Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Jul 15;90(14):6676–6680. doi: 10.1073/pnas.90.14.6676

Human immunodeficiency virus proteins induce the inhibitory cAMP/protein kinase A pathway in normal lymphocytes.

B Hofmann 1, P Nishanian 1, T Nguyen 1, P Insixiengmay 1, J L Fahey 1
PMCID: PMC46995  PMID: 7688126

Abstract

Proliferation of normal T lymphocytes is impaired by human immunodeficiency virus (HIV) proteins. In this paper, we demonstrate important parts of this mechanism. Initially, HIV-induced impairment of proliferation was shown to be an active process involving induction of protein tyrosine kinases in both CD4 and CD8 T cells. Furthermore, the impairment of cell proliferation was demonstrated to be linked to induction of the inhibitory protein kinase A (PKA) pathway by HIV proteins. This induction of PKA was accompanied by an increase in intracellular cAMP, which is necessary for the activation of PKA. Finally, increases in cAMP/PKA activity were shown to induce biochemical changes that impaired proliferation when cells were stimulated with phytohemagglutinin. This was demonstrated by showing that (i) agents, other than HIV proteins, that increase cAMP/PKA activity (cholera toxoid and 8-bromo-cAMP) also decreased T-lymphocyte proliferation; (ii) exposure of lymphocytes to HIV or cholera toxoid led to decreased membrane activity of the proliferation promoter protein kinase C upon stimulation; and (iii) agents that reduced cAMP generation neutralized the effect of HIV proteins and restored lymphocyte proliferation. These studies show that the HIV-induced augmentation of cAMP/PKA activity may be a key part of the mechanism responsible for all or part of the HIV-induced anergy of T lymphocytes.

Full text

PDF
6676

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bastin B., Payet M. D., Dupuis G. Effects of modulators of adenylyl cyclase on interleukin-2 production, cytosolic Ca2+ elevation, and K+ channel activity in Jurkat T cells. Cell Immunol. 1990 Jul;128(2):385–389. doi: 10.1016/0008-8749(90)90035-p. [DOI] [PubMed] [Google Scholar]
  2. Bourne H. R., Lichtenstein L. M., Melmon K. L., Henney C. S., Weinstein Y., Shearer G. M. Modulation of inflammation and immunity by cyclic AMP. Science. 1974 Apr 5;184(4132):19–28. doi: 10.1126/science.184.4132.19. [DOI] [PubMed] [Google Scholar]
  3. Druker B. J., Mamon H. J., Roberts T. M. Oncogenes, growth factors, and signal transduction. N Engl J Med. 1989 Nov 16;321(20):1383–1391. doi: 10.1056/NEJM198911163212007. [DOI] [PubMed] [Google Scholar]
  4. Harper M. E., Marselle L. M., Gallo R. C., Wong-Staal F. Detection of lymphocytes expressing human T-lymphotropic virus type III in lymph nodes and peripheral blood from infected individuals by in situ hybridization. Proc Natl Acad Sci U S A. 1986 Feb;83(3):772–776. doi: 10.1073/pnas.83.3.772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henderson L. A., Qureshi N. M., Rasheed S., Garry R. Human immunodeficiency virus-induced cytotoxicity for CD8 cells from some normal donors and virus-specific induction of a suppressor factor. Clin Immunol Immunopathol. 1988 Aug;48(2):174–186. doi: 10.1016/0090-1229(88)90081-5. [DOI] [PubMed] [Google Scholar]
  6. Hofmann B., Jakobsen K. D., Odum N., Dickmeiss E., Platz P., Ryder L. P., Pedersen C., Mathiesen L., Bygbjerg I. B., Faber V. HIV-induced immunodeficiency. Relatively preserved phytohemagglutinin as opposed to decreased pokeweed mitogen responses may be due to possibly preserved responses via CD2/phytohemagglutinin pathway. J Immunol. 1989 Mar 15;142(6):1874–1880. [PubMed] [Google Scholar]
  7. Hofmann B., Langhoff E., Lindhardt B. O., Odum N., Hyldig-Nielsen J. J., Ryder L. P., Platz P., Jakobsen B. K., Bendtzen K., Jacobsen N. Investigation of immunosuppressive properties of inactivated human immunodeficiency virus and possible neutralization of this effect by some patient sera. Cell Immunol. 1989 Jul;121(2):336–348. doi: 10.1016/0008-8749(89)90032-4. [DOI] [PubMed] [Google Scholar]
  8. Hofmann B., Lindhardt B. O., Gerstoft J., Petersen C. S., Platz P., Ryder L. P., Odum N., Dickmeiss E., Nielsen P. B., Ullman S. Lymphocyte transformation response to pokeweed mitogen as a predictive marker for development of AIDS and AIDS related symptoms in homosexual men with HIV antibodies. Br Med J (Clin Res Ed) 1987 Aug 1;295(6593):293–296. doi: 10.1136/bmj.295.6593.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hofmann B., Nishanian P., Baldwin R. L., Insixiengmay P., Nel A., Fahey J. L. HIV inhibits the early steps of lymphocyte activation, including initiation of inositol phospholipid metabolism. J Immunol. 1990 Dec 1;145(11):3699–3705. [PubMed] [Google Scholar]
  10. House C., Kemp B. E. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science. 1987 Dec 18;238(4834):1726–1728. doi: 10.1126/science.3686012. [DOI] [PubMed] [Google Scholar]
  11. Jenkins M. K. The role of cell division in the induction of clonal anergy. Immunol Today. 1992 Feb;13(2):69–73. doi: 10.1016/0167-5699(92)90137-V. [DOI] [PubMed] [Google Scholar]
  12. Kammer G. M. The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol Today. 1988 Jul-Aug;9(7-8):222–229. doi: 10.1016/0167-5699(88)91220-0. [DOI] [PubMed] [Google Scholar]
  13. Kemp B. E., Cheng H. C., Walsh D. A. Peptide inhibitors of cAMP-dependent protein kinase. Methods Enzymol. 1988;159:173–183. doi: 10.1016/0076-6879(88)59018-3. [DOI] [PubMed] [Google Scholar]
  14. Kim D. K., Lancki D. W., Hui F. H., Fitch F. W. Protein kinase C-dependent and -independent mechanisms of cloned murine T cell proliferation. The role of protein kinase C translocation and protein kinase C activity. J Immunol. 1989 Jan 15;142(2):616–622. [PubMed] [Google Scholar]
  15. Kim D. K., Lancki D. W., Hui F. H., Fitch F. W. Protein kinase C-dependent and -independent mechanisms of cloned murine T cell proliferation. The role of protein kinase C translocation and protein kinase C activity. J Immunol. 1989 Jan 15;142(2):616–622. [PubMed] [Google Scholar]
  16. Kornfeld H., Cruikshank W. W., Pyle S. W., Berman J. S., Center D. M. Lymphocyte activation by HIV-1 envelope glycoprotein. Nature. 1988 Sep 29;335(6189):445–448. doi: 10.1038/335445a0. [DOI] [PubMed] [Google Scholar]
  17. Ledbetter J. A., June C. H., Martin P. J., Spooner C. E., Hansen J. A., Meier K. E. Valency of CD3 binding and internalization of the CD3 cell-surface complex control T cell responses to second signals: distinction between effects on protein kinase C, cytoplasmic free calcium, and proliferation. J Immunol. 1986 Jun 1;136(11):3945–3952. [PubMed] [Google Scholar]
  18. Lingk D. S., Chan M. A., Gelfand E. W. Increased cyclic adenosine monophosphate levels block progression but not initiation of human T cell proliferation. J Immunol. 1990 Jul 15;145(2):449–455. [PubMed] [Google Scholar]
  19. Maller J. L., Kemp B. E., Krebs E. G. In vivo phosphorylation of a synthetic peptide substrate of cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A. 1978 Jan;75(1):248–251. doi: 10.1073/pnas.75.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McDougal J. S., Cort S. P., Kennedy M. S., Cabridilla C. D., Feorino P. M., Francis D. P., Hicks D., Kalyanaraman V. S., Martin L. S. Immunoassay for the detection and quantitation of infectious human retrovirus, lymphadenopathy-associated virus (LAV). J Immunol Methods. 1985 Jan 21;76(1):171–183. doi: 10.1016/0022-1759(85)90489-2. [DOI] [PubMed] [Google Scholar]
  21. McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: activation of Ca2+-dependent protein kinase. Science. 1984 May 11;224(4649):622–625. doi: 10.1126/science.6231726. [DOI] [PubMed] [Google Scholar]
  22. Mills G. B., Girard P., Grinstein S., Gelfand E. W. Interleukin-2 induces proliferation of T lymphocyte mutants lacking protein kinase C. Cell. 1988 Oct 7;55(1):91–100. doi: 10.1016/0092-8674(88)90012-8. [DOI] [PubMed] [Google Scholar]
  23. Mustelin T., Altman A. Do CD4 and CD8 control T-cell activation via a specific tyrosine protein kinase? Immunol Today. 1989 Jun;10(6):189–192. doi: 10.1016/0167-5699(89)90322-8. [DOI] [PubMed] [Google Scholar]
  24. Nel A. E., Vandenplas M., Wooten M. M., Cooper R., Vandenplas S., Rheeder A., Daniels J. Cholera toxin partially inhibits the T-cell response to phytohaemagglutinin through the ADP-ribosylation of a 45 kDa membrane protein. Biochem J. 1988 Dec 1;256(2):383–390. doi: 10.1042/bj2560383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nishanian P. G., Ojo-Amaize E., Uittenbogaart C. H., Giorgi J. V. A simple and rapid method for preparation of HIV-expressing targets for functional assays. J Immunol Methods. 1988 Mar 16;107(2):261–271. doi: 10.1016/0022-1759(88)90227-x. [DOI] [PubMed] [Google Scholar]
  26. Nokta M., Pollard R. Human immunodeficiency virus infection: association with altered intracellular levels of cAMP and cGMP in MT-4 cells. Virology. 1991 Mar;181(1):211–217. doi: 10.1016/0042-6822(91)90486-u. [DOI] [PubMed] [Google Scholar]
  27. Orosz C. G., Zinn N. E., Olsen R. G., Mathes L. E. Retrovirus-mediated immunosuppression. I. FeLV-UV and specific FeLV proteins alter T lymphocyte behavior by inducing hyporesponsiveness to lymphokines. J Immunol. 1985 May;134(5):3396–3403. [PubMed] [Google Scholar]
  28. Pahwa S., Pahwa R., Saxinger C., Gallo R. C., Good R. A. Influence of the human T-lymphotropic virus/lymphadenopathy-associated virus on functions of human lymphocytes: evidence for immunosuppressive effects and polyclonal B-cell activation by banded viral preparations. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8198–8202. doi: 10.1073/pnas.82.23.8198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schnittman S. M., Greenhouse J. J., Psallidopoulos M. C., Baseler M., Salzman N. P., Fauci A. S., Lane H. C. Increasing viral burden in CD4+ T cells from patients with human immunodeficiency virus (HIV) infection reflects rapidly progressive immunosuppression and clinical disease. Ann Intern Med. 1990 Sep 15;113(6):438–443. doi: 10.7326/0003-4819-113-6-438. [DOI] [PubMed] [Google Scholar]
  30. Sitkovsky M. V., Trenn G., Takayama H. Cyclic AMP-dependent protein kinase as a part of the possible down-regulating pathway in the antigen receptor-regulated cytotoxic T lymphocyte conjugate formation and granule exocytosis. Ann N Y Acad Sci. 1988;532:350–358. doi: 10.1111/j.1749-6632.1988.tb36352.x. [DOI] [PubMed] [Google Scholar]
  31. Takayama H., Trenn G., Sitkovsky M. V. Locus of inhibitory action of cAMP-dependent protein kinase in the antigen receptor-triggered cytotoxic T lymphocyte activation pathway. J Biol Chem. 1988 Feb 15;263(5):2330–2336. [PubMed] [Google Scholar]
  32. Veillette A., Bookman M. A., Horak E. M., Samelson L. E., Bolen J. B. Signal transduction through the CD4 receptor involves the activation of the internal membrane tyrosine-protein kinase p56lck. Nature. 1989 Mar 16;338(6212):257–259. doi: 10.1038/338257a0. [DOI] [PubMed] [Google Scholar]
  33. Weiss A., Imboden J. B. Cell surface molecules and early events involved in human T lymphocyte activation. Adv Immunol. 1987;41:1–38. doi: 10.1016/s0065-2776(08)60029-2. [DOI] [PubMed] [Google Scholar]
  34. Yasuda I., Kishimoto A., Tanaka S., Tominaga M., Sakurai A., Nishizuka Y. A synthetic peptide substrate for selective assay of protein kinase C. Biochem Biophys Res Commun. 1990 Feb 14;166(3):1220–1227. doi: 10.1016/0006-291x(90)90996-z. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES