Abstract
Diverse subtypes of voltage-gated sodium channels (VGSCs) have been found throughout tissues of the brain, muscles and the heart. Neurotoxins extracted from the venom of the Asian scorpion Buthus martensi Karsch (BmK) act as sodium channel-specific modulators and have therefore been widely used to study VGSCs. α-type neurotoxins, named BmK I, BmK αIV and BmK abT, bind to receptor site-3 on VGSCs and can strongly prolong the inactivation phase of VGSCs. In contrast, β-type neurotoxins, named BmK AS, BmK AS-1, BmK IT and BmK IT2, occupy receptor site-4 on VGSCs and can suppress peak currents and hyperpolarize the activation kinetics of sodium channels. Accumulating evidence from binding assays of scorpion neurotoxins on VGSCs, however, indicate that pharmacological sensitivity of VGSC subtypes to different modulators is much more complex than that suggested by the simple α-type and β-type neurotoxin distinction. Exploring the mechanisms of possible dynamic interactions between site 3-/4-specific modulators and region- and/or species-specific subtypes of VGSCs would therefore greatly expand our understanding of the physiological and pharmacological properties of diverse VGSCs. In this review, we discuss the pharmacological and structural diversity of VGSCs as revealed by studies exploring the binding properties and cross-competitive binding of site 3- or site 4-specific modulators in VGSC subtypes in synaptosomes from distinct tissues of diverse species.
Keywords: voltage-gated sodium channel, receptor sites, scorpion neurotoxins
References
- Amaya F., Decosterd I., Samad T.A., Plumpton C., Tate S., Mannion R.J., Costigan M., Woolf C.J. Diversity of expression of the sensory neuron-specific TTX-resistant voltage-gated sodium ion channels SNS and SNS2. Mol Cell Neurosci. 2000;15:331–342. doi: 10.1006/mcne.1999.0828. [DOI] [PubMed] [Google Scholar]
- Beckh S., Noda M., Lübbert H., Numa S. Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J. 1989;8:3611–3616. doi: 10.1002/j.1460-2075.1989.tb08534.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benzinger G.R., Kyle J.W., Blumenthal K.M., Hanck D.A. A specific interaction between the cardiac sodium channel and site-3 toxin anthopleurin B. J Biol Chem. 1998;273:80–84. doi: 10.1074/jbc.273.1.80. [DOI] [PubMed] [Google Scholar]
- Black J.A., Dib-Hajj S., McNabola K., Jeste S., Rizzo M.A., Kocsis J.D., Waxman S.G. Spinal sensory neurons express multiple sodium channel alpha-subunit mRNAs. Brain Res Mol Brain Res. 1996;43:117–131. doi: 10.1016/S0169-328X(96)00163-5. [DOI] [PubMed] [Google Scholar]
- Catterall W.A. Structure and function of voltage-gated ion channels. Annu Rev Biochem. 1995;64:493–531. doi: 10.1146/annurev.bi.64.070195.002425. [DOI] [PubMed] [Google Scholar]
- Catterall W.A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13–25. doi: 10.1016/S0896-6273(00)81133-2. [DOI] [PubMed] [Google Scholar]
- Cestèle S., Catterall W.A. Molecular mechanisms of neurotoxin action on voltage-gated sodium channels. Biochimie. 2000;82:883–892. doi: 10.1016/S0300-9084(00)01174-3. [DOI] [PubMed] [Google Scholar]
- Cestèle S., Kopeyan C., Oughideni R., Mansuelle P., Granier C., Rochat H. Biochemical and pharmacological characterization of a depressant insect toxin from the venom of the scorpion Buthacus arenicola. Eur J Biochem. 1997;243:93–99. doi: 10.1111/j.1432-1033.1997.93_1a.x. [DOI] [PubMed] [Google Scholar]
- Cestèle S., Qu Y., Rogers J.C., Rochat H., Scheuer T., Catterall W.A. Voltage sensor-trapping: enhanced activation of sodium channels by beta-scorpion toxin bound to the S3–S4 loop in domain II. Neuron. 1998;21:919–931. doi: 10.1016/S0896-6273(00)80606-6. [DOI] [PubMed] [Google Scholar]
- Cestèle S., Yarov-Yarovoy V., Qu Y., Sampieri F., Scheuer T., Catterall W.A. Structure and function of the voltage sensor of sodium channels probed by a beta-scorpion toxin. J Biol Chem. 2006;281:21332–21344. doi: 10.1074/jbc.M603814200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chai Z.F., Bai Z.T., Liu T., Pang X.Y., Ji Y.H. The binding of BmK IT2 on mammal and insect sodium channels by surface plasmon resonance assay. Pharmacol Res. 2006;54:85–90. doi: 10.1016/j.phrs.2006.02.009. [DOI] [PubMed] [Google Scholar]
- Chai Z.F., Zhu M.M., Bai Z.T., Liu T., Tan M., Pang X.Y., Ji Y. H. Chinese-scorpion (Buthus martensi Karsch) toxin BmK alphaIV, a novel modulator of sodium channels: from genomic organization to functional analysis. Biochem J. 2006;399:445–453. doi: 10.1042/BJ20060035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cohen L., Ilan N., Gur M., Stühmer W., Gordon D., Gurevitz M. Design of a specific activator for skeletal muscle sodium channels uncovers channel architecture. J Biol Chem. 2007;282:29424–29430. doi: 10.1074/jbc.M704651200. [DOI] [PubMed] [Google Scholar]
- Couraud F., Jover E., Dubois J.M., Rochat H. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon. 1982;20:9–16. doi: 10.1016/0041-0101(82)90138-6. [DOI] [PubMed] [Google Scholar]
- Darbon H., Jover E., Couraud F., Rochat H. Photoaffinity labeling of alpha- and beta- scorpion toxin receptors associated with rat brain sodium channel. Biochem Biophys Res Commun. 1983;115:415–422. doi: 10.1016/S0006-291X(83)80160-0. [DOI] [PubMed] [Google Scholar]
- De Lima M.E., Figueiredo S.G., Pimenta A.M., Santos D.M., Borges M.H., Cordeiro M.N., Richardson M., Oliveira L.C., Stankiewicz M., Pelhate M. Peptides of arachnid venoms with insecticidal activity targeting sodium channels. Comp Biochem Physiol C Toxicol Pharmacol. 2007;146:264–279. doi: 10.1016/j.cbpc.2006.10.010. [DOI] [PubMed] [Google Scholar]
- Dib-Hajj S.D., Black J.A., Cummins T.R., Kenney A.M., Kocsis J. D., Waxman S.G. Rescue of alpha-SNS sodium channel expression in small dorsal root ganglion neurons after axotomy by nerve growth factor in vivo. J Neurophysiol. 1998;79:2668–2676. doi: 10.1152/jn.1998.79.5.2668. [DOI] [PubMed] [Google Scholar]
- Dong K. A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem Mol Biol. 1997;27:93–100. doi: 10.1016/S0965-1748(96)00082-3. [DOI] [PubMed] [Google Scholar]
- Feng G., Deák P., Chopra M., Hall L.M. Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell. 1995;82:1001–1011. doi: 10.1016/0092-8674(95)90279-1. [DOI] [PubMed] [Google Scholar]
- Goldin A.L. Evolution of voltage-gated Na(+) channels. J Exp Biol. 2002;205:575–584. doi: 10.1242/jeb.205.5.575. [DOI] [PubMed] [Google Scholar]
- Gordon D., Savarin P., Gurevitz M., Zinn-Justin S. Functional anatomy of scorpion toxins affecting sodium channels. J Toxicol Toxin Rev. 1998;2:131–159. doi: 10.3109/15569549809009247. [DOI] [Google Scholar]
- Goudet C., Chi C.W., Tytgat J. An overview of toxins and genes from the venom of the Asian scorpion Buthus martensi Karsch. Toxicon. 2002;40:1239–1258. doi: 10.1016/S0041-0101(02)00142-3. [DOI] [PubMed] [Google Scholar]
- He H., Liu Z., Dong B., Zhang J., Shu X., Zhou J., Ji Y. Localization of receptor site on insect sodium channel for depressant β-toxin BmK IT2. PLoS ONE. 2011;6:e14510. doi: 10.1371/journal.pone.0014510. [DOI] [PMC free article] [PubMed] [Google Scholar]
- He H., Liu Z., Dong B., Zhou J., Zhu H., Ji Y. Molecular determination of selectivity of the site 3 modulator (BmK I) to sodium channels in the CNS: a clue to the importance of Nav1.6 in BmK I-induced neuronal hyperexcitability. Biochem J. 2010;431:289–298. doi: 10.1042/BJ20100517. [DOI] [PubMed] [Google Scholar]
- Ji Y.H., Li Y.J., Zhang J.W., Song B.L., Yamaki T., Mochizuki T., Hoshino M., Yanaihara N. Covalent structures of BmK AS and BmK AS-1, two novel bioactive polypeptides purified from Chinese scorpion Buthus martensi Karsch. Toxicon. 1999;37:519–536. doi: 10.1016/S0041-0101(98)00190-1. [DOI] [PubMed] [Google Scholar]
- Ji Y.H., Liu T. The study of sodium channels involved in pain responses using specific modulators. Sheng Li Xue Bao. 2008;60:628–634. [PubMed] [Google Scholar]
- Ji Y.H., Mansuelle P., Terakawa S., Kopeyan C., Yanaihara N., Hsu K., Rochat H. Two neurotoxins (BmK I and BmK II) from the venom of the scorpion Buthus martensi Karsch: purification, amino acid sequences and assessment of specific activity. Toxicon. 1996;34:987–1001. doi: 10.1016/0041-0101(96)00065-7. [DOI] [PubMed] [Google Scholar]
- Ji Y.H., Mansuelle P., Xu K., Granier C., Kopeyan C., Terakawa S., Rochat H. Amino acid sequence of an excitatory insect-selective toxin (BmK IT) from venom of the scorpion Buthus martensi Karsch. Sci China B. 1994;37:42–49. [PubMed] [Google Scholar]
- Ji Y.H., Wang W.X., Wang Q., Huang Y.P. The binding of BmK abT, a unique neurotoxin, to mammal brain and insect Na (+) channels using biosensor. Eur J Pharmacol. 2002;454:25–30. doi: 10.1016/S0014-2999(02)02363-4. [DOI] [PubMed] [Google Scholar]
- Jia L.Y., Xie H.F., Ji Y.H. Characterization of four distinct monoclonal antibodies specific to BmK AS-1, a novel scorpion bioactive polypeptide. Toxicon. 2000;38:605–617. doi: 10.1016/S0041-0101(99)00175-0. [DOI] [PubMed] [Google Scholar]
- Jia L.Y., Zhang J.W., Ji Y.H. Biosensor binding assay of BmK AS-1, a novel Na + channel-blocking scorpion ligand on rat brain synaptosomes. Neuroreport. 1999;10:3359–3362. doi: 10.1097/00001756-199911080-00019. [DOI] [PubMed] [Google Scholar]
- Kontis K.J., Rounaghi A., Goldin A.L. Sodium channel activation gating is affected by substitutions of voltage sensor positive charges in all four domains. J Gen Physiol. 1997;110:391–401. doi: 10.1085/jgp.110.4.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Legros C., Martin-Eauclaire M.F., Cattaert D. The myth of scorpion suicide: are scorpions insensitive to their own venom? J Exp Biol. 1998;201:2625–2636. doi: 10.1242/jeb.201.18.2625. [DOI] [PubMed] [Google Scholar]
- Leipold E., Hansel A., Borges A., Heinemann S.H. Subtype specificity of scorpion beta-toxin Tz1 interaction with voltage-gated sodium channels is determined by the pore loop of domain 3. Mol Pharmacol. 2006;70:340–347. doi: 10.1124/mol.106.024034. [DOI] [PubMed] [Google Scholar]
- Leipold E., Lu S., Gordon D., Hansel A., Heinemann S.H. Combinatorial interaction of scorpion toxins Lqh-2, Lqh-3, and LqhalphaIT with sodium channel receptor sites-3. Mol Pharmacol. 2004;65:685–691. doi: 10.1124/mol.65.3.685. [DOI] [PubMed] [Google Scholar]
- Li Y.J., Ji Y.H. Binding characteristics of BmK I, an alphalike scorpion neurotoxic polypeptide, on cockroach nerve cord synaptosomes. J Pept Res. 2000;56:195–200. doi: 10.1034/j.1399-3011.2000.00750.x. [DOI] [PubMed] [Google Scholar]
- Li Y.J., Liu Y., Ji Y.H. BmK AS: new scorpion neurotoxin binds to distinct receptor sites of mammal and insect voltage-gated sodium channels. J Neurosci Res. 2000;61:541–548. doi: 10.1002/1097-4547(20000901)61:5<541::AID-JNR9>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
- Li Y.J., Tan Z.Y., Ji Y.H. The binding of BmK IT2, a depressant insect-selective scorpion toxin on mammal and insect sodium channels. Neurosci Res. 2000;38:257–264. doi: 10.1016/S0168-0102(00)00164-4. [DOI] [PubMed] [Google Scholar]
- Liu Z., Chung I., Dong K. Alternative splicing of the BSC1 gene generates tissue-specific isoforms in the German cockroach. Insect Biochem Mol Biol. 2001;31:703–713. doi: 10.1016/S0965-1748(00)00178-8. [DOI] [PubMed] [Google Scholar]
- Loughney K., Kreber R., Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989;58:1143–1154. doi: 10.1016/0092-8674(89)90512-6. [DOI] [PubMed] [Google Scholar]
- Ma Z., T. L., Lu S., Kong J., Gordon D., Kallen R.G., (2000). The domain 4 S3-S4 extracellular loop provides molecular determinants for binding of -scorpion toxins (LqhII, and LqhIT) to the voltage-gated rat skeletal muscle Na + channel (rSkM1). Biophys Soc Abstract.
- Mandel G. Tissue-specific expression of the voltagesensitive sodium channel. J Membr Biol. 1992;125:193–205. doi: 10.1007/BF00236433. [DOI] [PubMed] [Google Scholar]
- Mantegazza M., Cestèle S. Beta-scorpion toxin effects suggest electrostatic interactions in domain II of voltage-dependent sodium channels. J Physiol. 2005;568:13–30. doi: 10.1113/jphysiol.2005.093484. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitrovic N., George A.L., Jr, Horn R. Independent versus coupled inactivation in sodium channels. Role of the domain 2 S4 segment. J Gen Physiol. 1998;111:451–462. doi: 10.1085/jgp.111.3.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramaswami M., Tanouye M.A. Two sodium-channel genes in Drosophila: implications for channel diversity. Proc Natl Acad Sci USA. 1989;86:2079–2082. doi: 10.1073/pnas.86.6.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Renganathan M., Dib-Hajj S., Waxman S.G. Na(v)1.5 underlies the ‘third TTX-R sodium current’ in rat small DRG neurons. Brain Res Mol Brain Res. 2002;106:70–82. doi: 10.1016/S0169-328X(02)00411-4. [DOI] [PubMed] [Google Scholar]
- Rogart R.B., Cribbs L.L., Muglia L.K., Kephart D.D., Kaiser M. W. Molecular cloning of a putative tetrodotoxin-resistant rat heart Na + channel isoform. Proc Natl Acad Sci USA. 1989;86:8170–8174. doi: 10.1073/pnas.86.20.8170. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rogers J.C., Qu Y., Tanada T.N., Scheuer T., Catterall W.A. Molecular determinants of high affinity binding of alphascorpion toxin and sea anemone toxin in the S3–S4 extracellular loop in domain IV of the Na + channel alpha subunit. J Biol Chem. 1996;271:15950–15962. doi: 10.1074/jbc.271.27.15950. [DOI] [PubMed] [Google Scholar]
- Smith T.J., Lee S.H., Ingles P.J., Knipple D.C., Soderlund D.M. The L1014F point mutation in the house fly Vssc1 sodium channel confers knockdown resistance to pyrethroids. Insect Biochem Mol Biol. 1997;27:807–812. doi: 10.1016/S0965-1748(97)00065-9. [DOI] [PubMed] [Google Scholar]
- Soderlund D.M., Knipple D.C. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol. 2003;33:563–577. doi: 10.1016/S0965-1748(03)00023-7. [DOI] [PubMed] [Google Scholar]
- Tan J., Liu Z., Nomura Y., Goldin A.L., Dong K. Alternative splicing of an insect sodium channel gene generates pharmacologically distinct sodium channels. J Neurosci. 2002;22:5300–5309. doi: 10.1523/JNEUROSCI.22-13-05300.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan J., Liu Z., Tsai T.D., Valles S.M., Goldin A.L., Dong K. Novel sodium channel gene mutations in Blattella germanica reduce the sensitivity of expressed channels to deltamethrin. Insect Biochem Mol Biol. 2002;32:445–454. doi: 10.1016/S0965-1748(01)00122-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tan J., Liu Z., Wang R., Huang Z.Y., Chen A.C., Gurevitz M., Dong K. Identification of amino acid residues in the insect sodium channel critical for pyrethroid binding. Mol Pharmacol. 2005;67:513–522. doi: 10.1124/mol.104.006205. [DOI] [PubMed] [Google Scholar]
- Tan Z.Y., Xiao H., Mao X., Wang C.Y., Zhao Z.Q., Ji Y.H. The inhibitory effects of BmK IT2, a scorpion neurotoxin on rat nociceptive flexion reflex and a possible mechanism for modulating voltage-gated Na(+) channels. Neuropharmacology. 2001;40:352–357. doi: 10.1016/S0028-3908(00)00168-4. [DOI] [PubMed] [Google Scholar]
- Tejedor F.J., Catterall W.A. Site of covalent attachment of alpha-scorpion toxin derivatives in domain I of the sodium channel alpha subunit. Proc Natl Acad Sci USA. 1988;85:8742–8746. doi: 10.1073/pnas.85.22.8742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terakawa S., Kimura Y., Hsu K., Ji Y.H. Lack of effect of a neurotoxin from the scorpion Buthus martensi Karsch on nerve fibers of this scorpion. Toxicon. 1989;27:569–578. doi: 10.1016/0041-0101(89)90118-9. [DOI] [PubMed] [Google Scholar]
- Thackeray J.R., Ganetzky B. Developmentally regulated alternative splicing generates a complex array of Drosophila para sodium channel isoforms. J Neurosci. 1994;14:2569–2578. doi: 10.1523/JNEUROSCI.14-05-02569.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomsen W.J., Catterall W.A. Localization of the receptor site for alpha-scorpion toxins by antibody mapping: implications for sodium channel topology. Proc Natl Acad Sci USA. 1989;86:10161–10165. doi: 10.1073/pnas.86.24.10161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trimmer J.S., Cooperman S.S., Tomiko S.A., Zhou J.Y., Crean S. M., Boyle M.B., Kallen R.G., Sheng Z.H., Barchi R.L., Sigworth F.J., et al. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989;3:33–49. doi: 10.1016/0896-6273(89)90113-X. [DOI] [PubMed] [Google Scholar]
- Trimmer J.S., Rhodes K.J. Localization of voltage-gated ion channels in mammalian brain. Annu Rev Physiol. 2004;66:477–519. doi: 10.1146/annurev.physiol.66.032102.113328. [DOI] [PubMed] [Google Scholar]
- Wang R., Huang Z.Y., Dong K. Molecular characterization of an arachnid sodium channel gene from the varroa mite (Varroa destructor) Insect Biochem Mol Biol. 2003;33:733–739. doi: 10.1016/S0965-1748(03)00068-7. [DOI] [PubMed] [Google Scholar]
- Warmke J.W., Reenan R.A., Wang P., Qian S., Arena J.P., Wang J., Wunderler D., Liu K., Kaczorowski G.J., Van der Ploeg L.H., et al. Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology. J Gen Physiol. 1997;110:119–133. doi: 10.1085/jgp.110.2.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zuo X.P., He H.Q., He M., Liu Z.R., Xu Q., Ye J.G., Ji Y.H. Comparative pharmacology and cloning of two novel arachnid sodium channels: Exploring the adaptive insensitivity of scorpion to its toxins. FEBS Lett. 2006;580:4508–4514. doi: 10.1016/j.febslet.2006.07.024. [DOI] [PubMed] [Google Scholar]
- Zuo X.P., Ji Y.H. Molecular mechanism of scorpion neurotoxins acting on sodium channels: insight into their diverse selectivity. Mol Neurobiol. 2004;30:265–278. doi: 10.1385/MN:30:3:265. [DOI] [PubMed] [Google Scholar]