Skip to main content
Thorax logoLink to Thorax
. 1975 Aug;30(4):415–425. doi: 10.1136/thx.30.4.415

An analysis of the physiological strain of submaximal exercise in patients with chronic obstructive bronchitis.

S G Spiro, H L Hahn, R H Edwards, N B Pride
PMCID: PMC470302  PMID: 1179325

Abstract

An increasing work rate was performed by 40 patients with chronic obstructive bronchitis, split into two groups according to FEV1 (group M, mean FEV1 1-451. and group S, mean FEV1 0-621.), and by 20 normal, non-athletic men of similar age to the patients. Values for cardiac frequency and ventilation were interpolated to standard oxygen uptakes of 0-75, 1-0, and, where possible, 1-5 min-1. The tidal volume at a ventilation of 20 and 30 1 min-1 was also determined. The cardiac frequencies at oxygen uptake of 0-75 and 1-01 min-1 were significantly higher in the patient groups than in the normal men, and were highest in patient group S. The cardiac output when related to the oxygen uptake was in the normal range in all three groups of subjects, so that the patients had smaller stroke volumes than the normal men. Ventilation at oxygen uptakes of 0-75 and 1-01 min-1 was significantly higher in both patient groups than in the normal subjects; there were no significant differences between the two patient groups, Values for dead space/tidal volume ration, alveolar-arterial oxygen gradient, and the percent venous admixture measured during a constant work rate test were significantly greater than normal in the patient groups. Possible factors limiting exercise tolerance in these patients were assessed by extending the increasing work rate test from submaximum to maximum exercise. Changes in blood gas tensions and blood lactate concentrations from resting levels were small, and probably did not limit exercise performance. Measurements at maximum exercise did not add appreciably to the analysis of the disturbed cardiopulmonary function. This study has shown that major disturbances in cardiopulmonary function can be demonstrated without the need for stressing a patient to the limit of his effort tolerance.

Full text

PDF
415

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASTRAND I. The physical work capacity of workers 50-64 years old. Acta Physiol Scand. 1958 Feb 10;42(1):73–86. doi: 10.1111/j.1748-1716.1958.tb01543.x. [DOI] [PubMed] [Google Scholar]
  2. Armstrong B. W., Workman J. N., Hurt H. H., Jr, Roemich W. R. Clinico-physiologic evaluation of physical working capacity in persons with pulmonary disease. Rationale and application of a method based on estimating maximal oxygen-consuming capacity from MBC and O-2ve. I. Am Rev Respir Dis. 1966 Jan;93(1):90–99. doi: 10.1164/arrd.1966.93.1.90. [DOI] [PubMed] [Google Scholar]
  3. BLAKEMORE W. S., FORSTER R. E., MORTON J. W., OGILVIE C. M. A standardized breath holding technique for the clinical measurement of the diffusing capacity of the lung for carbon monoxide. J Clin Invest. 1957 Jan;36(1 Pt 1):1–17. doi: 10.1172/JCI103402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baum G. L., Schwartz A., Llamas R., Castillo C. Left ventricular function in chronic obstructive lung disease. N Engl J Med. 1971 Aug 12;285(7):361–365. doi: 10.1056/NEJM197108122850701. [DOI] [PubMed] [Google Scholar]
  5. Becklake M. R., Frank H., Dagenais G. R., Ostiguy G. L., Guzman C. A. Influence of age and sex on exercise cardiac output. J Appl Physiol. 1965 Sep;20(5):938–947. doi: 10.1152/jappl.1965.20.5.938. [DOI] [PubMed] [Google Scholar]
  6. Clark T. J., Freedman S., Campbell E. J., Winn R. R. The ventilatory capacity of patients with chronic airways obstruction. Clin Sci. 1969 Apr;36(2):307–316. [PubMed] [Google Scholar]
  7. DUBOIS A. B., BOTELHO S. Y., BEDELL G. N., MARSHALL R., COMROE J. H., Jr A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest. 1956 Mar;35(3):322–326. doi: 10.1172/JCI103281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DUBOIS A. B., BOTELHO S. Y., COMROE J. H., Jr A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J Clin Invest. 1956 Mar;35(3):327–335. doi: 10.1172/JCI103282. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Davies C. T. Limitations to the prediction of maximum oxygen intake from cardiac frequency measurements. J Appl Physiol. 1968 May;24(5):700–706. doi: 10.1152/jappl.1968.24.5.700. [DOI] [PubMed] [Google Scholar]
  10. Durnin J. V., Rahaman M. M. The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr. 1967 Aug;21(3):681–689. doi: 10.1079/bjn19670070. [DOI] [PubMed] [Google Scholar]
  11. Freedman S. Sustained maximum voluntary ventilation. Respir Physiol. 1970 Jan;8(2):230–244. doi: 10.1016/0034-5687(70)90017-4. [DOI] [PubMed] [Google Scholar]
  12. GANDEVIA B., HUGH-JONES P. Terminology for measurements of ventilatory capacity; a report to the thoracic society. Thorax. 1957 Dec;12(4):290–293. doi: 10.1136/thx.12.4.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GRANATH A., JONSSON B., STRANDELL T. CIRCULATION IN HEALTHY OLD MEN, STUDIED BY RIGHT HEART CATHETERIZATION AT REST AND DURING EXERCISE IN SUPINE AND SITTING POSITION. Acta Med Scand. 1964 Oct;176:425–446. doi: 10.1111/j.0954-6820.1964.tb00949.x. [DOI] [PubMed] [Google Scholar]
  14. Godfrey S. Manipulation of the indirect Fick principle by a digital computer program for the calculation of exercise physiology results. Respiration. 1970;27(6):513–532. doi: 10.1159/000192707. [DOI] [PubMed] [Google Scholar]
  15. Godfrey S., Wozniak E. R., Courtenay Evans R. J., Samuels C. S. Ear lobe blood samples for blood gas analysis at rest and during exercise. Br J Dis Chest. 1971 Jan;65(1):58–64. [PubMed] [Google Scholar]
  16. HOHORST H. J. Enzymatische Bestimmung von L(+)-Milchsäure. Biochem Z. 1957;328(7):509–521. [PubMed] [Google Scholar]
  17. Harris E. A., Kenyon A. M., Nisbet H. D., Seelye E. R., Whitlock R. M. The normal alveolar-arterial oxygen-tension gradient in man. Clin Sci Mol Med. 1974 Jan;46(1):89–104. doi: 10.1042/cs0460089. [DOI] [PubMed] [Google Scholar]
  18. Hey E. N., Lloyd B. B., Cunningham D. J., Jukes M. G., Bolton D. P. Effects of various respiratory stimuli on the depth and frequency of breathing in man. Respir Physiol. 1966;1(2):193–205. doi: 10.1016/0034-5687(66)90016-8. [DOI] [PubMed] [Google Scholar]
  19. Higgs B. E., Clode M., McHardy G. J., Jones N. L., Campbell E. J. Changes in ventilation, gas exchange and circulation during exercise in normal subjects. Clin Sci. 1967 Apr;32(2):329–337. [PubMed] [Google Scholar]
  20. Jones N. L., Campbell E. J., McHardy G. J., Higgs B. E., Clode M. The estimation of carbon dioxide pressure of mixed venous blood during exercise. Clin Sci. 1967 Apr;32(2):311–327. [PubMed] [Google Scholar]
  21. Jones N. L., Jones G., Edwards R. H. Exercise tolerance in chronic airway obstruction. Am Rev Respir Dis. 1971 Apr;103(4):477–491. doi: 10.1164/arrd.1971.103.4.477. [DOI] [PubMed] [Google Scholar]
  22. Levine G., Housley E., MacLeod P., Macklem P. T. Gas exchange abnormalities in mild bronchitis and asymptomatic asthma. N Engl J Med. 1970 Jun 4;282(23):1277–1282. doi: 10.1056/NEJM197006042822301. [DOI] [PubMed] [Google Scholar]
  23. Marcus J. H., McLean R. L., Duffell G. M., Ingram R. H., Jr Exericse performance in relation to the pathophysiologic type of chronic obstructive pulmonary disease. Am J Med. 1970 Jul;49(1):14–22. doi: 10.1016/s0002-9343(70)80109-7. [DOI] [PubMed] [Google Scholar]
  24. McDermott M., McDermott T. J., Collins M. M. A portable bellows spirometer and timing unit for the measurement of respiratory function. Med Biol Eng. 1968 Jun;6(3):291–302. doi: 10.1007/BF02478783. [DOI] [PubMed] [Google Scholar]
  25. Mellemgaard K. The alveolar-arterial oxygen difference: its size and components in normal man. Acta Physiol Scand. 1966 May;67(1):10–20. doi: 10.1111/j.1748-1716.1966.tb03281.x. [DOI] [PubMed] [Google Scholar]
  26. REEVES J. T., GROVER R. F., BLOUNT S. G., Jr, FILLEY G. F. Cardiac output response to standing and treadmill walking. J Appl Physiol. 1961 Mar;16:283–288. doi: 10.1152/jappl.1961.16.2.283. [DOI] [PubMed] [Google Scholar]
  27. Raimondi A. C., Edwards R. H., Denison D. M., Leaver D. G., Spencer R. G., Siddorn J. A. Exercise tolerance breathing a low density gas mixture, 35 per cent oxygen and air in patients with chronic obstructive bronchitis. Clin Sci. 1970 Nov;39(5):675–685. doi: 10.1042/cs0390675. [DOI] [PubMed] [Google Scholar]
  28. Shephard R. J., Allen C., Benade A. J., Davies C. T., Di Prampero P. E., Hedman R., Merriman J. E., Myhre K., Simmons R. The maximum oxygen intake. An international reference standard of cardiorespiratory fitness. Bull World Health Organ. 1968;38(5):757–764. [PMC free article] [PubMed] [Google Scholar]
  29. Simonsson B. G., Malmberg R., Berglund E. Pulmonary gas exchange at rest and during exercise in chronic bronchitis. Scand J Respir Dis. 1969;50(4):245–258. [PubMed] [Google Scholar]
  30. Spiro S. G., Juniper E., Bowman P., Edwards R. H. An increasing work rate test for assessing the physiological strain of submaximal exercise. Clin Sci Mol Med. 1974 Feb;46(2):191–206. doi: 10.1042/cs0460191. [DOI] [PubMed] [Google Scholar]
  31. Van Ganse W. F., Ferris B. G., Jr, Cotes J. E. Cigarette smoking and pulmonary diffusing capacity. (Transfer factor). Am Rev Respir Dis. 1972 Jan;105(1):30–41. doi: 10.1164/arrd.1972.105.1.30. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES