Abstract
Establishment of cell culture systems for the study of organogenesis during human embryonic development could provide the basis for the study of molecular mechanisms that regulate cellular proliferation and organ morphogenesis. We have developed a cell culture system for undifferentiated mesenchymal cells isolated from the human fetal kidney, which retain the potential for conversion to differentiated epithelia in vitro. Microdissected marginal zone nephroblasts were treated with trypsin and plated on gelatin prior to unlimited serial passage in suspension. An absolute requirement for the indefinite proliferation of these undifferentiated progenitors was nephroblast growth factor (NB-GF), a growth factor activity secreted by a Wilms tumor cell line. The mitogenic effects of NB-GF were not reproduced by previously described growth factors known to be mitogenic for renal cells or by leukemia inhibitory factor. In addition, cultured nephroblasts were shown to retain their ability to differentiate into epithelia when exposed to 10% serum-containing medium in the absence of NB-GF. Immunocytochemical cytoskeletal protein marker analysis showed mutually exclusive staining of vimentin in nephroblasts and cytokeratin in epithelia. These findings suggest that NB-GF may play an important role in the regulation of nephroblast proliferation during renal development and in Wilms tumor biology.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bard J. B., Ross A. S. LIF, the ES-cell inhibition factor, reversibly blocks nephrogenesis in cultured mouse kidney rudiments. Development. 1991 Sep;113(1):193–198. doi: 10.1242/dev.113.1.193. [DOI] [PubMed] [Google Scholar]
- DeChiara T. M., Efstratiadis A., Robertson E. J. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990 May 3;345(6270):78–80. doi: 10.1038/345078a0. [DOI] [PubMed] [Google Scholar]
- Dowdy S. F., Weissman B. E., Stanbridge E. J. Correlation of the inability to sustain growth in defined serum-free medium with the suppression of tumorigenicity in Wilms' nephroblastoma. J Cell Physiol. 1991 May;147(2):248–255. doi: 10.1002/jcp.1041470209. [DOI] [PubMed] [Google Scholar]
- Ekblom P. Determination and differentiation of the nephron. Med Biol. 1981 Jun;59(3):139–160. [PubMed] [Google Scholar]
- Ekblom P. Developmentally regulated conversion of mesenchyme to epithelium. FASEB J. 1989 Aug;3(10):2141–2150. doi: 10.1096/fasebj.3.10.2666230. [DOI] [PubMed] [Google Scholar]
- Ekblom P., Thesleff I., Saxén L., Miettinen A., Timpl R. Transferrin as a fetal growth factor: acquisition of responsiveness related to embryonic induction. Proc Natl Acad Sci U S A. 1983 May;80(9):2651–2655. doi: 10.1073/pnas.80.9.2651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fraizer G. E., Bowen-Pope D. F., Vogel A. M. Production of platelet-derived growth factor by cultured Wilms' tumor cells and fetal kidney cells. J Cell Physiol. 1987 Oct;133(1):169–174. doi: 10.1002/jcp.1041330122. [DOI] [PubMed] [Google Scholar]
- GROBSTEIN C. Morphogenetic interaction between embryonic mouse tissues separated by a membrane filter. Nature. 1953 Nov 7;172(4384):869–870. doi: 10.1038/172869a0. [DOI] [PubMed] [Google Scholar]
- Garvin A. J., Re G. G., Tarnowski B. I., Hazen-Martin D. J., Sens D. A. The G401 cell line, utilized for studies of chromosomal changes in Wilms' tumor, is derived from a rhabdoid tumor of the kidney. Am J Pathol. 1993 Feb;142(2):375–380. [PMC free article] [PubMed] [Google Scholar]
- Hall P. A., Watt F. M. Stem cells: the generation and maintenance of cellular diversity. Development. 1989 Aug;106(4):619–633. doi: 10.1242/dev.106.4.619. [DOI] [PubMed] [Google Scholar]
- Holthöfer H., Miettinen A., Lehto V. P., Lehtonen E., Virtanen I. Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab Invest. 1984 May;50(5):552–559. [PubMed] [Google Scholar]
- Klein G., Langegger M., Goridis C., Ekblom P. Neural cell adhesion molecules during embryonic induction and development of the kidney. Development. 1988 Apr;102(4):749–761. doi: 10.1242/dev.102.4.749. [DOI] [PubMed] [Google Scholar]
- Lee K. F., Li E., Huber L. J., Landis S. C., Sharpe A. H., Chao M. V., Jaenisch R. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell. 1992 May 29;69(5):737–749. doi: 10.1016/0092-8674(92)90286-l. [DOI] [PubMed] [Google Scholar]
- Mugrauer G., Ekblom P. Contrasting expression patterns of three members of the myc family of protooncogenes in the developing and adult mouse kidney. J Cell Biol. 1991 Jan;112(1):13–25. doi: 10.1083/jcb.112.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paik S., Rosen N., Jung W., You J. M., Lippman M. E., Perdue J. F., Yee D. Expression of insulin-like growth factor-II mRNA in fetal kidney and Wilms' tumor. An in situ hybridization study. Lab Invest. 1989 Nov;61(5):522–526. [PubMed] [Google Scholar]
- Rogers S. A., Ryan G., Hammerman M. R. Insulin-like growth factors I and II are produced in the metanephros and are required for growth and development in vitro. J Cell Biol. 1991 Jun;113(6):1447–1453. doi: 10.1083/jcb.113.6.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sariola H., Aufderheide E., Bernhard H., Henke-Fahle S., Dippold W., Ekblom P. Antibodies to cell surface ganglioside GD3 perturb inductive epithelial-mesenchymal interactions. Cell. 1988 Jul 15;54(2):235–245. doi: 10.1016/0092-8674(88)90556-9. [DOI] [PubMed] [Google Scholar]
- Sariola H., Saarma M., Sainio K., Arumäe U., Palgi J., Vaahtokari A., Thesleff I., Karavanov A. Dependence of kidney morphogenesis on the expression of nerve growth factor receptor. Science. 1991 Oct 25;254(5031):571–573. doi: 10.1126/science.1658930. [DOI] [PubMed] [Google Scholar]
- Saxén L., Lehtonen E. Embryonic kidney in organ culture. Differentiation. 1987;36(1):2–11. doi: 10.1111/j.1432-0436.1987.tb00176.x. [DOI] [PubMed] [Google Scholar]
- Schmidt D., Dickersin G. R., Vawter G. F., Mackay B., Harms D. Wilms' tumor: review of ultrastructure and histogenesis. Pathobiol Annu. 1982;12:281–300. [PubMed] [Google Scholar]
- Vainio S., Lehtonen E., Jalkanen M., Bernfield M., Saxén L. Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney. Dev Biol. 1989 Aug;134(2):382–391. doi: 10.1016/0012-1606(89)90110-3. [DOI] [PubMed] [Google Scholar]
- Vestweber D., Kemler R., Ekblom P. Cell-adhesion molecule uvomorulin during kidney development. Dev Biol. 1985 Nov;112(1):213–221. doi: 10.1016/0012-1606(85)90135-6. [DOI] [PubMed] [Google Scholar]
- Weller A., Sorokin L., Illgen E. M., Ekblom P. Development and growth of mouse embryonic kidney in organ culture and modulation of development by soluble growth factor. Dev Biol. 1991 Apr;144(2):248–261. doi: 10.1016/0012-1606(91)90419-4. [DOI] [PubMed] [Google Scholar]
- Wilson P. D. Cell biology of human autosomal dominant polycystic kidney disease. Semin Nephrol. 1991 Nov;11(6):607–616. [PubMed] [Google Scholar]
- Wilson P. D., Dillingham M. A., Breckon R., Anderson R. J. Defined human renal tubular epithelia in culture: growth, characterization, and hormonal response. Am J Physiol. 1985 Mar;248(3 Pt 2):F436–F443. doi: 10.1152/ajprenal.1985.248.3.F436. [DOI] [PubMed] [Google Scholar]