Abstract
Expression of genes encoding the light-harvesting chlorophyll a/b binding proteins of photosystem II (Cab) in etiolated wheat seedlings is controlled by phytochrome and a circadian clock. Even photoconversion of <1% of phytochrome to its active form, which can be achieved by moonlight, induces the expression of the Cab genes, particularly that of the Cab-1 gene, in circadian fashion. Thus, this reaction shows the characteristics of a low and a very low fluence response. A single far-red light pulse given to an etiolated seedling is sufficient for a persistence of the circadian oscillation of the Cab-1 mRNA level for at least 100 h. Subsequent red (R) or long-wavelength far-red (RG9) light irradiations alter the free running rhythm. These observations indicate a change in sensitivity to phytochrome and/or a control by stable phytochrome. The latter hypothesis is supported by the observation that the level of Cab-1 mRNA is increased or decreased by a second R or RG9 light pulse, respectively.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Briggs W. R., Mösinger E., Schäfer E. Phytochrome regulation of greening in barley-effects on chlorophyll accumulation. Plant Physiol. 1988 Feb;86(2):435–440. doi: 10.1104/pp.86.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brusslan J. A., Tobin E. M. Light-independent developmental regulation of cab gene expression in Arabidopsis thaliana seedlings. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7791–7795. doi: 10.1073/pnas.89.16.7791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fejes E., Pay A., Kanevsky I., Szell M., Adam E., Kay S., Nagy F. A 268 bp upstream sequence mediates the circadian clock-regulated transcription of the wheat Cab-1 gene in transgenic plants. Plant Mol Biol. 1990 Dec;15(6):921–932. doi: 10.1007/BF00039431. [DOI] [PubMed] [Google Scholar]
- Furuya M. Molecular properties and biogenesis of phytochrome I and II. Adv Biophys. 1989;25:133–167. doi: 10.1016/0065-227x(89)90006-3. [DOI] [PubMed] [Google Scholar]
- Giuliano G., Hoffman N. E., Ko K., Scolnik P. A., Cashmore A. R. A light-entrained circadian clock controls transcription of several plant genes. EMBO J. 1988 Dec 1;7(12):3635–3642. doi: 10.1002/j.1460-2075.1988.tb03244.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamppa G. K., Morelli G., Chua N. H. Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b-binding polypeptide. Mol Cell Biol. 1985 Jun;5(6):1370–1378. doi: 10.1128/mcb.5.6.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millar A. J., Kay S. A. Circadian Control of cab Gene Transcription and mRNA Accumulation in Arabidopsis. Plant Cell. 1991 May;3(5):541–550. doi: 10.1105/tpc.3.5.541. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mösinger E., Batschauer A., Apel K., Schäfer E., Briggs W. R. Phytochrome regulation of greening in barley : effects on mRNA abundance and on transcriptional activity of isolated nuclei. Plant Physiol. 1988 Mar;86(3):706–710. doi: 10.1104/pp.86.3.706. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagy F., Boutry M., Hsu M. Y., Wong M., Chua N. H. The 5'-proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. EMBO J. 1987 Sep;6(9):2537–2542. doi: 10.1002/j.1460-2075.1987.tb02541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagy F., Kay S. A., Boutry M., Hsu M. Y., Chua N. H. Phytochrome-controlled expression of a wheat Cab gene in transgenic tobacco seedlings. EMBO J. 1986 Jun;5(6):1119–1124. doi: 10.1002/j.1460-2075.1986.tb04335.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagy F., Kay S. A., Chua N. H. Gene regulation by phytochrome. Trends Genet. 1988 Feb;4(2):37–42. doi: 10.1016/0168-9525(88)90064-9. [DOI] [PubMed] [Google Scholar]
- Parks B. M., Quail P. H. Phytochrome-Deficient hy1 and hy2 Long Hypocotyl Mutants of Arabidopsis Are Defective in Phytochrome Chromophore Biosynthesis. Plant Cell. 1991 Nov;3(11):1177–1186. doi: 10.1105/tpc.3.11.1177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piechulla B., Gruissem W. Diurnal mRNA fluctuations of nuclear and plastid genes in developing tomato fruits. EMBO J. 1987 Dec 1;6(12):3593–3599. doi: 10.1002/j.1460-2075.1987.tb02690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schäfer E., Lassig T. U., Schopfer P. Photocontrol of phytochrome destruction in grass seedlings. The influence of wavelength and irradiance. Photochem Photobiol. 1975 Nov;22(5):193–202. doi: 10.1111/j.1751-1097.1975.tb06736.x. [DOI] [PubMed] [Google Scholar]
- Simon E., Satter R. L., Galston A. W. Circadian Rhythmicity in Excised Samanea Pulvini: II. Resetting the Clock by Phytochrome Conversion. Plant Physiol. 1976 Sep;58(3):421–425. doi: 10.1104/pp.58.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tavladoraki P., Kloppstech K., Argyroudi-Akoyunoglou J. Circadian Rhythm in the Expression of the mRNA Coding for the Apoprotein of the Light-Harvesting Complex of Photosystem II : Phytochrome Control and Persistent Far Red Reversibility. Plant Physiol. 1989 Jun;90(2):665–672. doi: 10.1104/pp.90.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner D., Tepperman J. M., Quail P. H. Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell. 1991 Dec;3(12):1275–1288. doi: 10.1105/tpc.3.12.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wehmeyer B., Cashmore A. R., Schäfer E. Photocontrol of the Expression of Genes Encoding Chlorophyll a/b Binding Proteins and Small Subunit of Ribulose-1,5-Bisphosphate Carboxylase in Etiolated Seedlings of Lycopersicon esculentum (L.) and Nicotiana tabacum (L.). Plant Physiol. 1990 Jul;93(3):990–997. doi: 10.1104/pp.93.3.990. [DOI] [PMC free article] [PubMed] [Google Scholar]