Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jul 15;90(14):6379–6380. doi: 10.1073/pnas.90.14.6379

Transforming sensory experience into structural change.

P R Montague 1
PMCID: PMC46934  PMID: 8393565

Full text

PDF
6379

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkon D. L., Ikeno H., Dworkin J., McPhie D. L., Olds J. L., Lederhendler I., Matzel L., Schreurs B. G., Kuzirian A., Collin C. Contraction of neuronal branching volume: an anatomic correlate of Pavlovian conditioning. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1611–1614. doi: 10.1073/pnas.87.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bailey C. H., Chen M. Long-term memory in Aplysia modulates the total number of varicosities of single identified sensory neurons. Proc Natl Acad Sci U S A. 1988 Apr;85(7):2373–2377. doi: 10.1073/pnas.85.7.2373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bailey C. H., Chen M. Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia. J Neurosci. 1989 May;9(5):1774–1780. doi: 10.1523/JNEUROSCI.09-05-01774.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baylor D. A., Fuortes M. G., O'Bryan P. M. Receptive fields of cones in the retina of the turtle. J Physiol. 1971 Apr;214(2):265–294. doi: 10.1113/jphysiol.1971.sp009432. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Black J. E., Isaacs K. R., Anderson B. J., Alcantara A. A., Greenough W. T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5568–5572. doi: 10.1073/pnas.87.14.5568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carew T. J., Pinsker H. M., Kandel E. R. Long-term habituation of a defensive withdrawal reflex in aplysia. Science. 1972 Jan 28;175(4020):451–454. doi: 10.1126/science.175.4020.451. [DOI] [PubMed] [Google Scholar]
  7. Chang F. L., Greenough W. T. Lateralized effects of monocular training on dendritic branching in adult split-brain rats. Brain Res. 1982 Jan 28;232(2):283–292. doi: 10.1016/0006-8993(82)90274-8. [DOI] [PubMed] [Google Scholar]
  8. Cline H. T., Constantine-Paton M. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron. 1989 Oct;3(4):413–426. doi: 10.1016/0896-6273(89)90201-8. [DOI] [PubMed] [Google Scholar]
  9. Daw N. W. Neurophysiology of color vision. Physiol Rev. 1973 Jul;53(3):571–611. doi: 10.1152/physrev.1973.53.3.571. [DOI] [PubMed] [Google Scholar]
  10. DeVries S. H., Schwartz E. A. Modulation of an electrical synapse between solitary pairs of catfish horizontal cells by dopamine and second messengers. J Physiol. 1989 Jul;414:351–375. doi: 10.1113/jphysiol.1989.sp017692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fuortes M. G., Schwartz E. A., Simon E. J. Colour-dependence of cone responses in the turtle retina. J Physiol. 1973 Oct;234(1):199–216. doi: 10.1113/jphysiol.1973.sp010341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garraghty P. E., Shatz C. J., Sur M. Prenatal disruption of binocular interactions creates novel lamination in the cat's lateral geniculate nucleus. Vis Neurosci. 1988;1(1):93–102. doi: 10.1017/s0952523800001048. [DOI] [PubMed] [Google Scholar]
  13. Greenough W. T., Juraska J. M., Volkmar F. R. Maze training effects on dendritic branching in occipital cortex of adult rats. Behav Neural Biol. 1979 Jul;26(3):287–297. doi: 10.1016/s0163-1047(79)91278-0. [DOI] [PubMed] [Google Scholar]
  14. Hubel D. H., Wiesel T. N., LeVay S. Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 1977 Apr 26;278(961):377–409. doi: 10.1098/rstb.1977.0050. [DOI] [PubMed] [Google Scholar]
  15. Kaneko A. Electrical connexions between horizontal cells in the dogfish retina. J Physiol. 1971 Feb;213(1):95–105. doi: 10.1113/jphysiol.1971.sp009370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kleinschmidt A., Bear M. F., Singer W. Blockade of "NMDA" receptors disrupts experience-dependent plasticity of kitten striate cortex. Science. 1987 Oct 16;238(4825):355–358. doi: 10.1126/science.2443978. [DOI] [PubMed] [Google Scholar]
  17. LeMasson G., Marder E., Abbott L. F. Activity-dependent regulation of conductances in model neurons. Science. 1993 Mar 26;259(5103):1915–1917. doi: 10.1126/science.8456317. [DOI] [PubMed] [Google Scholar]
  18. Mangel S. C., Dowling J. E. Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. Science. 1985 Sep 13;229(4718):1107–1109. doi: 10.1126/science.4035351. [DOI] [PubMed] [Google Scholar]
  19. Marchiafava P. L. Horizontal cells influence membrane potential of bipolar cells in the retina of the turtle. Nature. 1978 Sep 14;275(5676):141–142. doi: 10.1038/275141a0. [DOI] [PubMed] [Google Scholar]
  20. Merzenich M. M., Sameshima K. Cortical plasticity and memory. Curr Opin Neurobiol. 1993 Apr;3(2):187–196. doi: 10.1016/0959-4388(93)90209-h. [DOI] [PubMed] [Google Scholar]
  21. Meyer R. L. Tetrodotoxin blocks the formation of ocular dominance columns in goldfish. Science. 1982 Nov 5;218(4572):589–591. doi: 10.1126/science.7123262. [DOI] [PubMed] [Google Scholar]
  22. Naka K. I., Rushton W. A. The generation and spread of S-potentials in fish (Cyprinidae). J Physiol. 1967 Sep;192(2):437–461. doi: 10.1113/jphysiol.1967.sp008308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naka K. I. The horizontal cells. Vision Res. 1972 Apr;12(4):573–588. doi: 10.1016/0042-6989(72)90153-8. [DOI] [PubMed] [Google Scholar]
  24. Piccolino M., Gerschenfeld H. M. Characteristics and ionic processes involved in feedback spikes of turtle cones. Proc R Soc Lond B Biol Sci. 1980 Jan 17;206(1165):439–463. doi: 10.1098/rspb.1980.0007. [DOI] [PubMed] [Google Scholar]
  25. Pinsker H. M., Hening W. A., Carew T. J., Kandel E. R. Long-term sensitization of a defensive withdrawal reflex in Aplysia. Science. 1973 Dec 7;182(4116):1039–1042. doi: 10.1126/science.182.4116.1039. [DOI] [PubMed] [Google Scholar]
  26. Rauschecker J. P., Singer W. Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity. Nature. 1979 Jul 5;280(5717):58–60. doi: 10.1038/280058a0. [DOI] [PubMed] [Google Scholar]
  27. Raynauld J. P., Laviolette J. R., Wagner H. J. Goldfish retina: a correlate between cone activity and morphology of the horizontal cell in clone pedicules. Science. 1979 Jun 29;204(4400):1436–1438. doi: 10.1126/science.451577. [DOI] [PubMed] [Google Scholar]
  28. Reiter H. O., Stryker M. P. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc Natl Acad Sci U S A. 1988 May;85(10):3623–3627. doi: 10.1073/pnas.85.10.3623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scherer W. J., Udin S. B. N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum. J Neurosci. 1989 Nov;9(11):3837–3843. doi: 10.1523/JNEUROSCI.09-11-03837.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shatz C. J. Impulse activity and the patterning of connections during CNS development. Neuron. 1990 Dec;5(6):745–756. doi: 10.1016/0896-6273(90)90333-b. [DOI] [PubMed] [Google Scholar]
  31. Shatz C. J., Stryker M. P. Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science. 1988 Oct 7;242(4875):87–89. doi: 10.1126/science.3175636. [DOI] [PubMed] [Google Scholar]
  32. Simon D. K., Prusky G. T., O'Leary D. D., Constantine-Paton M. N-methyl-D-aspartate receptor antagonists disrupt the formation of a mammalian neural map. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10593–10597. doi: 10.1073/pnas.89.22.10593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Singer W. The formation of cooperative cell assemblies in the visual cortex. J Exp Biol. 1990 Oct;153:177–197. doi: 10.1242/jeb.153.1.177. [DOI] [PubMed] [Google Scholar]
  34. Stell W. K., Lightfoot D. O. Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. J Comp Neurol. 1975 Feb 15;159(4):473–502. doi: 10.1002/cne.901590404. [DOI] [PubMed] [Google Scholar]
  35. Stryker M. P., Harris W. A. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex. J Neurosci. 1986 Aug;6(8):2117–2133. doi: 10.1523/JNEUROSCI.06-08-02117.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tomita T. Electrophysiological study of the mechanisms subserving color coding in the fish retina. Cold Spring Harb Symp Quant Biol. 1965;30:559–566. doi: 10.1101/sqb.1965.030.01.054. [DOI] [PubMed] [Google Scholar]
  37. Toyoda J., Kujiraoka T. Analyses of bipolar cell responses elicited by polarization of horizontal cells. J Gen Physiol. 1982 Jan;79(1):131–145. doi: 10.1085/jgp.79.1.131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Udin S. B., Fawcett J. W. Formation of topographic maps. Annu Rev Neurosci. 1988;11:289–327. doi: 10.1146/annurev.ne.11.030188.001445. [DOI] [PubMed] [Google Scholar]
  39. Wagner H. J., Behrens U. D., Zaunreiter M., Douglas R. H. The circadian component of spinule dynamics in teleost retinal horizontal cells is dependent on the dopaminergic system. Vis Neurosci. 1992 Sep-Oct;9(3-4):345–351. doi: 10.1017/s0952523800010750. [DOI] [PubMed] [Google Scholar]
  40. Wagner H. J. Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. J Neurocytol. 1980 Oct;9(5):573–590. doi: 10.1007/BF01205026. [DOI] [PubMed] [Google Scholar]
  41. Weiler R., Kohler K., Janssen U. Protein kinase C mediates transient spinule-type neurite outgrowth in the retina during light adaptation. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3603–3607. doi: 10.1073/pnas.88.9.3603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Weiler R., Kohler K., Kirsch M., Wagner H. J. Glutamate and dopamine modulate synaptic plasticity in horizontal cell dendrites of fish retina. Neurosci Lett. 1988 May 3;87(3):205–209. doi: 10.1016/0304-3940(88)90449-1. [DOI] [PubMed] [Google Scholar]
  43. Weiler R., Kohler K., Kolbinger W., Wolburg H., Kurz-Isler G., Wagner H. J. Dopaminergic neuromodulation in the retinas of lower vertebrates. Neurosci Res Suppl. 1988;8:S183–S196. doi: 10.1016/0921-8696(88)90016-3. [DOI] [PubMed] [Google Scholar]
  44. Weiler R., Schultz K. Ionotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells. Proc Natl Acad Sci U S A. 1993 Jul 15;90(14):6533–6537. doi: 10.1073/pnas.90.14.6533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Weiler R., Wagner H. J. Light-dependent change of cone-horizontal cell interactions in carp retina. Brain Res. 1984 Apr 23;298(1):1–9. doi: 10.1016/0006-8993(84)91141-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES