGTGCC
Tc-up2 F: TGAGAAGAGGAGACACAGGAAC (AG)5(AG)5(GA)6 58 0.2 NcM2 PET 1/150 NA NA NA 232–244 AJ746213.1 Basic and Besnard, 2006
R: CACTTACCAAATCGAAAACTGCTCC
Nc02 F: GGAGCTGTGGTTTCTGAAGG AGG8 68/47c 0.06 NcM3 VIC None 4 3 O 170–191 KR065738
R: AGCATCGTATTCCGATCCAG 0.28
Nc03 F: TGAGCTTCTTCAGTCCCGAT AC12 68/47c 0.06 NcM3 NED None 5 4 S 188–194 KR065739
R: TATGAGCTCGTCGCTCACAG 0.28
Nc04 F: ACGGTCGCATACCAAAAAGT AG11 68/47c 0.06 NcM3 VIC None 2 5 J 123–143 KR065740
R: AGGATGCACTCCTTGAGACC 0.28
Nc06b F: GCGTCTTCTCTCCATCCTCA AG13 68/47c 0.07 NcM3 PET None 4 6 U 89–153 KR065741
R: GGATTTCCAATTCAATCTTCCC 0.37
Nc07b F: CCAGTTTCCAACGGCATAGT AC10 68/47c 0.06 NcM3 NED None 3 7 F 105–112 KR065742
R: TTGGTTTGGTTTCTTCTTGTGA 0.28
Nc19 F: CGGATTGTTGTGAATCCCAT AGG11 68/47c 0.07 NcM3 PET None 2 5 J 199–235 KR065743
R: ACCTCTTCTTTCGCCCTTGT 0.28
Nc20 F: ACACAACTCCAAAGGCTTCA AG11 68/47c 0.15 NcM3 6-FAM None 4 3 O 205–234 KR065744
R: TTTTGTTCTAACCGTTACTCTTT 0.75
Nc22 F: TTGCTTTCACATGTCTTGACG AG10 68/47c 0.11 NcM3 6-FAM None 2 5 K 111–121 KR065745
R: GAACAGAACAAGAAGACATGAATGA 0.56

Note: Ct = final concentration of primers; NA = not available; Ta = annealing temperature.

a

Relative chromosomal position in Arabidopsis thaliana and Noccaea caerulescens, respectively (Schranz et al., 2006).

b

Genome blocks in the “ancestral karyotype” blocks (Schranz et al., 2006).

c

Following Godé et al. (2012), touchdown PCR was performed. During the first 10 cycles, annealing temperature was decreased from 68°C to 50°C in increments of 2°C. This was followed by 27 cycles with an annealing temperature at 47°C.

d

Standalone PCR.

Screening of the new microsatellite markers

All forward primers were labeled with fluorescent dyes, and markers were combined in multiplex PCR based on size compatibility and annealing temperatures (Table 1). Primer dimerization was checked using OligoAnalyzer 1.0.3 (Integrated DNA Technologies, Coralville, Iowa, USA). In addition to newly defined markers, four previously developed markers (Tc-up1, Tc-up2, Tc-up4, Thlc3; Basic and Besnard, 2006; Jiménez-Ambriz et al., 2007) were added to the multiplexes to increase the number of available, multiplexed markers (results not shown, see Table 1 for details). However, due to differing annealing temperatures, Tc-up1 and Tc-up4 were processed in separate PCR and added in the post-PCR steps.

Seventy-four individuals from four populations (Appendix 1, identified as “natural populations screening”) were analyzed. DNA extraction followed the protocol from Doyle and Doyle (1990). The PCR reactions were carried out following the protocols described above: ISEM section for the first (NcM1) and second (NcM2) multiplexes, Evo-Eco-Paleo section for the third (NcM3), except that forward and reverse primers were mixed (concentrations in Table 1). Three microliters of diluted PCR product (dilutions in Table 1) were transferred in a mix of 15 μL of Hi-Di Formamide (Applied Biosystems) and 0.15 μL of GeneScan 500 LIZ Size Standard (Applied Biosystems). Raw data were analyzed using GeneMapper (version 5.0; Applied Biosystems). Automatic analysis and manual check of all the peaks were performed. Detection of the presence of null alleles in populations was performed with FreeNA (Chapuis and Estoup, 2007). Two new loci (Ncpm31 and Ncpm07) harbor null alleles, with frequencies between 10% and 15%. Expected heterozygosity, intrapopulation fixation index, and linkage equilibrium tests were computed using FSTAT (version 2.9.3; Goudet, 1995), and observed heterozygosity was computed in GENETIX (version 4.05; Belkhir et al., 2004). No linkage disequilibrium was detected between loci (with Bonferroni correction). The number of alleles for each locus ranged from five to 18 (Table 2). The observed heterozygosity per locus and per population ranged from 0 to 0.83, and the expected heterozygosity ranged from 0 to 0.89. Hardy–Weinberg equilibrium was tested in GENEPOP (Rousset, 2008), and most of the loci in the four populations were at equilibrium. This result contrasts with previous studies in N. caerulescens (Dubois et al., 2003; Basic and Besnard, 2006; Jiménez-Ambriz et al., 2007; Besnard et al., 2009) and may be due to sample size.

Table 2.

Statistical analysis of the 17 new microsatellite markers in four populationsa of Noccaea caerulescens in southern France.

All Avinières (n = 18) Saint Bresson (n = 22) Saint Hippolyte (n = 17) Coulet (n = 17)
Locus % amp A Ho He FISb A Ho He FISb A Ho He FISb A Ho He FISb A Ho He FISb
Ncpm09 100 16 0.563 0.699 0.108 8 0.722 0.794 0.091 5 0.545 0.598 0.089 10 0.823 0.893 0.078 6 0.353 0.46 0.232
Ncpm13 100 5 0.260 0.346 0.130 3 0.500 0.606 0.175 3 0.500 0.530 0.057 1 0.000 0.000 NA 4 0.176 0.224 0.213
Ncpm21 100 9 0.505 0.570 0.136 4 0.500 0.556 0.10 5 0.682 0.639 −0.068 3 0.412 0.588 0.300 3 0.294 0.449 0.344
Ncpm23 100 9 0.444 0.557 0.199 4 0.389 0.562 0.308 3 0.409 0.427 0.043 5 0.412 0.566 0.273 4 0.529 0.638 0.170
Ncpm31 98.6 9 0.493 0.694 0.396 6 0.667 0.771 0.136 4 0.111 0.645 0.828* 5 0.412 0.763 0.460 5 0.529 0.658 0.196
Ncpm07 98.6 8 0.485 0.606 0.210 6 0.833 0.725 −0.149 2 0.364 0.359 −0.012 3 0.062 0.383 0.837* 5 0.412 0.717 0.426
Ncpm14 100 5 0.254 0.405 0.357 3 0.500 0.650 0.231 2 0.091 0.089 −0.024 3 0.235 0.318 0.260 2 0.059 0.346 0.830
Ncpm19 100 11 0.544 0.647 0.130 5 0.722 0.730 0.011 4 0.591 0.639 0.075 2 0.187 0.425 0.559 7 0.706 0.774 0.088
Ncpm29 100 9 0.579 0.733 0.174 6 0.611 0.753 0.189 6 0.773 0.696 −0.110 7 0.529 0.833 0.364 5 0.529 0.746 0.291
Nc02 97.3 6 0.384 0.482 0.081 5 0.750 0.693 −0.042 4 0.273 0.290 0.060 1 0.000 0.000 NA 5 0.562 0.727 0.226
Nc03 98.6 4 0.296 0.467 0.316 3 0.350 0.292 −0.14 4 0.429 0.699 0.387 2 0.059 0.059 0.000 4 0.375 0.7 0.464
Nc04 100 9 0.528 0.618 0.125 6 0.700 0.778 0.143 4 0.318 0.290 −0.097 4 0.647 0.695 0.069 5 0.529 0.732 0.276
Nc06b 100 18 0.582 0.740 0.233 9 0.700 0.815 0.046 7 0.636 0.812 0.216 7 0.437 0.627 0.302 5 0.412 0.717 0.426
Nc07b 98.6 5 0.501 0.592 0.194 4 0.500 0.672 0.255 4 0.571 0.570 −0.002 4 0.471 0.498 0.055 3 0.294 0.57 0.484
Nc19 97.3 8 0.585 0.628 0.073 5 0.684 0.768 0.158 5 0.762 0.698 −0.092 5 0.529 0.686 0.228 4 0.562 0.575 0.022
Nc20 97.3 9 0.269 0.330 0.305 4 0.600 0.544 −0.021 6 0.619 0.664 0.068 1 0.000 0.000 NA 3 0.125 0.235 0.469
Nc22 100 6 0.347 0.522 0.305 2 0.150 0.157 −0.063 5 0.727 0.778 0.065 2 0.235 0.507 0.536 3 0.235 0.605 0.611

Note: % amp = percentage of successful amplification; A = number of alleles; FIS = intrapopulation fixation index; He = expected heterozygosity; Ho = observed heterozygosity; NA = not available.

a

Information on geographic locations and vouchers is provided in Appendix 1.

b

FIS values significantly different from zero after Bonferroni correction (P < 0.0006) are indicated with an asterisk.

CONCLUSIONS

Three multiplexes including 17 new and four published microsatellite markers were developed and validated in natural populations. These loci exhibit substantial polymorphism within and between populations. They should provide sufficient power to study population structure and mating system, and to infer demographic history at different spatial scales.

Appendix 1.

Voucher and location information for Noccaea caerulescens populations used in the development and testing of microsatellites.

Population Type of population Collection date Locality Geographic coordinates Sample names and storage locationa Voucher no. Use
Angleur Metallicolous 2009 Angleur 50°36′44.61″N, 5°36′38.74″E B02.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Anjeau Nonmetallicolous October 2007 Saint-Laurent-le-Minier 43°55′3.33″N, 3°37′52.52″E AN_Z_X_2007c Biological validation of primer pairs (ISEM)
Auxelles-Haut Nonmetallicolous 2009 Auxelles-Haut 47°44′21.52″N, 06°46′35.84″E F03.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Auxy Nonmetallicolous 2009 Auxy 46°57′44.13″N, 04°23′47.05″E F05.01b,d 503854 Biological validation of primer pairs (Evo-Eco-Paleo)
Avinières Metallicolous March 2013 Saint-Laurent-le-Minier 43°55′55.67″N, 3°39′46.19″E 12_AV_ID_Xc Natural populations screening
Baraquette Nonmetallicolous October 2007 Saint-Laurent-le-Minier 43°55′6.73″N, 3°36′54.82″E BQ_Z_X_2007c Library construction
Breinigerberg Metallicolous 2009 Breining 50°44′12.73″N, 06°14′30.92″E G01.01b,d 501266, 501267 Biological validation of primer pairs (Evo-Eco-Paleo)
Col du Lautaret Nonmetallicolous 2007 Lautaret 45°02′07″N, 06°24′20″E F01.01b,d 501429 Biological validation of primer pairs (Evo-Eco-Paleo)
Coulet Nonmetallicolous September 2013 Saint-Maurice-Navacelles 43°49′44.59″N, 3°33′41.64″E 12_CO_ID_Xc Natural populations screening
Coulet Nonmetallicolous October 2007 Saint-Maurice-Navacelles 43°49′44.59″N, 3°33′41.64″E CO_Z_X_2007c Biological validation of primer pairs (ISEM)
Fellering Serpentine 2009 Bergenbach 47°54′22.90″N, 06°57′25.50″E F04.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Goebelsmühle Nonmetallicolous 2009 Goebelsmühle 49°55′22.07″N, 06°3′44.08″E L02.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Husavik Nonmetallicolous 2006 Husavik 66°01′38.89″N, 17°17′21.71″W I01.01b,d 911812 Biological validation of primer pairs (Evo-Eco-Paleo)
Lichtenau Metallicolous 2006 Blankenrode 51°32′0.34″N, 08°54′17.02″E G05.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Lintich Metallicolous 2010 Bakomi 48°26′05.48″N, 18°55′09.43″E SK01.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Mostviertiel Nonmetallicolous 2006 Tormäuer 47°51′08.70″N, 15°17′13.20″E A01.01b,d 406733 Biological validation of primer pairs (Evo-Eco-Paleo)
Moyen Age Metallicolous October 2007 Saint-Laurent-le-Minier 43°55′52.16″N, 3°38′26.09″E MG_Z_X_2007c Biological validation of primer pairs (ISEM)
Oslo Nonmetallicolous 2009 Hovedoya 59°53′39″N, 10°43′44″E N01.01b,d 501275–501278 Biological validation of primer pairs (Evo-Eco-Paleo)
Papeterie Metallicolous 2006 Ganges 43°56′10.98″N, 03°40′19.88″E F16.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Prayon Metallicolous 2009 Prayon 50°35′3.31″N, 5°40′23.69″E B01.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Ramponenche Metallicolous 2010 Florac 44°20′18.25″N, 03°40′05.45″E F02.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Saint Baudille Nonmetallicolous October 2007 Montpeyroux 43°44′40.73″N, 3°29′9.96″E BD_Z_X_2007c Biological validation of primer pairs (ISEM)
Saint Bresson Metallicolous October 2007 Pommiers 43°56′35.89″N, 3°37′57.02″E SB_Z_X_2007c Biological validation of primer pairs (ISEM)
Saint Bresson Metallicolous September 2013 Pommiers 43°56′35.89″N, 3°37′57.02″E 12_SB_ID_Xc Natural populations screening
Saint Hippolyte Metallicolous April 2014 Saint-Hippolyte-du-Fort 43°58′17.07″N, 3°49′59.98″E Zi_Qj_Hi_2014_Xc Natural populations screening
Saint Jost Metallicolous 2009 Virneburg 50°21′08.95″N, 07°06′33.65″E G02.01b,d 501261, 501262 Biological validation of primer pairs (Evo-Eco-Paleo)
Silberberg Metallicolous 2009 Silberberg 52°12′38.72″N, 07°56′46.13″E G03.01b,d 504547 Biological validation of primer pairs (Evo-Eco-Paleo)
Somerset Metallicolous 2010 Priddy 51°15′39.06″N, 02°39′02.12″W UK1.06b,d 501343 Biological validation of primer pairs (Evo-Eco-Paleo)
Son Nonmetallicolous 2000 Esterri d’Aneu 42°35′51.50″N, 01°04′23.82″E SP01.02b Biological validation of primer pairs (Evo-Eco-Paleo)
Špania Dolina Nonmetallicolous 2010 Bakomi 48°48′29.87″N, 19°08′14.65″E SK02.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Stauffenbergallee Nonmetallicolous 2009 Dresden 51°06′04.48″N, 13°47′17.61″E G04.01b,d 280040 Biological validation of primer pairs (Evo-Eco-Paleo)
Štiavnické Nonmetallicolous 2010 Bakomi 48°26′0.48″N, 18°51′29.86″E SK03.01b Biological validation of primer pairs (Evo-Eco-Paleo)
Uppsala Nonmetallicolous 2010 Uppsala 59°50′40.68″N, 17°44′54.18″E S01.01b,d 501430 Biological validation of primer pairs (Evo-Eco-Paleo)
a

Letters in sample names are defined as: X = number of the plant on which a leaf was collected; Zi = number of the area in the population; Qj = number of the quadrat in the area; Z = plants on which seeds were collected. Several specimens were collected in each population.

b

Vouchers of leaves were deposited at Laboratoire Évolution Écologie et Paléontologie (Evo-Eco-Paleo), Villeneuve d’Ascq, France.

c

Vouchers of leaves were deposited at Institut des Sciences de l’Évolution (ISEM), Montpellier, France.

d

Herbarium specimens of the corresponding population were collected and deposited by M. Koch at the Centre for Organismal Studies (COS), Biodiversity and Plant Systematics, Universität Heidelberg, Heidelberg, Germany. They are available from the BrassiBase database (Kiefer et al., 2014).

LITERATURE CITED

  1. Assunção A. G. L., Schat H., Aarts M. G. M. 2003. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytologist 159: 351–360. [DOI] [PubMed] [Google Scholar]
  2. Basic N., Besnard G. 2006. Gene polymorphisms for elucidating the genetic structure of the heavy-metal hyperaccumulating trait in Thlaspi caerulescens and their cross-genera amplification in Brassicaceae. Journal of Plant Research 119: 479–487. [DOI] [PubMed] [Google Scholar]
  3. Belkhir K., Borsa P., Chikhi L., Raufaste N., Catch F. 2004. GENETIX 4.0. 5.2, Software under WindowsTM for the genetics of the populations. University of Montpellier, Montpellier, France.
  4. Besnard G., Basic N., Christin P.-A., Savova-Bianchi D., Galland N. 2009. Thlaspi caerulescens (Brassicaceae) population genetics in western Switzerland: Is the genetic structure affected by natural variation of soil heavy metal concentrations? New Phytologist 181: 974–984. [DOI] [PubMed] [Google Scholar]
  5. Chapuis M.-P., Estoup A. 2007. Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24: 621–631. [DOI] [PubMed] [Google Scholar]
  6. Doyle J. J., Doyle J. L. 1990. DNA extraction from Arabidopsis. Focus (San Francisco, Calif.) 12: 13–15. [Google Scholar]
  7. Dubois S., Cheptou P.-O., Petit C., Meerts P., Poncelet M., Vekemans X., Lefèbvre C., Escarré J. 2003. Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens. New Phytologist 157: 633–641. [DOI] [PubMed] [Google Scholar]
  8. Godé C., Decombeix I., Kostecka A., Wasowicz P., Pauwels M., Courseaux A., Saumitou-Laprade P. 2012. Nuclear microsatellite loci for Arabidopsis halleri (Brassicaceae), a model species to study plant adaptation to heavy metals. American Journal of Botany 99: e49–e52. [DOI] [PubMed] [Google Scholar]
  9. Goudet J. 1995. FSTAT: A computer program to calculate F statistics, version 1.2. Journal of Heredity 86: 485–486. [Google Scholar]
  10. Jiménez-Ambriz G., Petit C., Bourrié I., Dubois S., Olivieri I., Ronce O. 2007. Life history variation in the heavy metal tolerant plant Thlaspi caerulescens growing in a network of contaminated and noncontaminated sites in southern France: Role of gene flow, selection and phenotypic plasticity. New Phytologist 173: 199–215. [DOI] [PubMed] [Google Scholar]
  11. Kiefer M., Schmickl R., German D. A., Mandáková T., Lysak M. A., Al-Shehbaz I. A., Franzke A., et al. 2014. BrassiBase: Introduction to a novel knowledge database on Brassicaceae evolution. Plant and Cell Physiology 55: e3–e3. [DOI] [PubMed] [Google Scholar]
  12. Koch M. A., German D. A. 2013. Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers in Plant Science 4: 267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Malausa T., Gilles A., Meglécz E., Blanquart H., Duthoy S., Costedoat C., Dubut V., et al. 2011. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources 11: 638–644. [DOI] [PubMed] [Google Scholar]
  14. Meglécz E., Costedoat C., Dubut V., Gilles A., Malausa T., Pech N., Martin J.-F. 2010. QDD: A user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics (Oxford, England) 26: 403–404. [DOI] [PubMed] [Google Scholar]
  15. Rousset F. 2008. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Molecular Ecology Resources 8: 103–106. [DOI] [PubMed] [Google Scholar]
  16. Schranz M. E., Lysak M. A., Mitchell-Olds T. 2006. The ABC’s of comparative genomics in the Brassicaceae: Building blocks of crucifer genomes. Trends in Plant Science 11: 535–542. [DOI] [PubMed] [Google Scholar]

Articles from Applications in Plant Sciences are provided here courtesy of Wiley

RESOURCES