Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jul 1;90(13):6335–6339. doi: 10.1073/pnas.90.13.6335

DNA excision-repair defect of xeroderma pigmentosum prevents removal of a class of oxygen free radical-induced base lesions.

M S Satoh 1, C J Jones 1, R D Wood 1, T Lindahl 1
PMCID: PMC46923  PMID: 8327515

Abstract

Plasmid DNA was gamma-irradiated or treated with H2O2 in the presence of Cu2+ to generate oxygen free radical-induced lesions. Open circular DNA molecules were removed by ethidium bromide/CsCl density gradient centrifugation. The closed circular DNA fraction was treated with the Escherichia coli reagent enzymes endonuclease III (Nth protein) and Fpg protein. This treatment converted DNA molecules containing the major base lesions pyrimidine hydrates and 8-hydroxyguanine to a nicked form. Remaining closed circular DNA containing other oxygen radical-induced base lesions was used as a substrate for nucleotide excision-repair in a cell-free system. Extracts from normal human cells, but not extracts from xeroderma pigmentosum cells, catalyzed repair synthesis in this DNA. The repair defect in the latter extracts could be specifically corrected by in vitro complementation. The data suggest that accumulation of endogenous oxidative damage in cellular DNA from xeroderma pigmentosum patients contributes to the increased frequency of internal cancers and the neural degeneration occurring in serious cases of the syndrome.

Full text

PDF
6335

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arlett C. F., Harcourt S. A., Lehmann A. R., Stevens S., Ferguson-Smith M. A., Morley W. N. Studies on a new case of xeroderma pigmentosum (XP3BR) from complementation group G with cellular sensitivity to ionizing radiation. Carcinogenesis. 1980 Sep;1(9):745–751. doi: 10.1093/carcin/1.9.745. [DOI] [PubMed] [Google Scholar]
  2. Arlett C. F., Harcourt S. A. Survey of radiosensitivity in a variety of human cell strains. Cancer Res. 1980 Mar;40(3):926–932. [PubMed] [Google Scholar]
  3. Asahara H., Wistort P. M., Bank J. F., Bakerian R. H., Cunningham R. P. Purification and characterization of Escherichia coli endonuclease III from the cloned nth gene. Biochemistry. 1989 May 16;28(10):4444–4449. doi: 10.1021/bi00436a048. [DOI] [PubMed] [Google Scholar]
  4. Boiteux S., Gajewski E., Laval J., Dizdaroglu M. Substrate specificity of the Escherichia coli Fpg protein (formamidopyrimidine-DNA glycosylase): excision of purine lesions in DNA produced by ionizing radiation or photosensitization. Biochemistry. 1992 Jan 14;31(1):106–110. doi: 10.1021/bi00116a016. [DOI] [PubMed] [Google Scholar]
  5. Boiteux S., O'Connor T. R., Lederer F., Gouyette A., Laval J. Homogeneous Escherichia coli FPG protein. A DNA glycosylase which excises imidazole ring-opened purines and nicks DNA at apurinic/apyrimidinic sites. J Biol Chem. 1990 Mar 5;265(7):3916–3922. [PubMed] [Google Scholar]
  6. Breimer L. H., Lindahl T. DNA glycosylase activities for thymine residues damaged by ring saturation, fragmentation, or ring contraction are functions of endonuclease III in Escherichia coli. J Biol Chem. 1984 May 10;259(9):5543–5548. [PubMed] [Google Scholar]
  7. Carmichael P. L., Shé M. N., Phillips D. H. Detection and characterization by 32P-postlabelling of DNA adducts induced by a Fenton-type oxygen radical-generating system. Carcinogenesis. 1992 Jul;13(7):1127–1135. doi: 10.1093/carcin/13.7.1127. [DOI] [PubMed] [Google Scholar]
  8. Coverley D., Kenny M. K., Lane D. P., Wood R. D. A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res. 1992 Aug 11;20(15):3873–3880. doi: 10.1093/nar/20.15.3873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. De Weerd-Kastelein E. A., Keijzer W., Bootsma D. Genetic heterogeneity of xeroderma pigmentosum demonstrated by somatic cell hybridization. Nat New Biol. 1972 Jul 19;238(81):80–83. doi: 10.1038/newbio238080a0. [DOI] [PubMed] [Google Scholar]
  10. Dizdaroglu M. Formation of an 8-hydroxyguanine moiety in deoxyribonucleic acid on gamma-irradiation in aqueous solution. Biochemistry. 1985 Jul 30;24(16):4476–4481. doi: 10.1021/bi00337a032. [DOI] [PubMed] [Google Scholar]
  11. Dizdaroglu M., Simic M. G. Radiation-induced formation of thymine-thymine crosslinks. Int J Radiat Biol Relat Stud Phys Chem Med. 1984 Sep;46(3):241–246. doi: 10.1080/09553008414551361. [DOI] [PubMed] [Google Scholar]
  12. Fuciarelli A. F., Miller G. G., Raleigh J. A. An immunochemical probe for 8,5'-cycloadenosine-5'-monophosphate and its deoxy analog in irradiated nucleic acids. Radiat Res. 1985 Dec;104(3):272–283. [PubMed] [Google Scholar]
  13. Hoffmann M. E., Meneghini R. Action of hydrogen peroxide on human fibroblast in culture. Photochem Photobiol. 1979 Jul;30(1):151–155. doi: 10.1111/j.1751-1097.1979.tb07128.x. [DOI] [PubMed] [Google Scholar]
  14. James M. R., Lehmann A. R. Role of poly(adenosine diphosphate ribose) in deoxyribonucleic acid repair in human fibroblasts. Biochemistry. 1982 Aug 17;21(17):4007–4013. doi: 10.1021/bi00260a016. [DOI] [PubMed] [Google Scholar]
  15. Jones C. J., Cleaver J. E., Wood R. D. Repair of damaged DNA by extracts from a xeroderma pigmentosum complementation group A revertant and expression of a protein absent in its parental cell line. Nucleic Acids Res. 1992 Mar 11;20(5):991–995. doi: 10.1093/nar/20.5.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kleijer W. J., Lohman P. H., Mulder M. P., Bootsma D. Repair of x-ray damage in DNA of cultivated cells from patients having xeroderma pigmentosum. Mutat Res. 1970 May;9(5):517–523. doi: 10.1016/0027-5107(70)90036-9. [DOI] [PubMed] [Google Scholar]
  17. Kraemer K. H., Lee M. M., Scotto J. Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases. Arch Dermatol. 1987 Feb;123(2):241–250. doi: 10.1001/archderm.123.2.241. [DOI] [PubMed] [Google Scholar]
  18. Ljungman M., Hanawalt P. C. Efficient protection against oxidative DNA damage in chromatin. Mol Carcinog. 1992;5(4):264–269. doi: 10.1002/mc.2940050406. [DOI] [PubMed] [Google Scholar]
  19. Mounkes L. C., Jones R. S., Liang B. C., Gelbart W., Fuller M. T. A Drosophila model for xeroderma pigmentosum and Cockayne's syndrome: haywire encodes the fly homolog of ERCC3, a human excision repair gene. Cell. 1992 Dec 11;71(6):925–937. doi: 10.1016/0092-8674(92)90389-t. [DOI] [PubMed] [Google Scholar]
  20. Mouret J. F., Odin F., Polverelli M., Cadet J. 32P-postlabeling measurement of adenine N-1-oxide in cellular DNA exposed to hydrogen peroxide. Chem Res Toxicol. 1990 Mar-Apr;3(2):102–110. doi: 10.1021/tx00014a004. [DOI] [PubMed] [Google Scholar]
  21. Redpath J. L., Zabilansky E., Morgan T., Ward J. F. Cerenkov light and the production of photoreactivatable damage in X-irradiated E. coli. Int J Radiat Biol Relat Stud Phys Chem Med. 1981 May;39(5):569–575. doi: 10.1080/09553008114550681. [DOI] [PubMed] [Google Scholar]
  22. Regan J. D., Setlow R. B. Two forms of repair in the DNA of human cells damaged by chemical carcinogens and mutagens. Cancer Res. 1974 Dec;34(12):3318–3325. [PubMed] [Google Scholar]
  23. Robbins J. H. A childhood neurodegeneration due to defective DNA repair: a novel concept of disease based on studies xeroderma pigmentosum. J Child Neurol. 1989 Apr;4(2):143–146. doi: 10.1177/088307388900400215. [DOI] [PubMed] [Google Scholar]
  24. Robins P., Jones C. J., Biggerstaff M., Lindahl T., Wood R. D. Complementation of DNA repair in xeroderma pigmentosum group A cell extracts by a protein with affinity for damaged DNA. EMBO J. 1991 Dec;10(12):3913–3921. doi: 10.1002/j.1460-2075.1991.tb04961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Satoh M. S., Lindahl T. Role of poly(ADP-ribose) formation in DNA repair. Nature. 1992 Mar 26;356(6367):356–358. doi: 10.1038/356356a0. [DOI] [PubMed] [Google Scholar]
  26. Satoh M. S., Poirier G. G., Lindahl T. NAD(+)-dependent repair of damaged DNA by human cell extracts. J Biol Chem. 1993 Mar 15;268(8):5480–5487. [PubMed] [Google Scholar]
  27. Setlow R. B., Faulcon F. M., Regan J. D. Defective repair of gamma-ray induced DNA damage in xeroderma pigmentosum cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1976 Feb;29(2):125–136. doi: 10.1080/09553007614550141. [DOI] [PubMed] [Google Scholar]
  28. Tanaka K., Miura N., Satokata I., Miyamoto I., Yoshida M. C., Satoh Y., Kondo S., Yasui A., Okayama H., Okada Y. Analysis of a human DNA excision repair gene involved in group A xeroderma pigmentosum and containing a zinc-finger domain. Nature. 1990 Nov 1;348(6296):73–76. doi: 10.1038/348073a0. [DOI] [PubMed] [Google Scholar]
  29. Tchou J., Kasai H., Shibutani S., Chung M. H., Laval J., Grollman A. P., Nishimura S. 8-oxoguanine (8-hydroxyguanine) DNA glycosylase and its substrate specificity. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4690–4694. doi: 10.1073/pnas.88.11.4690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Wood R. D., Burki H. J., Hughes M., Poley A. Radiation-induced lethality and mutation in a repair-deficient CHO cell line. Int J Radiat Biol Relat Stud Phys Chem Med. 1983 Feb;43(2):207–213. doi: 10.1080/09553008314550241. [DOI] [PubMed] [Google Scholar]
  31. Wood R. D., Robins P., Lindahl T. Complementation of the xeroderma pigmentosum DNA repair defect in cell-free extracts. Cell. 1988 Apr 8;53(1):97–106. doi: 10.1016/0092-8674(88)90491-6. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES