Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 1;72(Pt 1):14–16. doi: 10.1107/S2056989015022835

Crystal structure of μ-fluorido-bis­{(η4-cyclo­octa­diene)[hexa­fluorido­anti­monato(V)]platinum(II)} hexa­fluorido­anti­monate(V) hydrogen fluoride 0.75-solvate1

Konrad Seppelt a, Roland Friedemann a,*
PMCID: PMC4704745  PMID: 26870575

In the cation of the title compound, [Pt2(COD)2F(SbF6)2]SbF6·0.75HF, a fluorine atom bridges two platinum atoms. Each platinum atom is furthermore surrounded by a COD ligand and one fluorine atom of the octa­hedral SbF6 anion.

Keywords: crystal structure, cyclo­octa­diene complex, binuclear platinum complex, anhydrous hydrogen fluoride, superacid

Abstract

In the complex cation of the binuclear solvated title salt, [Pt2F(SbF6)2(C8H12)2]SbF6·0.75HF, an F atom bridges the two platinum(II) atoms with a bond angle of 123.3 (2)°. The corresponding Pt—F bond lengths are in the range of other fluorine-bridged binuclear platinum(II) complexes. Two of the three SbF6 anions each coordinate with one F atom to one platinum(II) atom. Including the η4-bound cyclo­octa­diene (COD) ligands, the overall coordination sphere of each platinum(II) atom is square-planar. The third SbF6 anion is not bound to the complex. Hydrogen fluoride is present in the crystal structure as a solvent disordered over three positions, each with an occupancy of 0.25. F⋯F distances of 2.5512 (7), 2.6076 (8) and 3.2215 (10) Å to surrounding SbF6 anions are indicative of F—H⋯F hydrogen-bonding inter­actions although no H atoms could be localized for the disordered solvent mol­ecules. The resulting hydrogen-bonded network is three-dimensional.

Chemical context  

Platinum complexes of cyclic dienes, like cyclo­octa­diene (COD), are widely used in metal-organic chemistry to introduce new ligands by substitution of the diene. For instance, [Pt(CH3)2(COD)] is a commercially available staring material for most of the dimethyl complexes of platinum(II). Methyl ligands in platinum complexes can be protonated in superacids and eliminated as methane qu­anti­tatively. With anhydrous hydrogen fluoride (aHF), one or both methyl groups are protonated and replaced by a fluoride ion, but the resulting products cannot be crystallized because the formed fluoride ion does not sufficiently stabilizes the platinum complexes. With larger counter-anions like BF4 , AsF6 or SbF6 , stable crystalline complexes can be formed and isolated (Friedemann & Seppelt, 2013). graphic file with name e-72-00014-scheme1.jpg

One methyl group of [Pt(CH3)2(COD)] reacts with aHF at low temperature under formation of methane; the second methyl group can be eliminated by the addition of anti­mony penta­fluoride. The resulting dissolved complex is stable at room temperature and can be crystallized by cooling to 200 K. The formed title compound [Pt2(COD)2F(SbF6)2]SbF6·0.75HF dissolves unreacted only in aHF or aceto­nitrile. With other organic solvents, a reaction takes place to form black undefined oils; with chlorinated solvents chlorido-platinum complexes are formed instead.

Structural commentary  

Each of the two independent platinum(II) atoms is surrounded by one COD ligand in a double π-coordination, one fluorine atom of a SbF6 anion and one bridging fluorine atom, resulting in a slightly distorted square-planar coordin­ation sphere (Fig. 1). The fluorine atom F19 bridges the two platinum(II) atoms with a bond angle of 123.3 (2)°. The corresponding Pt—F bond lengths [2.085 (4) Å and 2.065 (4) Å] are in the range of other fluorine-bridged binuclear platinum complexes [Pt—F 2.030 (9)–2.083 (10) Å; Friedemann & Seppelt, 2013) and somewhat longer than in non-bridging complexes like [PtF2(PPh3)2] [Pt—F = 1.999 (2) and 2.016 (2) Å; Yahav et al., 2005). The two PtF2 planes are twisted by 69.8 (3)°. The third SbF6 anion is not bonded to the complex. The COD ligands are bonded much stronger to the platinum(II) atoms than in the starting compound [Pt(CH3)2(COD)] (Smith et al., 2000). This leads to shorter Pt—C bond lengths by up to 0.1 Å and an elongation of the olefinic bonds. The bite angles of the chelating ligands [88.85 (1)° at Pt1, 89.05 (1)° at Pt2] are close to the ideal 90° of a square-planar Pt2+ complex.

Figure 1.

Figure 1

The structure of the mol­ecular entities of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen bridges are marked with dashed lines.

Supra­molecular features  

The [Pt2(COD)2F(SbF6)2] cations and SbF6 anions are packed in such a way that voids are generated that are filled with disordered HF solvent mol­ecules (F21, F221 and F222). The shortest distances of these atoms to fluorine atoms of the surrounding SbF6 anions [F221⋯F18 2.5512 (7), F222⋯F18 2.6076 (8) and F21⋯F5 3.2215 (10) Å] are in the typical range of F—H⋯F donor acceptor distances, marked in Fig. 1 with dashed lines. The packing of the mol­ecular entities in the crystal structure is shown in Fig. 2.

Figure 2.

Figure 2

The crystal packing of the title compound in a view along [100].

Synthesis and crystallization  

[Pt(CH3)2(COD)] (40 mg, 0.12 mmol) and anti­mony(V) fluoride (80 mg, 0.36 mmol) were filled separated in a two chamber PFA tube. Anhydrous HF (0.5 ml) was condensed on it at 77 K. By heating to 200 K and mixing, a gas and a yellow solid were formed. The solid dissolved at room temperature under a second gas formation to a give clear yellow solution. The gas was removed and the sealed tube was slowly cooled to 200 K to form yellow single crystals of the title compound. NMR in aHF at room temperature: 1H d: 2.02 (m, br, 4H), 2.61 (m, br, 4H), 5.73 (s, 4H, 2 J H,Pt = 95 Hz). NMR in CD3CN at room temperature: 1H d: 2.44 (m, br, 4H), 2.75 (m, br, 4H), 6.17 (s, 4H, 2 J H,Pt = 67 Hz); 19F d: 122 (m, br); 13C{1H} d: 31.4 (s), 109.9 (1 J C,Pt = 162 Hz); 195Pt{19F} d: −3424 (s).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. H atom positions of the COD ligand were refined with calculated positions in a riding model with C—H = 0.97 and 0.98 Å and U iso(H) = 1.2U eq(C). Atoms F21, F221 and F222 that are associated with the hydrogen fluoride solvent are disordered and were refined isotropically. Their occupation factors were fixed to 0.25 for each of these atoms which showed the best results in terms of reliability factors and U iso values. Hydrogen atoms bound to the disordered solvent F atoms could not be detected and were consequently not considered in the final model. Some F atoms of the SbF6 anions exhibited somewhat elongated ellipsoids. Since consideration of a split atom model had a negative effect (parts of these atoms could then only be refined isotropically), all F atoms of the SbF6 anions were not refined as being disordered.

Table 1. Experimental details.

Crystal data
Chemical formula [Pt2F(SbF6)2(C8H12)2]SbF6·0.75HF
M r 1347.77
Crystal system, space group Monoclinic, P21/c
Temperature (K) 133
a, b, c (Å) 11.325 (4), 15.101 (6), 18.273 (7)
β (°) 100.61 (3)
V3) 3071.7 (19)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.81
Crystal size (mm) 0.10 × 0.10 × 0.02
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2006)
T min, T max 0.721, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 47396, 9265, 7778
R int 0.041
(sin θ/λ)max−1) 0.716
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.074, 1.10
No. of reflections 9265
No. of parameters 373
H-atom treatment H-atom parameters constrained
  w = 1/[σ2(F o 2) + (0.0136P)2 + 38.0407P] where P = (F o 2 + 2F c 2)/3
Δρmax, Δρmin (e Å−3) 1.96, −1.66

Computer programs: SMART and SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022835/wm5233sup1.cif

e-72-00014-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022835/wm5233Isup2.hkl

e-72-00014-Isup2.hkl (735.4KB, hkl)

CCDC reference: 1439460

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the graduate school ‘Fluorine as a Key Element’ funded by the Deutsche Forschungsgemeinschaft.

supplementary crystallographic information

Crystal data

[Pt2F(SbF6)2(C8H12)2]SbF6·0.75HF F(000) = 2410
Mr = 1347.77 Dx = 2.912 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 11.325 (4) Å Cell parameters from 999 reflections
b = 15.101 (6) Å θ = 2.0–18.3°
c = 18.273 (7) Å µ = 11.81 mm1
β = 100.61 (3)° T = 133 K
V = 3071.7 (19) Å3 Platelet, yellow
Z = 4 0.10 × 0.10 × 0.02 mm

Data collection

Bruker SMART CCD diffractometer 7778 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.041
ω–scans θmax = 30.6°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −14→16
Tmin = 0.721, Tmax = 1.000 k = −21→20
47396 measured reflections l = −25→25
9265 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0136P)2 + 38.0407P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
9265 reflections Δρmax = 1.96 e Å3
373 parameters Δρmin = −1.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.9589 (6) 0.0517 (5) 0.5859 (4) 0.0249 (14)
H1 0.9628 0.0430 0.5333 0.030*
C2 0.8570 (6) 0.0145 (4) 0.6075 (4) 0.0242 (14)
H2 0.8028 −0.0148 0.5666 0.029*
C3 0.8479 (7) −0.0224 (5) 0.6843 (5) 0.0349 (17)
H3A 0.8909 −0.0782 0.6915 0.042*
H3B 0.7643 −0.0342 0.6858 0.042*
C4 0.8991 (8) 0.0407 (5) 0.7487 (4) 0.0386 (19)
H4A 0.8557 0.0321 0.7892 0.046*
H4B 0.9827 0.0260 0.7669 0.046*
C5 0.8901 (6) 0.1385 (5) 0.7250 (3) 0.0256 (15)
H5 0.8446 0.1757 0.7539 0.031*
C6 0.9824 (6) 0.1840 (5) 0.6964 (4) 0.0254 (14)
H6 0.9886 0.2470 0.7095 0.031*
C7 1.0992 (6) 0.1443 (5) 0.6800 (5) 0.0344 (17)
H7A 1.1544 0.1351 0.7266 0.041*
H7B 1.1360 0.1864 0.6509 0.041*
C8 1.0813 (7) 0.0558 (6) 0.6374 (5) 0.0384 (19)
H8A 1.1441 0.0488 0.6082 0.046*
H8B 1.0881 0.0074 0.6728 0.046*
C9 0.3954 (6) 0.2266 (5) 0.4075 (4) 0.0285 (15)
H9 0.3382 0.1819 0.4184 0.034*
C10 0.4240 (6) 0.2919 (5) 0.4627 (4) 0.0257 (14)
H10 0.3834 0.2847 0.5053 0.031*
C11 0.4606 (7) 0.3856 (5) 0.4498 (4) 0.0347 (18)
H11A 0.4960 0.4118 0.4972 0.042*
H11B 0.3893 0.4195 0.4295 0.042*
C12 0.5510 (8) 0.3930 (5) 0.3962 (4) 0.0357 (18)
H12A 0.5075 0.3963 0.3454 0.043*
H12B 0.5972 0.4471 0.4068 0.043*
C13 0.6370 (7) 0.3136 (5) 0.4040 (4) 0.0287 (15)
H13 0.7213 0.3297 0.4215 0.034*
C14 0.6216 (7) 0.2364 (5) 0.3589 (4) 0.0264 (14)
H14 0.6964 0.2095 0.3501 0.032*
C15 0.5120 (8) 0.2173 (5) 0.2990 (4) 0.0342 (18)
H15A 0.5108 0.1548 0.2866 0.041*
H15B 0.5187 0.2504 0.2544 0.041*
C16 0.3924 (7) 0.2421 (5) 0.3237 (4) 0.0322 (17)
H16A 0.3749 0.3039 0.3124 0.039*
H16B 0.3280 0.2071 0.2953 0.039*
F1 0.7470 (3) 0.2768 (2) 0.6121 (2) 0.0244 (8)
F2 0.7685 (5) 0.3520 (3) 0.7446 (2) 0.0412 (12)
F3 0.5858 (4) 0.3941 (3) 0.6383 (3) 0.0354 (10)
F4 0.7378 (4) 0.4343 (3) 0.5482 (2) 0.0342 (10)
F5 0.9210 (4) 0.3940 (3) 0.6563 (3) 0.0364 (10)
F6 0.7594 (5) 0.5180 (3) 0.6819 (3) 0.0435 (12)
F7 0.5383 (6) 0.1340 (4) 0.5579 (4) 0.0685 (18)
F8 0.3397 (5) 0.0409 (6) 0.5486 (4) 0.095 (3)
F9 0.5896 (5) 0.1039 (5) 0.6986 (3) 0.081 (2)
F10 0.5496 (6) −0.0282 (3) 0.6053 (4) 0.0605 (16)
F11 0.3781 (5) 0.1715 (4) 0.6448 (3) 0.0579 (17)
F12 0.1200 (5) 0.2454 (4) 0.8549 (3) 0.0576 (16)
F13 −0.0337 (5) 0.2311 (3) 1.0246 (3) 0.0420 (12)
F14 −0.0805 (6) 0.1760 (5) 0.8855 (3) 0.073 (2)
F15 0.3870 (9) 0.0075 (6) 0.6950 (6) 0.129 (4)
F16 −0.0411 (7) 0.3453 (4) 0.9112 (4) 0.080 (2)
F17 0.1630 (7) 0.3148 (7) 0.9912 (4) 0.106 (3)
F18 0.1349 (9) 0.1414 (6) 0.9699 (5) 0.125 (4)
F19 0.7447 (4) 0.1507 (3) 0.4971 (2) 0.0297 (9)
Pt1 0.84029 (2) 0.15440 (2) 0.60610 (2) 0.01624 (5)
Pt2 0.57666 (2) 0.20657 (2) 0.46502 (2) 0.01641 (5)
Sb1 0.75340 (4) 0.40041 (3) 0.64879 (2) 0.01973 (9)
Sb2 0.46054 (4) 0.06940 (3) 0.62808 (2) 0.02047 (9)
Sb3 0.04406 (4) 0.23885 (4) 0.93973 (3) 0.03022 (11)
F21 0.205 (2) 0.1481 (16) 0.1844 (13) 0.057 (6)* 0.25
F221 0.194 (3) 0.0405 (19) 0.0828 (15) 0.066 (7)* 0.25
F222 0.253 (3) 0.078 (2) 0.0949 (16) 0.075 (8)* 0.25

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.021 (3) 0.027 (3) 0.027 (3) 0.007 (3) 0.004 (3) −0.003 (3)
C2 0.025 (3) 0.013 (3) 0.032 (3) 0.006 (2) −0.003 (3) −0.002 (2)
C3 0.033 (4) 0.021 (4) 0.047 (5) −0.002 (3) 0.001 (3) 0.005 (3)
C4 0.048 (5) 0.036 (4) 0.030 (4) 0.009 (4) 0.001 (3) 0.008 (3)
C5 0.032 (4) 0.025 (3) 0.017 (3) 0.008 (3) −0.005 (3) −0.001 (2)
C6 0.022 (3) 0.026 (3) 0.022 (3) 0.001 (3) −0.010 (3) −0.002 (2)
C7 0.021 (3) 0.038 (4) 0.040 (4) 0.000 (3) −0.006 (3) 0.006 (3)
C8 0.022 (4) 0.036 (4) 0.053 (5) 0.012 (3) −0.002 (3) −0.003 (4)
C9 0.015 (3) 0.026 (4) 0.041 (4) 0.004 (3) −0.003 (3) 0.002 (3)
C10 0.017 (3) 0.029 (4) 0.030 (3) 0.010 (3) 0.002 (3) 0.000 (3)
C11 0.039 (4) 0.018 (3) 0.040 (4) 0.010 (3) −0.010 (3) −0.005 (3)
C12 0.049 (5) 0.019 (3) 0.035 (4) −0.004 (3) −0.005 (3) 0.000 (3)
C13 0.027 (3) 0.030 (4) 0.030 (3) −0.013 (3) 0.006 (3) 0.003 (3)
C14 0.027 (3) 0.030 (4) 0.023 (3) −0.006 (3) 0.007 (3) 0.002 (3)
C15 0.053 (5) 0.029 (4) 0.017 (3) 0.005 (3) −0.003 (3) 0.003 (3)
C16 0.029 (4) 0.031 (4) 0.029 (3) 0.003 (3) −0.017 (3) 0.003 (3)
F1 0.0221 (19) 0.0154 (18) 0.032 (2) 0.0032 (14) −0.0043 (16) −0.0030 (15)
F2 0.055 (3) 0.044 (3) 0.023 (2) 0.008 (2) 0.001 (2) 0.0091 (19)
F3 0.022 (2) 0.039 (3) 0.046 (3) 0.0110 (19) 0.0093 (19) 0.000 (2)
F4 0.049 (3) 0.028 (2) 0.024 (2) 0.001 (2) 0.0008 (19) 0.0047 (17)
F5 0.020 (2) 0.033 (2) 0.053 (3) −0.0063 (18) −0.0014 (19) −0.004 (2)
F6 0.060 (3) 0.022 (2) 0.043 (3) 0.006 (2) −0.008 (2) −0.0132 (19)
F7 0.086 (5) 0.063 (4) 0.066 (4) 0.008 (3) 0.038 (4) 0.037 (3)
F8 0.031 (3) 0.141 (7) 0.106 (5) −0.006 (4) −0.009 (3) −0.093 (5)
F9 0.042 (3) 0.129 (6) 0.059 (4) 0.036 (4) −0.025 (3) −0.048 (4)
F10 0.071 (4) 0.028 (3) 0.085 (4) 0.019 (3) 0.021 (3) −0.005 (3)
F11 0.041 (3) 0.056 (3) 0.070 (4) 0.027 (3) −0.007 (3) −0.034 (3)
F12 0.046 (3) 0.089 (4) 0.044 (3) −0.019 (3) 0.025 (2) −0.024 (3)
F13 0.056 (3) 0.043 (3) 0.031 (2) 0.011 (2) 0.018 (2) 0.004 (2)
F14 0.058 (4) 0.114 (6) 0.050 (3) −0.052 (4) 0.017 (3) −0.030 (4)
F15 0.144 (8) 0.127 (7) 0.147 (8) 0.026 (6) 0.108 (7) 0.085 (7)
F16 0.119 (6) 0.057 (4) 0.081 (5) 0.035 (4) 0.058 (4) 0.030 (3)
F17 0.077 (5) 0.167 (9) 0.073 (5) −0.064 (5) 0.016 (4) −0.057 (5)
F18 0.139 (8) 0.137 (8) 0.121 (7) 0.112 (7) 0.082 (6) 0.070 (6)
F19 0.024 (2) 0.030 (2) 0.027 (2) 0.0102 (17) −0.0138 (16) −0.0027 (17)
Pt1 0.01400 (10) 0.01497 (10) 0.01748 (10) 0.00341 (8) −0.00306 (8) −0.00149 (8)
Pt2 0.01658 (10) 0.01574 (10) 0.01592 (10) 0.00358 (9) 0.00038 (8) 0.00219 (8)
Sb1 0.0236 (2) 0.01486 (18) 0.01871 (18) 0.00293 (16) −0.00145 (15) −0.00242 (14)
Sb2 0.0211 (2) 0.0203 (2) 0.02157 (19) −0.00094 (16) 0.00805 (16) −0.00051 (15)
Sb3 0.0219 (2) 0.0445 (3) 0.0243 (2) 0.0015 (2) 0.00422 (17) −0.0083 (2)

Geometric parameters (Å, º)

C1—C2 1.404 (10) C12—H12B 0.9700
C1—C8 1.527 (10) C13—C14 1.419 (10)
C1—Pt1 2.128 (7) C13—Pt2 2.146 (7)
C1—H1 0.9800 C13—H13 0.9800
C2—C3 1.530 (11) C14—C15 1.523 (10)
C2—Pt1 2.121 (6) C14—Pt2 2.141 (7)
C2—H2 0.9800 C14—H14 0.9800
C3—C4 1.541 (11) C15—C16 1.551 (12)
C3—H3A 0.9700 C15—H15A 0.9700
C3—H3B 0.9700 C15—H15B 0.9700
C4—C5 1.537 (10) C16—H16A 0.9700
C4—H4A 0.9700 C16—H16B 0.9700
C4—H4B 0.9700 F1—Sb1 1.980 (4)
C5—C6 1.428 (11) F1—Pt1 2.142 (4)
C5—Pt1 2.155 (6) F2—Sb1 1.876 (4)
C5—H5 0.9800 F3—Sb1 1.874 (4)
C6—C7 1.532 (11) F4—Sb1 1.885 (4)
C6—Pt1 2.130 (6) F5—Sb1 1.880 (4)
C6—H6 0.9800 F6—Sb1 1.873 (4)
C7—C8 1.540 (11) F7—Sb2 1.946 (5)
C7—H7A 0.9700 F7—Pt2 2.132 (5)
C7—H7B 0.9700 F8—Sb2 1.854 (5)
C8—H8A 0.9700 F9—Sb2 1.837 (5)
C8—H8B 0.9700 F10—Sb2 1.876 (5)
C9—C10 1.406 (10) F11—Sb2 1.856 (5)
C9—C16 1.543 (11) F12—Sb3 1.909 (5)
C9—Pt2 2.148 (6) F13—Sb3 1.923 (5)
C9—H9 0.9800 F14—Sb3 1.833 (5)
C10—C11 1.505 (10) F15—Sb2 1.855 (6)
C10—Pt2 2.150 (6) F16—Sb3 1.898 (6)
C10—H10 0.9800 F17—Sb3 1.883 (6)
C11—C12 1.546 (12) F18—Sb3 1.823 (7)
C11—H11A 0.9700 F19—Pt2 2.065 (4)
C11—H11B 0.9700 F19—Pt1 2.085 (4)
C12—C13 1.534 (11) F221—F222 0.87 (3)
C12—H12A 0.9700
C2—C1—C8 122.9 (7) C14—C15—H15B 109.1
C2—C1—Pt1 70.4 (4) C16—C15—H15B 109.1
C8—C1—Pt1 113.2 (5) H15A—C15—H15B 107.8
C2—C1—H1 114.2 C9—C16—C15 113.1 (5)
C8—C1—H1 114.2 C9—C16—H16A 109.0
Pt1—C1—H1 114.2 C15—C16—H16A 109.0
C1—C2—C3 126.9 (6) C9—C16—H16B 109.0
C1—C2—Pt1 71.0 (4) C15—C16—H16B 109.0
C3—C2—Pt1 110.6 (5) H16A—C16—H16B 107.8
C1—C2—H2 113.4 Sb1—F1—Pt1 147.47 (19)
C3—C2—H2 113.4 Sb2—F7—Pt2 165.0 (4)
Pt1—C2—H2 113.4 Pt2—F19—Pt1 123.3 (2)
C2—C3—C4 113.3 (6) F19—Pt1—C2 90.8 (2)
C2—C3—H3A 108.9 F19—Pt1—C1 92.8 (2)
C4—C3—H3A 108.9 C2—Pt1—C1 38.6 (3)
C2—C3—H3B 108.9 F19—Pt1—C6 158.6 (2)
C4—C3—H3B 108.9 C2—Pt1—C6 98.4 (3)
H3A—C3—H3B 107.7 C1—Pt1—C6 82.9 (3)
C5—C4—C3 112.5 (6) F19—Pt1—F1 84.12 (15)
C5—C4—H4A 109.1 C2—Pt1—F1 154.5 (2)
C3—C4—H4A 109.1 C1—Pt1—F1 166.2 (2)
C5—C4—H4B 109.1 C6—Pt1—F1 95.1 (2)
C3—C4—H4B 109.1 F19—Pt1—C5 162.5 (2)
H4A—C4—H4B 107.8 C2—Pt1—C5 82.6 (3)
C6—C5—C4 123.3 (7) C1—Pt1—C5 92.1 (3)
C6—C5—Pt1 69.6 (4) C6—Pt1—C5 38.9 (3)
C4—C5—Pt1 112.5 (5) F1—Pt1—C5 94.8 (2)
C6—C5—H5 114.4 F19—Pt2—F7 82.9 (2)
C4—C5—H5 114.4 F19—Pt2—C14 89.0 (2)
Pt1—C5—H5 114.4 F7—Pt2—C14 161.2 (3)
C5—C6—C7 126.9 (6) F19—Pt2—C13 95.2 (2)
C5—C6—Pt1 71.5 (4) F7—Pt2—C13 158.8 (3)
C7—C6—Pt1 108.8 (5) C14—Pt2—C13 38.7 (3)
C5—C6—H6 113.7 F19—Pt2—C9 160.7 (2)
C7—C6—H6 113.7 F7—Pt2—C9 98.4 (3)
Pt1—C6—H6 113.7 C14—Pt2—C9 83.8 (3)
C6—C7—C8 113.6 (6) C13—Pt2—C9 90.4 (3)
C6—C7—H7A 108.8 F19—Pt2—C10 161.0 (2)
C8—C7—H7A 108.8 F7—Pt2—C10 92.5 (3)
C6—C7—H7B 108.8 C14—Pt2—C10 100.4 (3)
C8—C7—H7B 108.8 C13—Pt2—C10 82.5 (3)
H7A—C7—H7B 107.7 C9—Pt2—C10 38.2 (3)
C1—C8—C7 111.6 (6) F6—Sb1—F3 93.2 (2)
C1—C8—H8A 109.3 F6—Sb1—F2 94.4 (2)
C7—C8—H8A 109.3 F3—Sb1—F2 89.5 (2)
C1—C8—H8B 109.3 F6—Sb1—F5 92.8 (2)
C7—C8—H8B 109.3 F3—Sb1—F5 173.9 (2)
H8A—C8—H8B 108.0 F2—Sb1—F5 89.7 (2)
C10—C9—C16 124.4 (7) F6—Sb1—F4 92.8 (2)
C10—C9—Pt2 71.0 (4) F3—Sb1—F4 90.2 (2)
C16—C9—Pt2 110.5 (5) F2—Sb1—F4 172.8 (2)
C10—C9—H9 114.3 F5—Sb1—F4 89.9 (2)
C16—C9—H9 114.3 F6—Sb1—F1 179.1 (2)
Pt2—C9—H9 114.3 F3—Sb1—F1 86.80 (18)
C9—C10—C11 125.5 (7) F2—Sb1—F1 86.54 (19)
C9—C10—Pt2 70.8 (4) F5—Sb1—F1 87.16 (18)
C11—C10—Pt2 108.9 (5) F4—Sb1—F1 86.27 (18)
C9—C10—H10 114.3 F9—Sb2—F8 173.1 (4)
C11—C10—H10 114.3 F9—Sb2—F15 94.4 (5)
Pt2—C10—H10 114.3 F8—Sb2—F15 92.5 (5)
C10—C11—C12 113.6 (6) F9—Sb2—F11 90.5 (3)
C10—C11—H11A 108.8 F8—Sb2—F11 90.0 (3)
C12—C11—H11A 108.8 F15—Sb2—F11 90.6 (4)
C10—C11—H11B 108.8 F9—Sb2—F10 89.3 (3)
C12—C11—H11B 108.8 F8—Sb2—F10 89.6 (3)
H11A—C11—H11B 107.7 F15—Sb2—F10 94.3 (4)
C13—C12—C11 111.6 (6) F11—Sb2—F10 175.1 (3)
C13—C12—H12A 109.3 F9—Sb2—F7 85.5 (3)
C11—C12—H12A 109.3 F8—Sb2—F7 87.6 (4)
C13—C12—H12B 109.3 F15—Sb2—F7 179.7 (4)
C11—C12—H12B 109.3 F11—Sb2—F7 89.7 (3)
H12A—C12—H12B 108.0 F10—Sb2—F7 85.4 (3)
C14—C13—C12 125.4 (6) F18—Sb3—F14 94.6 (5)
C14—C13—Pt2 70.5 (4) F18—Sb3—F17 91.6 (5)
C12—C13—Pt2 112.3 (5) F14—Sb3—F17 173.7 (4)
C14—C13—H13 113.6 F18—Sb3—F16 176.0 (5)
C12—C13—H13 113.6 F14—Sb3—F16 89.4 (4)
Pt2—C13—H13 113.6 F17—Sb3—F16 84.4 (4)
C13—C14—C15 124.7 (7) F18—Sb3—F12 88.5 (3)
C13—C14—Pt2 70.8 (4) F14—Sb3—F12 90.3 (2)
C15—C14—Pt2 108.3 (5) F17—Sb3—F12 89.2 (3)
C13—C14—H14 114.7 F16—Sb3—F12 90.9 (3)
C15—C14—H14 114.7 F18—Sb3—F13 91.3 (3)
Pt2—C14—H14 114.7 F14—Sb3—F13 89.0 (2)
C14—C15—C16 112.6 (6) F17—Sb3—F13 91.5 (3)
C14—C15—H15A 109.1 F16—Sb3—F13 89.3 (2)
C16—C15—H15A 109.1 F12—Sb3—F13 179.3 (2)

Footnotes

1

For JANA to the first anniversary of our wedding.

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2006). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Friedemann, R. & Seppelt, K. (2013). Eur. J. Inorg. Chem. pp. 1197–1206.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  6. Smith, D., Haar, C., Stevens, E., Nolan, S., Marshall, W. J. & Moloy, K. G. (2000). Organometallics, 19, 1427–1433.
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  8. Yahav, A., Goldberg, I. & Vigalok, A. (2005). Inorg. Chem. 44, 1547–1553. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022835/wm5233sup1.cif

e-72-00014-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022835/wm5233Isup2.hkl

e-72-00014-Isup2.hkl (735.4KB, hkl)

CCDC reference: 1439460

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES