Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 Dec 17;3(6):e01483-15. doi: 10.1128/genomeA.01483-15

Permanent Draft Genome Sequence of Frankia sp. Strain ACN1ag, a Nitrogen-Fixing Actinobacterium Isolated from the Root Nodules of Alnus glutinosa

Erik Swanson 1, Rediet Oshone 1, Stephen Simpson 1, Krystalynne Morris 1, Feseha Abebe-Akele 1, W Kelley Thomas 1, Louis S Tisa 1,
PMCID: PMC4683237  PMID: 26679592

Abstract

Frankia strain ACN1ag is a member of Frankia lineage Ia, which are able to re-infect plants of the Betulaceae and Myricaceae families. Here, we report a 7.5-Mbp draft genome sequence with a G+C content of 72.35% and 5,687 candidate protein-encoding genes.

GENOME ANNOUNCEMENT

Among the Actinobacteria, the genus Frankia is well known for its facultative lifestyle as a plant symbiont of dicotyledonous plants, termed actinorhizal plants, and as a free-living soil dweller (13). Actinorhizal plants are ecologically important pioneer community plants that are found worldwide in a broad range of ecological and environmental conditions (4). The symbiosis allows actinorhizal plants to colonize harsh environmental terrains. The genus Frankia has not yet been described to the species level, but it has become an area of greater interest. Four major Frankia lineages have been identified (58), and genomes for representatives from each cluster have been sequenced (921).

Cluster I contains two subclusters: one subcluster (Cluster Ia) represents Frankia strains with the ability to infect a wider range of host plants, including member of the Betulaceae and Myricaceae families, and the other subcluster (Cluster Ib) contains strains limited to Casuarina and Allocasuarina host plants. As another member of Cluster Ia, Frankia sp. strain ACN1ag was chosen for sequencing to provide more information on this lineage and its interaction with actinorhizal plants. Frankia sp. strain ACN1ag is a re-isolate from root nodules of Alnus glutinosa inoculated from an isolate of Alnus viridis crispa collected from Atikokan, Ontario, Canada (22, 23).

The draft genome of Frankia sp. strain ACN1ag was generated at the Hubbard Genome Center (University of New Hampshire, Durham, NH, USA) using Illumina technology (24) techniques. A standard Illumina shotgun library was constructed and sequenced using the Illumina HiSeq2000 platform, which generated 14,474,194 reads (260-bp insert size) totaling 2,127.7 Mbp. The Illumina sequence data were assembled using CLC Genomics Workbench version 8.0.1 and AllPaths-LG version r41043 (25). The final draft assembly contained 108 contigs with an N50 of 157.4 kb. The total size of the genome is 7.5 Mbp, and the final assembly is based on 2,127.17 Mb of Illumina draft data and provided an average 220× coverage of the genome.

The high-quality draft genome of Frankia sp. strain ACN1ag was resolved to 108 contigs consisting of 7,505,639 bp with a G+C content of 72.35%. The assembled Frankia sp. strain ACN1ag genome was annotated via the Integrated Microbial Genomes (IMG) platform developed by the Joint Genome Institute, Walnut Creek, CA, USA (26, 27), and resulted in 5,687 candidate protein-encoding genes, 45 tRNA genes, and 2 rRNA regions.

Nucleotide sequence accession numbers.

This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number LJPA00000000. The version described in this paper is the first version, LJPA01000000.

ACKNOWLEDGMENTS

Partial funding was provided by the New Hampshire Agricultural Experiment Station. This is Scientific Contribution Number 2638. This work was supported by the USDA National Institute of Food and Agriculture Hatch 022821 (L.S.T.), Agriculture and Food Research Initiative Grant 2015-67014-22849 from the USDA National Institute of Food and Agriculture (L.S.T.), and the College of Life Science and Agriculture at the University of New Hampshire–Durham. Sequencing was performed on an Illumina HiSeq2500 purchased with NSF MRI Grant DBI-1229361to W.K.T.

Footnotes

Citation Swanson E, Oshone R, Simpson S, Morris K, Abebe-Akele F, Thomas WK, Tisa LS. 2015. Permanent draft genome sequence of Frankia sp. strain ACN1ag, a nitrogen-fixing actinobacterium isolated from the root nodules of Alnus glutinosa. Genome Announc 3(6):e01483-15. doi:10.1128/genomeA.01483-15.

REFERENCES

  • 1.Schwencke J, Carú M. 2001. Advances in actinorhizal symbiosis: host plant-Frankia interactions, biology, and applications in arid land reclamation. A review. Arid Land Res Manag 15:285–327. doi: 10.1080/153249801753127615. [DOI] [Google Scholar]
  • 2.Chaia EE, Wall LG, Huss-Danell K. 2010. Life in soil by the actinorhizal root nodule endophyte Frankia. A review. Symbiosis 51:201–226. doi: 10.1007/s13199-010-0086-y. [DOI] [Google Scholar]
  • 3.Normand P, Benson DR, Berry AM, Tisa LS. 2014. Family Frankiaceae, p 339–356. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (ed), The prokaryote—Actinobacteria, 4th ed. Springer-Verlag, Berlin, Germany. [Google Scholar]
  • 4.Benson DR, Dawson JO. 2007. Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330. doi: 10.1111/j.1399-3054.2007.00934.x. [DOI] [Google Scholar]
  • 5.Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK. 1996. Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9. doi: 10.1099/00207713-46-1-1. [DOI] [PubMed] [Google Scholar]
  • 6.Cournoyer B, Lavire C. 1999. Analysis of Frankia evolution radiation using glnII sequences. FEMS Microbiol Lett 117:29–34. [DOI] [PubMed] [Google Scholar]
  • 7.Nouioui I, Ghodhbane-Gtari F, Beauchemin NJ, Tisa LS, Gtari M. 2011. Phylogeny of members of the Frankia genus based on gyrB, nifH and glnII sequences. Antonie Van Leeuwenhoek 100:579–587. doi: 10.1007/s10482-011-9613-y. [DOI] [PubMed] [Google Scholar]
  • 8.Ghodhbane-Gtari F, Nouioui I, Chair M, Boudabous A, Gtari M. 2010. 16S-23S rRNA intergenic spacer region variability in the genus Frankia. Microb Ecol 60:487–495. doi: 10.1007/s00248-010-9641-6. [DOI] [PubMed] [Google Scholar]
  • 9.Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR. 2007. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res 17:7–15. doi: 10.1101/gr.5798407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Normand P, Queiroux C, Tisa LS, Benson DR, Rouy Z, Cruveiller S, Médigue C. 2007. Exploring the genomes of Frankia. Physiol Plant 130:331–343. doi: 10.1111/j.1399-3054.2007.00918.x. [DOI] [Google Scholar]
  • 11.Persson T, Benson DR, Normand P, Vanden Heuvel B, Pujic P, Chertkov O, Teshima H, Bruce DC, Detter C, Tapia R, Han S, Han J, Woyke T, Pitluck S, Pennacchio L, Nolan M, Ivanova N, Pati A, Land ML, Pawlowski K, Berry AM. 2011. Genome sequence of “Candidatus Frankia datiscae” Dg1, the uncultured microsymbiont from nitrogen-fixing root nodules of the dicot Datisca glomerata. J Bacteriol 193:7017–7018. doi: 10.1128/JB.06208-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ghodhbane-Gtari F, Beauchemin N, Bruce D, Chain P, Chen A, Walston Davenport K, Deshpande S, Detter C, Furnholm T, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Ivanova N, Kyrpides N, Land ML, Markowitz V, Mavrommatis K, Nolan M, Nouioui I, Pagani I, Pati A, Pitluck S, Santos CL, Sen A, Sur S, Szeto E, Tavares F, Teshima H, Thakur S, Wall L, Woyke T, Tisa LS. 2013. Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod) ineffective (Fix) isolate from Coriaria nepalensis. Genome Announc 1(2):e00085-13. doi: 10.1128/genomeA.00085-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Sen A, Beauchemin N, Bruce D, Chain P, Chen A, Walston Davenport K, Deshpande S, Detter C, Furnholm T, Ghodbhane-Gtari F, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Ivanova N, Kyrpides N, Land ML, Markowitz V, Mavrommatis K, Nolan M, Nouioui I, Pagani I, Pati A, Pitluck S, Santos CL, Sur S, Szeto E, Tavares F, Teshima H, Thakur S, Wall L, Wishart J, Woyke T, Tisa LS. 2013. Draft genome sequence of Frankia sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of Alnus nitida. Genome Announc 1(2):e00103-13. doi: 10.1128/genomeA.00103-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Nouioui I, Beauchemin N, Cantor MN, Chen A, Detter JC, Furnholm T, Ghodhbane-Gtari F, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Hua SX, Ivanova N, Kyrpides N, Markowitz V, Mavrommatis K, Mikhailova N, Nordberg HP, Ovchinnikova G, Pagani I, Pati A, Sen A, Sur S, Szeto E, Thakur S, Wall L, Wei C-L, Woyke T, Tisa LS. 2013. Draft genome sequence of Frankia sp. strain BMG5.12, a nitrogen-fixing actinobacterium isolated from Tunisian soils. Genome Announc 1(4):e00468-13. doi: 10.1128/genomeA.00468-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Wall LG, Beauchemin N, Cantor MN, Chaia E, Chen A, Detter JC, Furnholm T, Ghodhbane-Gtari F, Goodwin L, Gtari M, Han C, Han J, Huntemann M, Hua SX, Ivanova N, Kyrpides N, Markowitz V, Mavrommatis K, Mikhailova N, Nordberg HP, Nouioui I, Ovchinnikova G, Pagani I, Pati A, Sen A, Sur S, Szeto E, Thakur S, Wei C-L, Woyke T, Tisa LS. 2013. Draft genome sequence of Frankia sp. strain BCU110501, a nitrogen-fixing actinobacterium isolated from nodules of Discaria trinevis. Genome Announc 1(4):e00503-13. doi: 10.1128/genomeA.00503-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Mansour SR, Oshone R, Hurst IV SG, Morris K, Thomas WK, Tisa LS. 2014. Draft genome sequence of Frankia sp. strain cci6, a Salt-tolerant nitrogen-fixing actinobacterium isolated from the root nodule of Casuarina cunninghamiana. Genome Announc 2(1):e01205-13. doi: 10.1128/genomeA.01205-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Hurst IV SG, Oshone R, Ghodhbane-Gtari F, Morris K, Abebe-Akele F, Thomas WK, Ktari A, Salem K, Mansour S, Gtari M, Tisa LS. 2014. Draft genome sequence of Frankia sp. strain Thr, a nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina cunninghamiana grown in Egypt. Genome Announc 2(3):e00493-14. doi: 10.1128/genomeA.00493-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Ghodhbane-Gtari F, Hurst IV SG, Oshone R, Morris K, Abebe-Akele F, Thomas WK, Ktari A, Salem K, Gtari M, Tisa LS. 2014. Draft genome sequence of Frankia sp. strain BMG5.23, a salt-tolerant nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina glauca grown in Tunisia. Genome Announc 2(3):e00520-14. doi: 10.1128/genomeA.00520-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Tisa LS, Beauchemin N, Gtari M, Sen A, Wall LG. 2013. What stories can the Frankia genomes start to tell us? J Biosci 38:719–726. doi: 10.1007/s12038-013-9364-1. [DOI] [PubMed] [Google Scholar]
  • 20.Gtari M, Ghodhbane-Gtari F, Nouioui I, Ktari A, Hezbri K, Mimouni W, Sbissi I, Ayari A, Yamanaka T, Normand P, Tisa LS, Boudabous A. 2015. Cultivating the uncultured: growing the recalcitrant cluster-2 Frankia strains. Sci Rep 5:13112. doi: 10.1038/srep13112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Tisa LS, Beauchemin N, Cantor MN, Furnholm T, Ghodhbane-Gtari F, Goodwin L, Copeland A, Gtari M, Huntemann M, Ivanova N, Kyrpides N, Markowitz V, Mavrommatis K, Mikhailova N, Nouioui I, Oshone R, Ovchinnikova G, Pagani I, Palaniappan K, Pati A. 2015. Draft genome sequence of Frankia sp. strain DC12, an atypical, noninfective, ineffective isolate from Datisca cannabina. Genome Announc 3(4):e00889-15. doi: 10.1128/genomeA.00889-15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Baker D, Torrey JG, Kidd GH. 1979. Isolation by sucrose-density fractionation and cultivation in vitro of actinomycetes from nitrogen-fixing root nodules. Nature 281:76–78. doi: 10.1038/281076a0. [DOI] [Google Scholar]
  • 23.Lalonde M, Calvert HE, Pine S. 1981. Isolation and use of Frankia strains in actinorhizae formation, p 296–299. In Gibson AH, Newton WE (ed), Current perspectives in nitrogen fixation. Australian Academy of Science, Canberra, Australia. [Google Scholar]
  • 24.Bennett S. 2004. Solexa Ltd. Pharmacogenomics 5:433–438. doi: 10.1517/14622416.5.4.433. [DOI] [PubMed] [Google Scholar]
  • 25.Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM, Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB. 2011. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci USA 108:1513–1518. doi: 10.1073/pnas.1017351108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A, Zhao XL, Dubchak I, Hugenholtz P, Anderson I, Lykidis A, Mavromatis K, Ivanova N, Kyrpides NC. 2006. The integrated microbial genomes (IMG) system. Nucleic Acids Res 34:D344–D348. doi: 10.1093/nar/gkj024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Markowitz VM, Mavromatis K, Ivanova NN, Chen IA, Chu K, Kyrpides NC. 2009. IMG ER: a system for microbial genome annotation expert review and curation. Bioinformatics 25:2271–2278. doi: 10.1093/bioinformatics/btp393. [DOI] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES