Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 1;72(Pt 1):73–75. doi: 10.1107/S2056989015023919

Crystal structure of tris­(di­methyl­amido-κN)­bis­(di­methyl­amine-κN)­zirconium(IV) iodide

Wesley D Clark a, Gopalakrishna Akurathi a, Henry U Valle a, T Keith Hollis a,*
PMCID: PMC4704753  PMID: 26870590

The crystal structure of tris­(di­methyl­amido)­bis­(di­methyl­amine) zirconium(IV) iodide is reported.

Keywords: crystal structure, zirconium, amido ligands, iodide, di­methyl­amine, N—H⋯I inter­actions

Abstract

Zirconium amides have become increasingly popular and useful due to their widespread use as precursors to other zirconium complexes and their use in the production of solid oxide fuel cells (SOFCs). Herein we report the mol­ecular structure of tris­(di­methyl­amido)­bis­(di­methyl­amine)­zirconium(IV) iodide, [Zr(C2H6N)3(C2H7N)2]I. The bond lengths and bond angles are consistent with a slightly distorted trigonal–bipyramidal coordination geometry around the metal atom. N⋯I contacts of 3.6153 (15) and 3.5922 (14) Å are consistent with the presence of N—H⋯I inter­actions. These N—H⋯I inter­actions link the complex cations and iodide anions into extended chains that propagate parallel to the a axis.

Chemical context  

Zirconium amide complexes are widely used in the synthesis of other zirconium complexes and solid oxide fuel cells (SOFCs). Additionally, many zirconium amide complexes are precatalysts for hydro­amination/cyclization of unactivated amino­alkenes (Luconi et al., 2013, Manna et al., 2013 and references therein). Perhaps one of the most well known zirconium amide complexes is tetra­kis­(di­methyl­amido)­zirconium(IV). The title compound serendipitously formed from the reaction of an excess of tetra­kis­(di­methyl­amido)­zirconium(IV) and a bis­(imidazo­l­ium) salt that we routinely perform, as illustrated in the Scheme below.graphic file with name e-72-00073-scheme1.jpg

Structural commentary  

The zirconium complex has a slightly distorted trigonal–bipyramidal geometry with three dimethamido ligands in equatorial positions and two dimethyamine ligands in axial positions (Fig. 1). Iodide provides a counterbalancing charge for the cationic zirconium complex. The Zr—amine bonds [Zr1—N1 and Zr1—N2, 2.3730 (13) and 2.3695 (14) Å, respectively] are significantly longer than those of the amide ligands [Zr1—N3 2.0249 (14), Zr1—N4 2.0393 (14), and Zr1—N5 2.0389 (14) Å]. The C—N bonds vary little, with the shortest and longest bond being only 0.026 (2) Å different [N1–C2 1.480 (2) and N3—C5 1.454 (2) Å]. The N1—Zr1—N2 angle of 172.83 (5)° and the N1—Zr1—N3 of 94.35 (5)° deviate slightly from the ideal angles of trigonal–bipyramidal geometry. The N3—Zr1—N5, N3—Zr1—N4, and N4—Zr1—N5 angles are close to 120° [116.76 (6), 120.99 (6), and 122.15 (6)°, respectively]. The C—N—Zr angles vary with the smallest and largest angles being almost 20° different [C10—N5—Zr1 135.34 (11) and C1—N1—Zr1 110.52 (10)°]. The amine nitro­gen atoms (N1 and N2) are puckered in the structure [Zr1—N1—C1—C2 −124.71 (15) and Zr1—N2—C3—C4 127.27 (15)°]. This is in contrast to the amide ligands which are essentially coplanar with the metal [Zr1—N3—C5—C6 175.88 (19), Zr1—N4—C7—C8 174.05 (17), and Zr1—N5—C9—C10 −176.79 (17)°]. One amide ligand is twisted out of the plane by roughly 40° [C9—N5—Zr1—N3 −39.10 (13)°].

Figure 1.

Figure 1

Displacement ellipsoid plot of the title compound. All hydrogens except the amine H atoms have been omitted for clarity. Ellipsoids are shown at the 50% probability level.

Supra­molecular features  

N⋯I contacts of 3.6153 (15) and 3.5922 (14) Å are consistent with the presence of N—H⋯I inter­actions (Table 1). The ‘twist’ of the second di­methyl­amido ligand away from the first is consistent with inter­action with a symmetry-related I atom (H2—N2—N1—H1 − 114°; Fig. 2). The N—H⋯I inter­actions link the complex cations and iodide anions into extended chains that propagate parallel to the a axis.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯I1i 1.00 2.78 3.5922 (14) 138
N2—H2⋯I1 1.00 2.69 3.6153 (15) 138

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

A packing plot of the unit cell viewed approximately down the b axis, illustrating the N—H⋯I inter­actions (grey dotted lines). All hydrogen atoms except the amine H atoms have been omitted for clarity. Displacement ellipsoids are shown at the 50% probability level.

Database survey  

The synthesis or crystal structure of tris­(di­methyl­amido)­bis(di­methyl­amine)­zirconium(IV) iodide has not been reported as of 22 April 2015 based on a comprehensive WebCSD and Scifinder Scholar search. Similar compounds have been characterized crystallographically, for example tetra­kis­(di­methyl­amido)­zirconium(IV) and its lithium di­methyl­amido adduct (Chisholm et al., 1988) and several more zirconium-amide iodide complexes (Lehn & Hoffman, 2002).

Synthesis and crystallization  

1,3-Bis(3′-hexyl­imidazol-1′-yl)benzene diiodide (301 mg, 0.475 mmol), tetra­kis­(di­methyl­amido)­zirconium(IV) (317 mg, 1.24 mmol) and dry toluene (2.8 mL) were combined in an inert atmosphere of Ar and heated at 383 K for 5 min in a sealed screw-cap vial. While heating, the reaction mixture became homogeneous. Upon cooling to room temperature, an oil formed. The top layer was removed and the oil was washed with toluene (3 × 3 mL). The toluene washings were combined and allowed to sit at room temperature. Colorless crystals formed after 2 months. The mother liquor was deca­nted and the crystals were covered with paratone oil after using a few crystals for 1H NMR spectroscopy. 1H NMR spectra of the samples indicated that 2-[1,3-bis­(3′-hexyl-imidazol-2′-yl­idene)phenyl­ene](di­methyl­amido)­diiodidozirconium(IV) and 2-[1,3-bis­(3′-hexyl-imidazol-2′-yl­idene)phenyl­ene]bis­(di­methyl­amido)iodidozirconium(IV) had crystallized in the form of needles, which were not suitable for single-crystal X-ray diffraction. However, a suitable tablet-shaped crystal of tris­(di­methyl­amido)­bis­(di­methyl­ammine)zirconium(IV) iodide was selected, mounted, and analyzed.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C and N atoms were placed at geometrically calculated positions and refined using a riding model: C—H = 0.98, N—H = 1.00 Å; U iso(H) = 1.5U eq(C) or 1.2U eq(N).

Table 2. Experimental details.

Crystal data
Chemical formula [Zr(C2H7N)2(C2H6N)3]I
M r 440.52
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 100
a, b, c (Å) 14.2425 (3), 15.4113 (3), 16.8537 (3)
V3) 3699.31 (12)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.26
Crystal size (mm) 0.2 × 0.1 × 0.1
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Numerical (SADABS; Bruker, 2014)
T min, T max 0.656, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 29665, 3620, 3319
R int 0.027
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.015, 0.036, 1.07
No. of reflections 3620
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.34

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS and SHELXL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023919/pk2563sup1.cif

e-72-00073-sup1.cif (587.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023919/pk2563Isup2.hkl

e-72-00073-Isup2.hkl (289.2KB, hkl)

CCDC reference: 1037746

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge Mississippi State University for financial support.

supplementary crystallographic information

Crystal data

[Zr(C2H6N)3(C2H7N)2]I Dx = 1.582 Mg m3
Mr = 440.52 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 9970 reflections
a = 14.2425 (3) Å θ = 2.3–26.0°
b = 15.4113 (3) Å µ = 2.26 mm1
c = 16.8537 (3) Å T = 100 K
V = 3699.31 (12) Å3 Tablet, colourless
Z = 8 0.2 × 0.1 × 0.1 mm
F(000) = 1760

Data collection

Bruker APEXII CCD diffractometer 3319 reflections with I > 2σ(I)
φ and ω scans Rint = 0.027
Absorption correction: numerical (SADABS; Bruker, 2014) θmax = 26.0°, θmin = 2.3°
Tmin = 0.656, Tmax = 0.745 h = −17→17
29665 measured reflections k = −18→19
3620 independent reflections l = −18→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.015 H-atom parameters constrained
wR(F2) = 0.036 w = 1/[σ2(Fo2) + (0.0158P)2 + 1.6295P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.002
3620 reflections Δρmax = 0.33 e Å3
154 parameters Δρmin = −0.34 e Å3

Special details

Experimental. wR2(int) was 0.0590 before and 0.0411 after absorption correction. The ratio of minimum to maximum transmission is 0.8806. The λ/2 correction factor is 0.00150.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.42535 (13) 0.59533 (12) 0.45204 (11) 0.0250 (4)
H1A 0.4484 0.6453 0.4219 0.037*
H1B 0.4754 0.5737 0.4867 0.037*
H1C 0.4062 0.5494 0.4153 0.037*
C2 0.30833 (15) 0.54710 (12) 0.54677 (12) 0.0314 (5)
H2A 0.2545 0.5655 0.5788 0.047*
H2B 0.2888 0.5010 0.5103 0.047*
H2C 0.3580 0.5253 0.5817 0.047*
C3 0.39168 (13) 0.94138 (11) 0.64365 (11) 0.0208 (4)
H3A 0.3892 0.9531 0.5865 0.031*
H3B 0.3277 0.9361 0.6644 0.031*
H3C 0.4240 0.9892 0.6706 0.031*
C4 0.44722 (13) 0.84138 (11) 0.74390 (10) 0.0210 (4)
H4A 0.4814 0.7871 0.7531 0.031*
H4B 0.4796 0.8891 0.7709 0.031*
H4C 0.3833 0.8360 0.7648 0.031*
C5 0.23350 (14) 0.69989 (13) 0.70093 (11) 0.0279 (4)
H5A 0.2871 0.6622 0.7130 0.042*
H5B 0.2214 0.7383 0.7461 0.042*
H5C 0.1779 0.6642 0.6908 0.042*
C6 0.17635 (12) 0.80851 (13) 0.61133 (12) 0.0260 (4)
H6A 0.1921 0.8427 0.5642 0.039*
H6B 0.1204 0.7735 0.6006 0.039*
H6C 0.1639 0.8476 0.6560 0.039*
C7 0.57938 (12) 0.68391 (12) 0.60513 (11) 0.0222 (4)
H7A 0.5755 0.7251 0.5609 0.033*
H7B 0.6177 0.7089 0.6477 0.033*
H7C 0.6081 0.6298 0.5867 0.033*
C8 0.48782 (14) 0.60495 (12) 0.70102 (11) 0.0249 (4)
H8A 0.4239 0.5941 0.7200 0.037*
H8B 0.5160 0.5503 0.6832 0.037*
H8C 0.5256 0.6294 0.7442 0.037*
C9 0.33176 (13) 0.81902 (12) 0.42983 (11) 0.0235 (4)
H9A 0.2804 0.7826 0.4495 0.035*
H9B 0.3103 0.8793 0.4258 0.035*
H9C 0.3515 0.7984 0.3774 0.035*
C10 0.48868 (13) 0.86737 (11) 0.45761 (11) 0.0233 (4)
H10A 0.5408 0.8630 0.4954 0.035*
H10B 0.5094 0.8471 0.4054 0.035*
H10C 0.4683 0.9279 0.4537 0.035*
N1 0.34417 (10) 0.62186 (9) 0.50068 (8) 0.0166 (3)
H1 0.2932 0.6412 0.4639 0.020*
N2 0.44334 (10) 0.85934 (9) 0.65782 (8) 0.0153 (3)
H2 0.5094 0.8692 0.6399 0.018*
N3 0.25455 (10) 0.75170 (9) 0.63104 (8) 0.0180 (3)
N4 0.48491 (10) 0.66602 (9) 0.63514 (8) 0.0162 (3)
N5 0.41111 (10) 0.81422 (9) 0.48479 (8) 0.0159 (3)
Zr1 0.38438 (2) 0.74109 (2) 0.58304 (2) 0.01200 (5)
I1 0.68609 (2) 0.92790 (2) 0.65905 (2) 0.02035 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0281 (10) 0.0224 (10) 0.0244 (10) 0.0032 (8) −0.0005 (8) −0.0092 (8)
C2 0.0509 (14) 0.0178 (9) 0.0256 (11) −0.0139 (9) −0.0001 (9) 0.0003 (8)
C3 0.0240 (10) 0.0157 (8) 0.0228 (10) 0.0010 (7) −0.0006 (8) −0.0027 (7)
C4 0.0258 (10) 0.0226 (9) 0.0146 (9) −0.0021 (7) −0.0008 (7) −0.0024 (7)
C5 0.0300 (11) 0.0307 (10) 0.0231 (10) −0.0020 (8) 0.0079 (8) 0.0020 (8)
C6 0.0211 (10) 0.0283 (10) 0.0287 (11) −0.0001 (8) −0.0007 (8) −0.0021 (8)
C7 0.0212 (10) 0.0229 (9) 0.0224 (10) 0.0000 (7) −0.0011 (8) 0.0017 (7)
C8 0.0322 (11) 0.0215 (9) 0.0211 (10) 0.0050 (8) −0.0011 (8) 0.0070 (8)
C9 0.0279 (10) 0.0207 (9) 0.0220 (10) 0.0016 (8) −0.0057 (8) 0.0043 (7)
C10 0.0255 (10) 0.0208 (9) 0.0236 (10) −0.0017 (7) 0.0052 (8) 0.0063 (7)
N1 0.0209 (8) 0.0144 (7) 0.0145 (7) −0.0017 (6) −0.0003 (6) −0.0003 (6)
N2 0.0166 (7) 0.0154 (7) 0.0138 (7) −0.0006 (6) 0.0009 (6) −0.0006 (5)
N3 0.0177 (8) 0.0205 (8) 0.0157 (7) −0.0025 (6) 0.0025 (6) −0.0022 (6)
N4 0.0202 (8) 0.0147 (7) 0.0136 (7) 0.0011 (6) −0.0014 (6) 0.0021 (6)
N5 0.0195 (8) 0.0137 (7) 0.0145 (7) −0.0018 (6) −0.0005 (6) 0.0013 (5)
Zr1 0.01412 (9) 0.01104 (8) 0.01085 (9) −0.00094 (6) 0.00062 (6) 0.00062 (6)
I1 0.01689 (7) 0.02028 (7) 0.02389 (8) 0.00079 (4) 0.00159 (4) 0.00231 (4)

Geometric parameters (Å, º)

C1—H1A 0.9800 C7—H7A 0.9800
C1—H1B 0.9800 C7—H7B 0.9800
C1—H1C 0.9800 C7—H7C 0.9800
C1—N1 1.475 (2) C7—N4 1.464 (2)
C2—H2A 0.9800 C8—H8A 0.9800
C2—H2B 0.9800 C8—H8B 0.9800
C2—H2C 0.9800 C8—H8C 0.9800
C2—N1 1.480 (2) C8—N4 1.456 (2)
C3—H3A 0.9800 C9—H9A 0.9800
C3—H3B 0.9800 C9—H9B 0.9800
C3—H3C 0.9800 C9—H9C 0.9800
C3—N2 1.482 (2) C9—N5 1.463 (2)
C4—H4A 0.9800 C10—H10A 0.9800
C4—H4B 0.9800 C10—H10B 0.9800
C4—H4C 0.9800 C10—H10C 0.9800
C4—N2 1.478 (2) C10—N5 1.450 (2)
C5—H5A 0.9800 N1—H1 1.0000
C5—H5B 0.9800 N1—Zr1 2.3730 (13)
C5—H5C 0.9800 N2—H2 1.0000
C5—N3 1.454 (2) N2—Zr1 2.3695 (14)
C6—H6A 0.9800 N3—Zr1 2.0249 (14)
C6—H6B 0.9800 N4—Zr1 2.0393 (14)
C6—H6C 0.9800 N5—Zr1 2.0389 (14)
C6—N3 1.455 (2)
H1A—C1—H1B 109.5 N4—C8—H8B 109.5
H1A—C1—H1C 109.5 N4—C8—H8C 109.5
H1B—C1—H1C 109.5 H9A—C9—H9B 109.5
N1—C1—H1A 109.5 H9A—C9—H9C 109.5
N1—C1—H1B 109.5 H9B—C9—H9C 109.5
N1—C1—H1C 109.5 N5—C9—H9A 109.5
H2A—C2—H2B 109.5 N5—C9—H9B 109.5
H2A—C2—H2C 109.5 N5—C9—H9C 109.5
H2B—C2—H2C 109.5 H10A—C10—H10B 109.5
N1—C2—H2A 109.5 H10A—C10—H10C 109.5
N1—C2—H2B 109.5 H10B—C10—H10C 109.5
N1—C2—H2C 109.5 N5—C10—H10A 109.5
H3A—C3—H3B 109.5 N5—C10—H10B 109.5
H3A—C3—H3C 109.5 N5—C10—H10C 109.5
H3B—C3—H3C 109.5 C1—N1—C2 110.24 (14)
N2—C3—H3A 109.5 C1—N1—H1 107.9
N2—C3—H3B 109.5 C1—N1—Zr1 110.52 (10)
N2—C3—H3C 109.5 C2—N1—H1 107.9
H4A—C4—H4B 109.5 C2—N1—Zr1 112.27 (11)
H4A—C4—H4C 109.5 Zr1—N1—H1 107.9
H4B—C4—H4C 109.5 C3—N2—H2 106.8
N2—C4—H4A 109.5 C3—N2—Zr1 113.23 (10)
N2—C4—H4B 109.5 C4—N2—C3 109.66 (13)
N2—C4—H4C 109.5 C4—N2—H2 106.8
H5A—C5—H5B 109.5 C4—N2—Zr1 113.04 (10)
H5A—C5—H5C 109.5 Zr1—N2—H2 106.8
H5B—C5—H5C 109.5 C5—N3—C6 110.95 (14)
N3—C5—H5A 109.5 C5—N3—Zr1 117.87 (12)
N3—C5—H5B 109.5 C6—N3—Zr1 131.02 (12)
N3—C5—H5C 109.5 C7—N4—Zr1 112.94 (10)
H6A—C6—H6B 109.5 C8—N4—C7 111.04 (14)
H6A—C6—H6C 109.5 C8—N4—Zr1 135.64 (12)
H6B—C6—H6C 109.5 C9—N5—Zr1 113.45 (11)
N3—C6—H6A 109.5 C10—N5—C9 111.11 (14)
N3—C6—H6B 109.5 C10—N5—Zr1 135.34 (11)
N3—C6—H6C 109.5 N2—Zr1—N1 172.83 (5)
H7A—C7—H7B 109.5 N3—Zr1—N1 94.35 (5)
H7A—C7—H7C 109.5 N3—Zr1—N2 92.81 (5)
H7B—C7—H7C 109.5 N3—Zr1—N4 120.99 (6)
N4—C7—H7A 109.5 N3—Zr1—N5 116.76 (6)
N4—C7—H7B 109.5 N4—Zr1—N1 88.97 (5)
N4—C7—H7C 109.5 N4—Zr1—N2 87.62 (5)
H8A—C8—H8B 109.5 N5—Zr1—N1 89.88 (5)
H8A—C8—H8C 109.5 N5—Zr1—N2 86.60 (5)
H8B—C8—H8C 109.5 N5—Zr1—N4 122.15 (6)
N4—C8—H8A 109.5

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···I1i 1.00 2.78 3.5922 (14) 138
N2—H2···I1 1.00 2.69 3.6153 (15) 138

Symmetry code: (i) x−1/2, −y+3/2, −z+1.

References

  1. Bruker (2013). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chisholm, M. H., Hammond, C. E. & Huffman, J. C. (1988). Polyhedron, 7, 2515–2520.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Lehn, J. M. & Hoffman, D. M. (2002). Inorg. Chem. 41, 4063–4067. [DOI] [PubMed]
  6. Luconi, L., Rossin, A., Tuci, G., Germain, S., Schulz, E., Hannedouche, J. & Giambastiani, G. (2013). ChemCatChem, 5, 1142–1151.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Manna, K., Everett, W. C., Schoendorff, G., Ellern, A., Windus, T. L. & Sadow, A. D. (2013). J. Am. Chem. Soc. 135, 7235–7250. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023919/pk2563sup1.cif

e-72-00073-sup1.cif (587.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023919/pk2563Isup2.hkl

e-72-00073-Isup2.hkl (289.2KB, hkl)

CCDC reference: 1037746

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES