Abstract
We have isolated two cDNA clones, NaPi-2 and NaPi-3, by screening rat kidney cortex and human kidney cortex cDNA libraries, respectively, for expression of sodium-dependent phosphate transport in Xenopus laevis oocytes. Substrate specificity and a detailed kinetic analysis (Na, Pi, H+ concentrations) suggested that expressed uptake activities relate to proximal tubular brush border membrane Na/Pi cotransport. NaPi-2 cDNA contains 2464 bp encoding a protein of 637 aa; NaPi-3 cDNA contains 2573 bp encoding a protein of 639 aa. NaPi-2- and NaPi-3-deduced protein sequences show high homology to each other but are different from the protein sequence deduced from the previously cloned NaPi-1 cDNA (from rabbit proximal tubules). Hydropathy profile predictions suggest at least eight membrane-spanning regions in NaPi-2/3-related proteins. In vitro translation results in proteins of the expected size and suggests glycosylation. Northern blot analysis shows corresponding mRNA species (approximately 2.7 kb) in kidney cortex of various species but no hybridization with RNAs isolated from a variety of other tissues (including intestinal segments); a hybridization signal (approximately 4.8 kb) was observed only in the lung (human). We conclude that we have structurally identified two closely related proteins most likely involved in human and rat renal brush border Na/Pi cotransport.
Full text
PDF![5979](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb9/46850/2d04402e8025/pnas01470-0110.png)
![5980](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb9/46850/49e1f6d913b9/pnas01470-0111.png)
![5981](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb9/46850/887d8d3bd4d9/pnas01470-0112.png)
![5982](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb9/46850/ebfedebd2f78/pnas01470-0113.png)
![5983](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1cb9/46850/9affae492099/pnas01470-0114.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amstutz M., Mohrmann M., Gmaj P., Murer H. Effect of pH on phosphate transport in rat renal brush border membrane vesicles. Am J Physiol. 1985 May;248(5 Pt 2):F705–F710. doi: 10.1152/ajprenal.1985.248.5.F705. [DOI] [PubMed] [Google Scholar]
- Berner W., Kinne R., Murer H. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem J. 1976 Dec 15;160(3):467–474. doi: 10.1042/bj1600467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertran J., Magagnin S., Werner A., Markovich D., Biber J., Testar X., Zorzano A., Kühn L. C., Palacin M., Murer H. Stimulation of system y(+)-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5606–5610. doi: 10.1073/pnas.89.12.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertran J., Werner A., Moore M. L., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression cloning of a cDNA from rabbit kidney cortex that induces a single transport system for cystine and dibasic and neutral amino acids. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5601–5605. doi: 10.1073/pnas.89.12.5601. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bertran J., Werner A., Stange G., Markovich D., Biber J., Testar X., Zorzano A., Palacin M., Murer H. Expression of Na(+)-independent amino acid transport in Xenopus laevis oocytes by injection of rabbit kidney cortex mRNA. Biochem J. 1992 Feb 1;281(Pt 3):717–723. doi: 10.1042/bj2810717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bindels R. J., van den Broek L. A., van Os C. H. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes. Biochim Biophys Acta. 1987 Feb 12;897(1):83–92. doi: 10.1016/0005-2736(87)90317-8. [DOI] [PubMed] [Google Scholar]
- Clerici C., Soler P., Saumon G. Sodium-dependent phosphate and alanine transports but sodium-independent hexose transport in type II alveolar epithelial cells in primary culture. Biochim Biophys Acta. 1991 Mar 18;1063(1):27–35. doi: 10.1016/0005-2736(91)90349-d. [DOI] [PubMed] [Google Scholar]
- Cramer W. A., Engelman D. M., Von Heijne G., Rees D. C. Forces involved in the assembly and stabilization of membrane proteins. FASEB J. 1992 Dec;6(15):3397–3402. doi: 10.1096/fasebj.6.15.1464373. [DOI] [PubMed] [Google Scholar]
- Danisi G., Murer H., Straub R. W. Effect of pH on phosphate transport into intestinal brush-border membrane vesicles. Am J Physiol. 1984 Feb;246(2 Pt 1):G180–G186. doi: 10.1152/ajpgi.1984.246.2.G180. [DOI] [PubMed] [Google Scholar]
- Deguchi Y., Yamato I., Anraku Y. Nucleotide sequence of gltS, the Na+/glutamate symport carrier gene of Escherichia coli B. J Biol Chem. 1990 Dec 15;265(35):21704–21708. [PubMed] [Google Scholar]
- Ferreira G. C., Pratt R. D., Pedersen P. L. Energy-linked anion transport. Cloning, sequencing, and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J Biol Chem. 1989 Sep 15;264(26):15628–15633. [PubMed] [Google Scholar]
- Gmaj P., Murer H. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol Rev. 1986 Jan;66(1):36–70. doi: 10.1152/physrev.1986.66.1.36. [DOI] [PubMed] [Google Scholar]
- Guastella J., Nelson N., Nelson H., Czyzyk L., Keynan S., Miedel M. C., Davidson N., Lester H. A., Kanner B. I. Cloning and expression of a rat brain GABA transporter. Science. 1990 Sep 14;249(4974):1303–1306. doi: 10.1126/science.1975955. [DOI] [PubMed] [Google Scholar]
- Hartmann E., Rapoport T. A., Lodish H. F. Predicting the orientation of eukaryotic membrane-spanning proteins. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5786–5790. doi: 10.1073/pnas.86.15.5786. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein P., Kanehisa M., DeLisi C. The detection and classification of membrane-spanning proteins. Biochim Biophys Acta. 1985 May 28;815(3):468–476. doi: 10.1016/0005-2736(85)90375-x. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Magagnin S., Bertran J., Werner A., Markovich D., Biber J., Palacín M., Murer H. Poly(A)+ RNA from rabbit intestinal mucosa induces b0,+ and y+ amino acid transport activities in Xenopus laevis oocytes. J Biol Chem. 1992 Aug 5;267(22):15384–15390. [PubMed] [Google Scholar]
- Markovich D., Stange G., Bertran J., Palacin M., Werner A., Biber J., Murer H. Two mRNA transcripts (rBAT-1 and rBAT-2) are involved in system b0,(+)-related amino acid transport. J Biol Chem. 1993 Jan 15;268(2):1362–1367. [PubMed] [Google Scholar]
- Murakami H., Blobel G., Pain D. Isolation and characterization of the gene for a yeast mitochondrial import receptor. Nature. 1990 Oct 4;347(6292):488–491. doi: 10.1038/347488a0. [DOI] [PubMed] [Google Scholar]
- Murer H. Homer Smith Award. Cellular mechanisms in proximal tubular Pi reabsorption: some answers and more questions. J Am Soc Nephrol. 1992 Jun;2(12):1649–1665. doi: 10.1681/ASN.V2121649. [DOI] [PubMed] [Google Scholar]
- Murer H., Werner A., Reshkin S., Wuarin F., Biber J. Cellular mechanisms in proximal tubular reabsorption of inorganic phosphate. Am J Physiol. 1991 May;260(5 Pt 1):C885–C899. doi: 10.1152/ajpcell.1991.260.5.C885. [DOI] [PubMed] [Google Scholar]
- Pajor A. M., Hirayama B. A., Wright E. M. Molecular evidence for two renal Na+/glucose cotransporters. Biochim Biophys Acta. 1992 Apr 29;1106(1):216–220. doi: 10.1016/0005-2736(92)90241-d. [DOI] [PubMed] [Google Scholar]
- Sacktor B., Cheng L. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. Effect of an intravesicular greater than extravesicular proton gradient. J Biol Chem. 1981 Aug 10;256(15):8080–8084. [PubMed] [Google Scholar]
- Short J. M., Fernandez J. M., Sorge J. A., Huse W. D. Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Res. 1988 Aug 11;16(15):7583–7600. doi: 10.1093/nar/16.15.7583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner R. J., Moran A. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J Membr Biol. 1982;70(1):37–45. doi: 10.1007/BF01871587. [DOI] [PubMed] [Google Scholar]
- Turner S. T., Dousa T. P. Phosphate transport by brushborder membranes from superficial and juxtamedullary cortex. Kidney Int. 1985 Jun;27(6):879–885. doi: 10.1038/ki.1985.95. [DOI] [PubMed] [Google Scholar]
- Uchida S., Kwon H. M., Yamauchi A., Preston A. S., Marumo F., Handler J. S. Molecular cloning of the cDNA for an MDCK cell Na(+)- and Cl(-)-dependent taurine transporter that is regulated by hypertonicity. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8230–8234. doi: 10.1073/pnas.89.17.8230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wehrle J. P., Pedersen P. L. Characteristics of phosphate uptake by Ehrlich ascites tumor cells. J Biol Chem. 1982 Aug 25;257(16):9698–9703. [PubMed] [Google Scholar]
- Werner A., Biber J., Forgo J., Palacin M., Murer H. Expression of renal transport systems for inorganic phosphate and sulfate in Xenopus laevis oocytes. J Biol Chem. 1990 Jul 25;265(21):12331–12336. [PubMed] [Google Scholar]
- Werner A., Moore M. L., Mantei N., Biber J., Semenza G., Murer H. Cloning and expression of cDNA for a Na/Pi cotransport system of kidney cortex. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9608–9612. doi: 10.1073/pnas.88.21.9608. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wright E. M., Hager K. M., Turk E. Sodium cotransport proteins. Curr Opin Cell Biol. 1992 Aug;4(4):696–702. doi: 10.1016/0955-0674(92)90091-p. [DOI] [PubMed] [Google Scholar]