Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 1;72(Pt 1):83–86. doi: 10.1107/S2056989015024147

Crystal structure of [bis­(2-amino­ethyl-κN)(2-{[4-(tri­fluoro­meth­yl)benzyl­idene]amino}­eth­yl)amine-κN]di­chlorido­copper(II)

Katherine A Bussey a, Annie R Cavalier a, Margaret E Mraz a, Ashley S Holderread a, Kayode D Oshin a,*, Allen G Oliver b, Matthias Zeller c
PMCID: PMC4704757  PMID: 26870592

The asymmetric unit of the title compound contains two crystallographically unique copper complexes. In each complex, the Cu atom is bound to two chloride ligands and to three N atoms of the 2-(4-tri­fluoro­methyl­benzyl­idene­amino)­ethyl­amine-bis­(2–2amino­eth­yl)amine ligand to give a distorted square-based pyramidal geometry in which the axial Cu—Cl bond is elongated, indicative of Jahn–Teller distortion. A Cu atom from a symmetry-related mol­ecule is in nearby proximity to the remaining axial Cu site, thus the overall geometry about each Cu atom could be described as being between distorted square-based pyramidal and very elongated Jahn–Teller-distorted octa­hedral.

Keywords: crystal structure, four-coordinate copper(II) complex, tri­fluoro­methyl group analogue, ligand disorder

Abstract

The CuII atom in the title compound, [CuCl2(C14H21F3N4)], adopts a coordination geometry that is between distorted square-based pyramidal and very Jahn–Teller-elongated octa­hedral. It is coordinated by three N atoms from the bis­(2-amino­eth­yl)(2-{[4-(tri­fluoro­meth­yl)benzyl­idene]amino}­eth­yl)amine and two chloride ligands. The two crystallographically unique copper complexes present in the asymmetric unit exhibit noticeable differences in the coordination bond lengths. Considering the CuII atoms as having square-pyramidal geometry, the basal Cu—Cl bond lengths are typical [2.2701 (12) and 2.2777 (12) Å], while the apical distances are considerably elongated [2.8505 (12) and 2.9415 (12) Å]. For each mol­ecule, a CuII atom from inversion-related mol­ecules are in nearby proximity to the remaining axial CuII sites, but the Cu⋯Cl distances are very long [3.4056 (12) and 3.1645 (12) Å], attributable to van der Waals contacts. Nonetheless, these contacts appear to have some structure-directing properties, leading to association into dimers. These dimers associate via stacking of the aromatic rings to form extended zigzag chains.

Chemical context  

The introduction of a fluorine atom or perfluoro­alkyl group into a compound can bring about significant changes in its physical, chemical, and biological properties, making organo-fluorine derivatives suitable for diverse applications in areas of material science, agrochemistry, and medicinal chemistry (Singh & Shreeve, 2000). Modifications include polarity and conformational changes, increased chemical or metabolic stability, and enhanced lipophilicity (Böhm et al., 2004). As many as 30–40% of agrochemicals and 20% of pharmaceuticals on the market are estimated to contain fluorine, including three of the top eight drugs sold in 2007 (Dubinia et al., 2008). Fluorination can also serve as a diagnostic tool, enabling techniques such as 19F NMR spectroscopy and positron emission tomography, with some organo-fluorine compounds exhibiting inter­esting NMR spectra (Purser et al., 2008). The simplest perfluoro­alkyl group, tri­fluoro­methyl, has become an important structural component for many compounds, mainly because of its polar influence and effect on lipophilicity (Dolbier, 2009). Its electronegativity and relatively small size (only two and one-half times the volume of a methyl group) contribute to this behavior (Welch, 1987). As such, synthesis of simple and complex compounds incorporating fluorinated analogues of the methyl group has become a growing area of inter­est. In this context, we report the synthesis and crystal structure of the title compound [CuCl2(C14H21N4F3)] (1).graphic file with name e-72-00083-scheme1.jpg

Structural commentary  

The asymmetric unit of the title compound contains two Cu–ligand complexes (Fig. 1). The coordination geometries of both CuII ions are between distorted square-based pyramidal and very Jahn–Teller-distorted octa­hedral. The first complex displays Cu—Cl bond lengths of 2.2701 (12) and 2.8505 (12) Å, while Cu—Cl lengths of 2.2777 (12) and 2.9415 (12) Å are observed in the second (Table 1, Fig. 2). Some studies suggest that copper(II) complexes adopting square-pyramidal geometries with apical Cu—L bonds longer than the basal bonds by up to 0.5 Å may not be due to Jahn–Teller distortion, but the result of a double electron occupancy of the anti­bonding a1 orbital and single occupancy of the b1 orbital, leading to increased anti-bonding electron density along the apical Cu—L axis (Rossi & Hoffmann, 1975). Copper(II) complexes with a square plane of ligand donors and one or two axial Cu—L inter­actions of 2.1–2.8 Å are very common (Murphy & Hathaway, 2003). Taking into consideration the covalent and van der Waals radii of copper (1.4 Å), an axial Cu—Cl bond length of less than 2.8 Å can be viewed as a genuine bond while bond lengths between 2.8–3.2 Å represent a weaker secondary inter­action that is predominantly electrostatic in nature. Distances greater than 3.2 Å can be considered as purely van der Waals contacts (Halcrow, 2013). Following these criteria, it would seem that the inter­action observed between Cu2⋯Cl3ii [3.1645 (12) Å; symmetry code: (ii) −x, −y, −z + 2] is a weaker secondary inter­action with electrostatic characteristics. However, an elongated Cu1⋯Cl2i distance of 3.4056 (12) Å is also observed, which can be attributed to a van der Waals contact [Halcrow, 2013; symmetry code: (i) −x + 1, −y + 1, −z). These contacts appear to have some structure-directing properties, producing chlorine-bridged dimers in the crystal structure of (1).

Figure 1.

Figure 1

Asymmetric unit of the title compound, showing atomic displacement ellipsoids at the 50% probability level and the atom-numbering scheme.

Table 1. Selected geometric parameters (Å, °).

Cu1—N2 1.986 (3) Cu2—N7 1.986 (4)
Cu1—N3 1.988 (4) Cu2—N6 1.989 (4)
Cu1—N1 2.062 (4) Cu2—N5 2.070 (4)
Cu1—Cl1 2.2701 (12) Cu2—Cl3 2.2777 (12)
Cu1—Cl2 2.8505 (12) Cu2—Cl4 2.9415 (12)
Cu1—Cl1i 3.4056 (12) Cu2—Cl3ii 3.1645 (12)
       
N2—Cu1—N3 166.47 (15) N7—Cu2—N6 163.80 (16)
N2—Cu1—N1 84.81 (14) N7—Cu2—N5 85.50 (15)
N3—Cu1—N1 85.31 (14) N6—Cu2—N5 85.18 (14)
N2—Cu1—Cl1 95.85 (11) N7—Cu2—Cl3 95.55 (11)
N3—Cu1—Cl1 95.68 (11) N6—Cu2—Cl3 95.56 (11)
N1—Cu1—Cl1 168.47 (11) N5—Cu2—Cl3 171.82 (11)
N2—Cu1—Cl2 88.27 (11) N7—Cu2—Cl4 81.07 (11)
N3—Cu1—Cl2 83.37 (11) N6—Cu2—Cl4 86.35 (11)
N1—Cu1—Cl2 94.77 (10) N5—Cu2—Cl4 93.74 (10)
Cl1—Cu1—Cl2 96.76 (4) Cl3—Cu2—Cl4 94.44 (4)
N2—Cu1—Cl1i 115.18 (11) N7—Cu2—Cl3ii 80.52 (11)
N3—Cu1—Cl1i 74.19 (11) N6—Cu2—Cl3ii 113.16 (12)
N1—Cu1—Cl1i 90.95 (10) N5—Cu2—Cl3ii 92.88 (10)
Cl1—Cu1—Cl1i 78.32 (4) Cl3—Cu2—Cl3ii 79.32 (4)
Cl2—Cu1—Cl1i 156.30 (3) Cl4—Cu2—Cl3ii 159.87 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Dimer inter­actions between [CuCl2(C14H21N4F3)] mol­ecules, shown with 50% probability ellipsoids. H atoms were removed for clarity. Symmetry codes: (i) −x + 1, −y + 1, −z; (ii) −x, −y, −z + 2.

Supra­molecular features  

In addition to electrostatic inter­actions observed in each complex, the aromatic rings engage in offset face-to-face π–π inter­actions with an observed centroid-to-centroid distance of 3.906 (3) Å and a dihedral angle of 10.6 (3)° (Fig. 3). Inspection of the extended structure shows that the orientation of these phenyl rings (C8–C13 and C22–C27) reduces inter­actions of the CF3 groups associated with these rings. Coupled with the chlorine-bridged dimer we find that chains of mol­ecules extend through the crystal parallel to the [221] direction (Fig. 3).

Figure 3.

Figure 3

View along the a axis showing weak inter­molecular inter­actions present in the crystal lattice. Atomic displacement ellipsoids depicted at 50% probability level with π–π inter­actions shown as dashed gray lines.

Inspection of inter­molecular/intra­molecular contacts reveals that amine nitro­gen atoms N2, N3, N6 and N7 are involved in N—H⋯Cl hydrogen-bonds (Table 2). However, several of the contacts [N3⋯Cl3i, N3⋯Cl2, N7⋯Cl4; symmetry code: (i) −x + 1, −y + 1, −z] have severely constrained N—H⋯Cl angles and are merely contacts to chlorine atoms bonded to the same CuII atom. The remaining hydrogen-bond contacts are inter­molecular inter­actions, and while relatively long, they likely contribute to structure-directed organization.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl3iii 0.91 2.84 3.591 (4) 141
N2—H2B⋯Cl4iv 0.91 2.46 3.365 (4) 171
N3—H3A⋯Cl1i 0.91 2.95 3.444 (4) 115
N3—H3A⋯Cl4v 0.91 2.60 3.334 (4) 139
N3—H3B⋯Cl2 0.91 2.83 3.281 (4) 112
N6—H6C⋯Cl1v 0.91 2.96 3.681 (4) 138
N6—H6D⋯Cl2vi 0.91 2.45 3.342 (4) 167
N7—H7A⋯Cl2iii 0.91 2.57 3.348 (4) 143
N7—H7B⋯Cl4 0.91 2.79 3.284 (4) 115

Symmetry codes: (i) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Database survey  

There are 318 structures that incorporate the N-2-bis(2-amino­eth­yl)amino­ethyl ligand skeleton (Groom & Allen, 2014; CSD Version 5.36). Of those 318 structures, five incorporate one para-substituted benzene ring as presented in this article. Of those five, two have bromo-substituted phenyl rings displaying a nickel metal atom with perchlorate counter-ion and a zinc metal atom with tetra­fluorido­borate counter-ion, respectively. Two display nitro-substituted phenyl rings with a copper metal atom and perchlorate counter-ions. Of those two, one contains a bidentate ligand with an ammonium derivative group not coordinating to the metal atom. The final structure is a zinc complex incorporating an unsubstituted phenyl ring with a perchlorate counter-ion. Of the 318 structures, none incorporates the tri­fluoro­methyl-substituted phenyl group presented here and none displays the dichloride counterions presented here. A survey of Cu—Cl bond-length elongations of similar structures in the literature produced examples such as 2.6061 (18) and 2.609 (2) Å (Tucker et al., 1991), 2.843 (1) to 3.140 (1) Å (Krysiak et al., 2014), 2.665 (3) and 2.731 (2) Å (Ferrari et al., 1998) and 2.7546 (9) Å (Odoko et al., 2002).

Synthesis and crystallization  

Synthesis of tris(2-(4-tri­fluoro­methyl­benzyl­idene­amino)­eth­yl)amine ligand: In a drybox, tris(2-(amino)­eth­yl)amine (2.56 mL, 17.10 mmol) was dissolved in 100 mL methanol in a 250 mL round-bottom flask (Fig. 4). Ligand precursor 4-(tri­fluoro­meth­yl)benzaldehyde (6.90 mL, 51.29 mmol) was added to the flask to give a light-yellow colored solution. Reaction was sealed and allowed to mix for 48 h producing a clear yellow solution. Solvent was removed using a rotary evaporator and dried under vacuum for one h to yield a yellow solid (10.40 g, 99%). 1H NMR (CDCl3, 500 MHz): δ 2.94 (t, J = 7.6 Hz, 2H), 3.70 (t, J = 7.5 Hz, 2H), 7.56 (br, 2H), 8.08 (s, 1H). 13C NMR (CDCl3, 500 MHz): δ 55.62, 60.32, 122.85 (q), 125.73 (q), 128.35, 132.44 (q), 139.62, 160.42. FT–IR (solid) v (cm−1): 1321 (s), 1169 (s), 1118 (s), 1062 (s), 834 (s). Melting Point: 344 K. TOF–ESI–MS: (m/z) [M + (H)]+ calculated for C30H28N4F9 = 615.2165, found 615.2194 (4.8 p.p.m.).

Figure 4.

Figure 4

Synthetic scheme for [Cu(C14H21N4Cl2F3)(Cl2)]

Synthesis of 2-(4-tri­fluoro­methyl­benzyl­idene­amino)­eth­yl)amine-bis(2-αminoeth­yl)amine copper(II) chloride complex: tris(2-(4-Tri­fluoro­methyl­benzyl­idene­amino)­eth­yl)amine (1.000 g, 1.63 mmol) was dissolved in 20 mL methanol in a 100 mL round-bottom flask. CuCl2 (0.219 g, 1.63 mmol) was added to the flask to give a teal-colored solution. The reaction was allowed to mix for six h then 20 mL of pentane was slowly added to the solution to generate a teal-colored precipitate. Solvent was removed from the round-bottom flask by connecting it to a rotary evaporator. The precipitate obtained was washed twice by transferring 15 mL of pentane into the flask and stirring vigorously for thirty minutes. Solvent was removed and precipitate dried under vacuum for one h to yield a teal-colored solid (1.140 g, 93%). FT–IR (solid): v (cm−1) = 1636 (m), 1506 (s), 1473 (s), 1317 (s), 1163 (s), 1109 (br), 830 (s). UV–Vis (MeOH) λmax = 668 nm. TOF–ESI–MS: (m/z) [M – 2(Cl)]2+ calculated for C30H27N4F9Cu = 677.1383, found 677.1381 (0.2 p.p.m.). Blue single crystal plates suitable for X-ray analysis were obtained by slow diffusion of diethyl ether into a complex solution made in aceto­nitrile at room temperature. The structure obtained is indicative of hydrolysis occuring on two amine positions of the intended copper(II) complex.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. Hydrogen atoms were placed at calculated positions and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C,N) for methyl­ene, aromatic and amide groups with C—H distances set at 0.99 Å (methyl­ene), 0.95 Å (aromatic) and N—H = 0.91 Å.

Table 3. Experimental details.

Crystal data
Chemical formula [CuCl2(C14H21F3N4)]
M r 436.80
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.8506 (6), 11.0603 (7), 17.8574 (12)
α, β, γ (°) 73.110 (3), 75.530 (2), 89.010 (2)
V3) 1799.4 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.54
Crystal size (mm) 0.30 × 0.19 × 0.05
 
Data collection
Diffractometer Bruker AXS D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2013)
T min, T max 0.573, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 49937, 8937, 7063
R int 0.079
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.073, 0.151, 1.22
No. of reflections 8937
No. of parameters 433
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.32, −0.74

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS97 (Sheldrick, 2008), SHELXL (Sheldrick, 2015), CrystalMaker (Palmer, 2007) and OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010), and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015024147/pk2570sup1.cif

e-72-00083-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024147/pk2570Isup2.hkl

e-72-00083-Isup2.hkl (709.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024147/pk2570Isup3.pdf

e-72-00083-Isup3.pdf (230.1KB, pdf)

CCDC reference: 1442779

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank all students listed for their contribution to this project and Youngstown State University for instrument support. The Weber Foundation, Thermo-Fisher Scientific, Kimble–Chase Life Science, and Hamilton Company are also gratefully acknowledged for funding support. X-ray diffractometer was funded by NSF Grant No. 1337296 and Project SEED student (ASH) was funded by the American Chemical Society.

supplementary crystallographic information

Crystal data

[CuCl2(C14H21F3N4)] Z = 4
Mr = 436.80 F(000) = 892
Triclinic, P1 Dx = 1.612 Mg m3
a = 9.8506 (6) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.0603 (7) Å Cell parameters from 9961 reflections
c = 17.8574 (12) Å θ = 2.5–28.3°
α = 73.110 (3)° µ = 1.54 mm1
β = 75.530 (2)° T = 100 K
γ = 89.010 (2)° Plate, blue
V = 1799.4 (2) Å3 0.30 × 0.19 × 0.05 mm

Data collection

Bruker AXS D8 Quest CMOS diffractometer 8937 independent reflections
Radiation source: I-mu-S microsource X-ray tube 7063 reflections with I > 2σ(I)
Laterally graded multilayer (Goebel) mirror monochromator Rint = 0.079
ω and phi scans θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2013) h = −13→13
Tmin = 0.573, Tmax = 0.746 k = −14→14
49937 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151 H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0341P)2 + 8.3032P] where P = (Fo2 + 2Fc2)/3
8937 reflections (Δ/σ)max = 0.001
433 parameters Δρmax = 1.32 e Å3
0 restraints Δρmin = −0.74 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.37014 (6) 0.32211 (5) 0.07300 (3) 0.01576 (13)
Cl1 0.34574 (11) 0.47852 (10) −0.03695 (7) 0.0181 (2)
Cl2 0.08223 (11) 0.23298 (9) 0.13230 (7) 0.0178 (2)
N1 0.4341 (4) 0.1932 (3) 0.1650 (2) 0.0148 (7)
N2 0.4034 (4) 0.1876 (3) 0.0182 (2) 0.0153 (7)
H2A 0.3259 0.1748 0.0018 0.018*
H2B 0.4768 0.2135 −0.0265 0.018*
N3 0.3162 (4) 0.4228 (3) 0.1506 (2) 0.0180 (8)
H3A 0.3559 0.5029 0.1269 0.022*
H3B 0.2213 0.4275 0.1638 0.022*
N4 0.6465 (4) 0.1886 (4) 0.2797 (2) 0.0220 (8)
C1 0.3888 (5) 0.0696 (4) 0.1598 (3) 0.0165 (8)
H1A 0.2853 0.0565 0.1796 0.020*
H1B 0.4309 0.0006 0.1945 0.020*
C2 0.4347 (4) 0.0663 (4) 0.0728 (3) 0.0157 (8)
H2C 0.5367 0.0540 0.0581 0.019*
H2D 0.3841 −0.0054 0.0666 0.019*
C3 0.3557 (5) 0.2219 (4) 0.2404 (3) 0.0173 (9)
H3C 0.3981 0.1805 0.2855 0.021*
H3D 0.2566 0.1893 0.2555 0.021*
C4 0.3632 (5) 0.3641 (4) 0.2247 (3) 0.0200 (9)
H4A 0.3018 0.3866 0.2712 0.024*
H4B 0.4607 0.3951 0.2175 0.024*
C5 0.5900 (4) 0.2083 (4) 0.1504 (3) 0.0171 (9)
H5A 0.6154 0.2982 0.1425 0.020*
H5B 0.6343 0.1892 0.0993 0.020*
C6 0.6539 (5) 0.1267 (4) 0.2166 (3) 0.0192 (9)
H6A 0.6021 0.0428 0.2407 0.023*
H6B 0.7530 0.1136 0.1927 0.023*
C7 0.7616 (5) 0.2140 (4) 0.2922 (3) 0.0207 (9)
H7 0.8456 0.1851 0.2650 0.025*
C8 0.7687 (5) 0.2881 (4) 0.3484 (3) 0.0229 (10)
C9 0.6476 (6) 0.3277 (5) 0.3926 (3) 0.0317 (12)
H9 0.5578 0.2990 0.3917 0.038*
C10 0.6578 (6) 0.4083 (6) 0.4375 (4) 0.0380 (13)
H10 0.5750 0.4342 0.4679 0.046*
C11 0.7877 (7) 0.4513 (5) 0.4381 (3) 0.0339 (12)
C12 0.9094 (6) 0.4099 (6) 0.3972 (4) 0.0365 (13)
H12 0.9987 0.4374 0.3993 0.044*
C13 0.8989 (6) 0.3276 (5) 0.3529 (3) 0.0296 (11)
H13 0.9818 0.2978 0.3254 0.036*
C14 0.7966 (7) 0.5463 (6) 0.4827 (4) 0.0439 (15)
F1 0.9161 (5) 0.6165 (4) 0.4552 (2) 0.0643 (13)
F2 0.7837 (6) 0.4938 (4) 0.5606 (2) 0.0708 (14)
F3 0.6983 (6) 0.6312 (5) 0.4752 (4) 0.093 (2)
Cu2 −0.05556 (6) 0.17013 (5) 0.92597 (3) 0.01768 (14)
Cl3 −0.18291 (11) 0.01387 (10) 1.03343 (7) 0.0185 (2)
Cl4 −0.30093 (11) 0.26904 (10) 0.86714 (7) 0.0194 (2)
N5 0.0850 (4) 0.3019 (3) 0.8338 (2) 0.0139 (7)
N6 −0.0796 (4) 0.3026 (4) 0.9827 (2) 0.0175 (7)
H6C −0.1725 0.3161 0.9980 0.021*
H6D −0.0480 0.2753 1.0281 0.021*
N7 −0.0460 (4) 0.0769 (3) 0.8452 (2) 0.0172 (8)
H7A −0.0292 −0.0054 0.8669 0.021*
H7B −0.1297 0.0788 0.8320 0.021*
N8 0.4024 (4) 0.3011 (4) 0.7164 (2) 0.0242 (9)
C15 0.0291 (5) 0.4249 (4) 0.8417 (3) 0.0162 (8)
H15A −0.0582 0.4383 0.8232 0.019*
H15B 0.0986 0.4951 0.8073 0.019*
C16 −0.0011 (5) 0.4240 (4) 0.9293 (3) 0.0170 (9)
H16A 0.0882 0.4326 0.9437 0.020*
H16B −0.0576 0.4963 0.9372 0.020*
C17 0.0714 (5) 0.2776 (4) 0.7581 (3) 0.0176 (9)
H17A 0.1522 0.3193 0.7125 0.021*
H17B −0.0158 0.3123 0.7447 0.021*
C18 0.0672 (5) 0.1352 (4) 0.7717 (3) 0.0190 (9)
H18A 0.0483 0.1155 0.7244 0.023*
H18B 0.1585 0.1018 0.7788 0.023*
C19 0.2302 (4) 0.2903 (4) 0.8443 (3) 0.0165 (8)
H19A 0.2529 0.2006 0.8532 0.020*
H19B 0.2315 0.3122 0.8941 0.020*
C20 0.3469 (5) 0.3718 (4) 0.7746 (3) 0.0214 (10)
H20A 0.3091 0.4512 0.7471 0.026*
H20B 0.4233 0.3941 0.7960 0.026*
C21 0.5325 (5) 0.2848 (4) 0.7024 (3) 0.0221 (10)
H21 0.5900 0.3247 0.7249 0.027*
C22 0.5967 (5) 0.2040 (5) 0.6508 (3) 0.0240 (10)
C23 0.5150 (6) 0.1411 (5) 0.6187 (3) 0.0288 (11)
H23 0.4183 0.1565 0.6248 0.035*
C24 0.5744 (6) 0.0561 (5) 0.5779 (3) 0.0330 (12)
H24 0.5180 0.0109 0.5577 0.040*
C25 0.7162 (6) 0.0377 (5) 0.5668 (3) 0.0327 (12)
C26 0.7993 (6) 0.1014 (6) 0.5960 (4) 0.0394 (14)
H26 0.8970 0.0888 0.5872 0.047*
C27 0.7394 (6) 0.1846 (5) 0.6383 (4) 0.0327 (12)
H27 0.7963 0.2285 0.6589 0.039*
C28 0.7789 (7) −0.0583 (6) 0.5239 (4) 0.0425 (15)
F4 0.8768 (6) −0.1210 (4) 0.5533 (3) 0.0730 (14)
F5 0.8382 (6) −0.0061 (4) 0.4467 (3) 0.0854 (18)
F6 0.6850 (5) −0.1463 (6) 0.5298 (5) 0.113 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0205 (3) 0.0126 (2) 0.0166 (3) 0.0093 (2) −0.0060 (2) −0.0075 (2)
Cl1 0.0154 (5) 0.0155 (5) 0.0217 (5) 0.0018 (4) −0.0058 (4) −0.0018 (4)
Cl2 0.0161 (5) 0.0132 (4) 0.0255 (6) 0.0022 (4) −0.0049 (4) −0.0085 (4)
N1 0.0167 (18) 0.0127 (16) 0.0169 (18) 0.0045 (14) −0.0048 (14) −0.0070 (14)
N2 0.0155 (17) 0.0170 (17) 0.0157 (18) 0.0062 (14) −0.0055 (14) −0.0076 (14)
N3 0.0206 (19) 0.0086 (16) 0.026 (2) 0.0037 (14) −0.0063 (16) −0.0061 (15)
N4 0.025 (2) 0.025 (2) 0.019 (2) 0.0040 (16) −0.0080 (16) −0.0085 (16)
C1 0.020 (2) 0.0135 (19) 0.017 (2) 0.0017 (16) −0.0043 (17) −0.0063 (16)
C2 0.015 (2) 0.017 (2) 0.020 (2) 0.0068 (16) −0.0071 (17) −0.0125 (17)
C3 0.021 (2) 0.018 (2) 0.013 (2) 0.0043 (17) −0.0015 (16) −0.0077 (17)
C4 0.020 (2) 0.024 (2) 0.020 (2) 0.0028 (18) −0.0043 (18) −0.0136 (19)
C5 0.014 (2) 0.015 (2) 0.022 (2) 0.0019 (16) −0.0045 (17) −0.0069 (17)
C6 0.020 (2) 0.018 (2) 0.022 (2) 0.0014 (17) −0.0075 (18) −0.0094 (18)
C7 0.024 (2) 0.020 (2) 0.018 (2) 0.0044 (18) −0.0048 (18) −0.0066 (18)
C8 0.032 (3) 0.021 (2) 0.014 (2) −0.0002 (19) −0.0067 (19) −0.0018 (18)
C9 0.031 (3) 0.037 (3) 0.029 (3) −0.001 (2) −0.005 (2) −0.016 (2)
C10 0.042 (3) 0.043 (3) 0.036 (3) 0.007 (3) −0.007 (3) −0.024 (3)
C11 0.055 (4) 0.028 (3) 0.025 (3) 0.003 (2) −0.018 (3) −0.011 (2)
C12 0.041 (3) 0.041 (3) 0.035 (3) 0.001 (3) −0.020 (3) −0.014 (3)
C13 0.033 (3) 0.034 (3) 0.026 (3) 0.005 (2) −0.010 (2) −0.013 (2)
C14 0.053 (4) 0.046 (4) 0.046 (4) 0.010 (3) −0.024 (3) −0.025 (3)
F1 0.108 (4) 0.045 (2) 0.045 (2) −0.023 (2) −0.017 (2) −0.0216 (19)
F2 0.121 (4) 0.062 (3) 0.031 (2) −0.032 (3) −0.012 (2) −0.0215 (19)
F3 0.114 (4) 0.085 (4) 0.142 (5) 0.048 (3) −0.082 (4) −0.086 (4)
Cu2 0.0214 (3) 0.0159 (3) 0.0160 (3) −0.0060 (2) −0.0010 (2) −0.0079 (2)
Cl3 0.0143 (5) 0.0183 (5) 0.0204 (5) 0.0000 (4) −0.0045 (4) −0.0019 (4)
Cl4 0.0191 (5) 0.0137 (5) 0.0277 (6) 0.0046 (4) −0.0064 (4) −0.0094 (4)
N5 0.0182 (18) 0.0102 (16) 0.0143 (18) 0.0026 (13) −0.0037 (14) −0.0056 (14)
N6 0.0166 (18) 0.0214 (19) 0.0157 (18) −0.0010 (14) −0.0026 (14) −0.0086 (15)
N7 0.0180 (18) 0.0117 (17) 0.025 (2) 0.0040 (14) −0.0063 (15) −0.0089 (15)
N8 0.023 (2) 0.026 (2) 0.022 (2) 0.0042 (16) −0.0009 (16) −0.0093 (17)
C15 0.019 (2) 0.0127 (19) 0.020 (2) 0.0063 (16) −0.0040 (17) −0.0097 (17)
C16 0.016 (2) 0.019 (2) 0.020 (2) 0.0005 (16) −0.0025 (17) −0.0126 (18)
C17 0.023 (2) 0.018 (2) 0.015 (2) 0.0040 (17) −0.0042 (17) −0.0103 (17)
C18 0.023 (2) 0.017 (2) 0.020 (2) 0.0055 (17) −0.0045 (18) −0.0114 (18)
C19 0.016 (2) 0.0143 (19) 0.020 (2) 0.0024 (16) −0.0044 (17) −0.0062 (17)
C20 0.020 (2) 0.018 (2) 0.025 (2) 0.0025 (17) 0.0001 (18) −0.0085 (19)
C21 0.026 (2) 0.020 (2) 0.019 (2) 0.0013 (18) −0.0044 (19) −0.0053 (18)
C22 0.028 (3) 0.024 (2) 0.015 (2) 0.0053 (19) 0.0034 (18) −0.0053 (19)
C23 0.032 (3) 0.033 (3) 0.021 (2) 0.008 (2) −0.004 (2) −0.011 (2)
C24 0.039 (3) 0.039 (3) 0.021 (3) 0.006 (2) −0.005 (2) −0.012 (2)
C25 0.036 (3) 0.030 (3) 0.026 (3) 0.005 (2) 0.005 (2) −0.011 (2)
C26 0.025 (3) 0.041 (3) 0.049 (4) 0.008 (2) 0.003 (2) −0.020 (3)
C27 0.026 (3) 0.033 (3) 0.039 (3) 0.001 (2) −0.001 (2) −0.016 (2)
C28 0.043 (3) 0.043 (3) 0.040 (3) 0.006 (3) 0.004 (3) −0.024 (3)
F4 0.109 (4) 0.060 (3) 0.058 (3) 0.053 (3) −0.021 (3) −0.031 (2)
F5 0.145 (5) 0.065 (3) 0.033 (2) 0.053 (3) 0.002 (3) −0.019 (2)
F6 0.062 (3) 0.106 (4) 0.195 (7) −0.007 (3) 0.016 (4) −0.124 (5)

Geometric parameters (Å, º)

Cu1—N2 1.986 (3) Cu2—N7 1.986 (4)
Cu1—N3 1.988 (4) Cu2—N6 1.989 (4)
Cu1—N1 2.062 (4) Cu2—N5 2.070 (4)
Cu1—Cl1 2.2701 (12) Cu2—Cl3 2.2777 (12)
Cu1—Cl2 2.8505 (12) Cu2—Cl4 2.9415 (12)
Cu1—Cl1i 3.4056 (12) Cu2—Cl3ii 3.1645 (12)
N1—C1 1.480 (5) N5—C19 1.486 (5)
N1—C3 1.493 (5) N5—C15 1.491 (5)
N1—C5 1.496 (5) N5—C17 1.491 (5)
N2—C2 1.491 (5) N6—C16 1.494 (6)
N2—H2A 0.9100 N6—H6C 0.9100
N2—H2B 0.9100 N6—H6D 0.9100
N3—C4 1.478 (6) N7—C18 1.478 (6)
N3—H3A 0.9100 N7—H7A 0.9100
N3—H3B 0.9100 N7—H7B 0.9100
N4—C7 1.260 (6) N8—C21 1.263 (6)
N4—C6 1.466 (6) N8—C20 1.470 (6)
C1—C2 1.518 (6) C15—C16 1.515 (6)
C1—H1A 0.9900 C15—H15A 0.9900
C1—H1B 0.9900 C15—H15B 0.9900
C2—H2C 0.9900 C16—H16A 0.9900
C2—H2D 0.9900 C16—H16B 0.9900
C3—C4 1.516 (6) C17—C18 1.522 (6)
C3—H3C 0.9900 C17—H17A 0.9900
C3—H3D 0.9900 C17—H17B 0.9900
C4—H4A 0.9900 C18—H18A 0.9900
C4—H4B 0.9900 C18—H18B 0.9900
C5—C6 1.529 (6) C19—C20 1.534 (6)
C5—H5A 0.9900 C19—H19A 0.9900
C5—H5B 0.9900 C19—H19B 0.9900
C6—H6A 0.9900 C20—H20A 0.9900
C6—H6B 0.9900 C20—H20B 0.9900
C7—C8 1.482 (6) C21—C22 1.488 (6)
C7—H7 0.9500 C21—H21 0.9500
C8—C13 1.390 (7) C22—C27 1.390 (7)
C8—C9 1.397 (7) C22—C23 1.394 (8)
C9—C10 1.381 (8) C23—C24 1.386 (7)
C9—H9 0.9500 C23—H23 0.9500
C10—C11 1.377 (9) C24—C25 1.381 (8)
C10—H10 0.9500 C24—H24 0.9500
C11—C12 1.385 (9) C25—C26 1.373 (9)
C11—C14 1.506 (8) C25—C28 1.519 (7)
C12—C13 1.387 (8) C26—C27 1.389 (8)
C12—H12 0.9500 C26—H26 0.9500
C13—H13 0.9500 C27—H27 0.9500
C14—F2 1.317 (8) C28—F4 1.306 (8)
C14—F1 1.323 (8) C28—F5 1.312 (7)
C14—F3 1.341 (8) C28—F6 1.318 (8)
N2—Cu1—N3 166.47 (15) N7—Cu2—N6 163.80 (16)
N2—Cu1—N1 84.81 (14) N7—Cu2—N5 85.50 (15)
N3—Cu1—N1 85.31 (14) N6—Cu2—N5 85.18 (14)
N2—Cu1—Cl1 95.85 (11) N7—Cu2—Cl3 95.55 (11)
N3—Cu1—Cl1 95.68 (11) N6—Cu2—Cl3 95.56 (11)
N1—Cu1—Cl1 168.47 (11) N5—Cu2—Cl3 171.82 (11)
N2—Cu1—Cl2 88.27 (11) N7—Cu2—Cl4 81.07 (11)
N3—Cu1—Cl2 83.37 (11) N6—Cu2—Cl4 86.35 (11)
N1—Cu1—Cl2 94.77 (10) N5—Cu2—Cl4 93.74 (10)
Cl1—Cu1—Cl2 96.76 (4) Cl3—Cu2—Cl4 94.44 (4)
N2—Cu1—Cl1i 115.18 (11) N7—Cu2—Cl3ii 80.52 (11)
N3—Cu1—Cl1i 74.19 (11) N6—Cu2—Cl3ii 113.16 (12)
N1—Cu1—Cl1i 90.95 (10) N5—Cu2—Cl3ii 92.88 (10)
Cl1—Cu1—Cl1i 78.32 (4) Cl3—Cu2—Cl3ii 79.32 (4)
Cl2—Cu1—Cl1i 156.30 (3) Cl4—Cu2—Cl3ii 159.87 (3)
C1—N1—C3 113.3 (3) C19—N5—C15 111.4 (3)
C1—N1—C5 112.1 (3) C19—N5—C17 113.2 (3)
C3—N1—C5 112.9 (3) C15—N5—C17 112.4 (3)
C1—N1—Cu1 103.3 (3) C19—N5—Cu2 111.7 (3)
C3—N1—Cu1 104.8 (2) C15—N5—Cu2 102.9 (3)
C5—N1—Cu1 109.8 (3) C17—N5—Cu2 104.7 (3)
C2—N2—Cu1 111.7 (3) C16—N6—Cu2 111.2 (3)
C2—N2—H2A 109.3 C16—N6—H6C 109.4
Cu1—N2—H2A 109.3 Cu2—N6—H6C 109.4
C2—N2—H2B 109.3 C16—N6—H6D 109.4
Cu1—N2—H2B 109.3 Cu2—N6—H6D 109.4
H2A—N2—H2B 107.9 H6C—N6—H6D 108.0
C4—N3—Cu1 110.5 (3) C18—N7—Cu2 110.0 (3)
C4—N3—H3A 109.5 C18—N7—H7A 109.7
Cu1—N3—H3A 109.5 Cu2—N7—H7A 109.7
C4—N3—H3B 109.5 C18—N7—H7B 109.7
Cu1—N3—H3B 109.5 Cu2—N7—H7B 109.7
H3A—N3—H3B 108.1 H7A—N7—H7B 108.2
C7—N4—C6 116.6 (4) C21—N8—C20 116.4 (4)
N1—C1—C2 109.9 (4) N5—C15—C16 109.5 (4)
N1—C1—H1A 109.7 N5—C15—H15A 109.8
C2—C1—H1A 109.7 C16—C15—H15A 109.8
N1—C1—H1B 109.7 N5—C15—H15B 109.8
C2—C1—H1B 109.7 C16—C15—H15B 109.8
H1A—C1—H1B 108.2 H15A—C15—H15B 108.2
N2—C2—C1 109.4 (3) N6—C16—C15 109.5 (3)
N2—C2—H2C 109.8 N6—C16—H16A 109.8
C1—C2—H2C 109.8 C15—C16—H16A 109.8
N2—C2—H2D 109.8 N6—C16—H16B 109.8
C1—C2—H2D 109.8 C15—C16—H16B 109.8
H2C—C2—H2D 108.2 H16A—C16—H16B 108.2
N1—C3—C4 108.3 (4) N5—C17—C18 108.2 (4)
N1—C3—H3C 110.0 N5—C17—H17A 110.0
C4—C3—H3C 110.0 C18—C17—H17A 110.0
N1—C3—H3D 110.0 N5—C17—H17B 110.0
C4—C3—H3D 110.0 C18—C17—H17B 110.0
H3C—C3—H3D 108.4 H17A—C17—H17B 108.4
N3—C4—C3 108.1 (4) N7—C18—C17 107.7 (3)
N3—C4—H4A 110.1 N7—C18—H18A 110.2
C3—C4—H4A 110.1 C17—C18—H18A 110.2
N3—C4—H4B 110.1 N7—C18—H18B 110.2
C3—C4—H4B 110.1 C17—C18—H18B 110.2
H4A—C4—H4B 108.4 H18A—C18—H18B 108.5
N1—C5—C6 116.6 (4) N5—C19—C20 116.6 (4)
N1—C5—H5A 108.1 N5—C19—H19A 108.2
C6—C5—H5A 108.1 C20—C19—H19A 108.2
N1—C5—H5B 108.1 N5—C19—H19B 108.2
C6—C5—H5B 108.1 C20—C19—H19B 108.2
H5A—C5—H5B 107.3 H19A—C19—H19B 107.3
N4—C6—C5 110.1 (4) N8—C20—C19 109.5 (4)
N4—C6—H6A 109.6 N8—C20—H20A 109.8
C5—C6—H6A 109.6 C19—C20—H20A 109.8
N4—C6—H6B 109.6 N8—C20—H20B 109.8
C5—C6—H6B 109.6 C19—C20—H20B 109.8
H6A—C6—H6B 108.1 H20A—C20—H20B 108.2
N4—C7—C8 121.4 (4) N8—C21—C22 120.6 (5)
N4—C7—H7 119.3 N8—C21—H21 119.7
C8—C7—H7 119.3 C22—C21—H21 119.7
C13—C8—C9 118.8 (5) C27—C22—C23 119.1 (5)
C13—C8—C7 119.6 (4) C27—C22—C21 119.5 (5)
C9—C8—C7 121.5 (5) C23—C22—C21 121.3 (4)
C10—C9—C8 120.3 (5) C24—C23—C22 120.2 (5)
C10—C9—H9 119.9 C24—C23—H23 119.9
C8—C9—H9 119.9 C22—C23—H23 119.9
C11—C10—C9 120.1 (5) C25—C24—C23 119.5 (5)
C11—C10—H10 120.0 C25—C24—H24 120.2
C9—C10—H10 120.0 C23—C24—H24 120.2
C10—C11—C12 120.7 (5) C26—C25—C24 121.1 (5)
C10—C11—C14 119.3 (6) C26—C25—C28 120.0 (5)
C12—C11—C14 120.0 (6) C24—C25—C28 118.8 (5)
C11—C12—C13 119.0 (5) C25—C26—C27 119.4 (5)
C11—C12—H12 120.5 C25—C26—H26 120.3
C13—C12—H12 120.5 C27—C26—H26 120.3
C12—C13—C8 121.0 (5) C26—C27—C22 120.5 (5)
C12—C13—H13 119.5 C26—C27—H27 119.7
C8—C13—H13 119.5 C22—C27—H27 119.7
F2—C14—F1 105.8 (5) F4—C28—F5 105.2 (5)
F2—C14—F3 107.4 (6) F4—C28—F6 104.6 (6)
F1—C14—F3 103.8 (6) F5—C28—F6 107.6 (6)
F2—C14—C11 113.2 (5) F4—C28—C25 113.6 (6)
F1—C14—C11 113.8 (6) F5—C28—C25 112.7 (5)
F3—C14—C11 112.1 (5) F6—C28—C25 112.5 (5)
C3—N1—C1—C2 161.1 (3) C19—N5—C15—C16 −71.4 (4)
C5—N1—C1—C2 −69.8 (4) C17—N5—C15—C16 160.5 (4)
Cu1—N1—C1—C2 48.3 (4) Cu2—N5—C15—C16 48.4 (4)
Cu1—N2—C2—C1 17.1 (4) Cu2—N6—C16—C15 19.9 (4)
N1—C1—C2—N2 −44.7 (5) N5—C15—C16—N6 −46.7 (5)
C1—N1—C3—C4 −156.5 (4) C19—N5—C17—C18 77.8 (4)
C5—N1—C3—C4 74.8 (4) C15—N5—C17—C18 −155.0 (4)
Cu1—N1—C3—C4 −44.7 (4) Cu2—N5—C17—C18 −44.0 (4)
Cu1—N3—C4—C3 −33.0 (4) Cu2—N7—C18—C17 −35.9 (4)
N1—C3—C4—N3 52.3 (5) N5—C17—C18—N7 54.0 (5)
C1—N1—C5—C6 −70.5 (5) C15—N5—C19—C20 −72.8 (5)
C3—N1—C5—C6 58.9 (5) C17—N5—C19—C20 55.0 (5)
Cu1—N1—C5—C6 175.4 (3) Cu2—N5—C19—C20 172.7 (3)
C7—N4—C6—C5 −120.4 (4) C21—N8—C20—C19 −122.6 (5)
N1—C5—C6—N4 −84.7 (5) N5—C19—C20—N8 −89.7 (4)
C6—N4—C7—C8 173.7 (4) C20—N8—C21—C22 173.9 (4)
N4—C7—C8—C13 −172.1 (5) N8—C21—C22—C27 −178.1 (5)
N4—C7—C8—C9 3.0 (7) N8—C21—C22—C23 −1.9 (7)
C13—C8—C9—C10 2.4 (8) C27—C22—C23—C24 2.8 (8)
C7—C8—C9—C10 −172.7 (5) C21—C22—C23—C24 −173.4 (5)
C8—C9—C10—C11 0.7 (9) C22—C23—C24—C25 −2.3 (8)
C9—C10—C11—C12 −3.1 (9) C23—C24—C25—C26 0.4 (9)
C9—C10—C11—C14 175.8 (6) C23—C24—C25—C28 178.4 (5)
C10—C11—C12—C13 2.3 (9) C24—C25—C26—C27 0.9 (9)
C14—C11—C12—C13 −176.6 (5) C28—C25—C26—C27 −177.0 (6)
C11—C12—C13—C8 0.9 (8) C25—C26—C27—C22 −0.4 (9)
C9—C8—C13—C12 −3.2 (8) C23—C22—C27—C26 −1.5 (8)
C7—C8—C13—C12 172.0 (5) C21—C22—C27—C26 174.8 (5)
C10—C11—C14—F2 84.1 (7) C26—C25—C28—F4 34.7 (8)
C12—C11—C14—F2 −97.1 (7) C24—C25—C28—F4 −143.3 (6)
C10—C11—C14—F1 −155.1 (6) C26—C25—C28—F5 −84.8 (8)
C12—C11—C14—F1 23.8 (8) C24—C25—C28—F5 97.2 (7)
C10—C11—C14—F3 −37.6 (9) C26—C25—C28—F6 153.2 (7)
C12—C11—C14—F3 141.2 (6) C24—C25—C28—F6 −24.8 (9)

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2A···Cl3iii 0.91 2.84 3.591 (4) 141
N2—H2B···Cl4iv 0.91 2.46 3.365 (4) 171
N3—H3A···Cl1i 0.91 2.95 3.444 (4) 115
N3—H3A···Cl4v 0.91 2.60 3.334 (4) 139
N3—H3B···Cl2 0.91 2.83 3.281 (4) 112
N6—H6C···Cl1v 0.91 2.96 3.681 (4) 138
N6—H6D···Cl2vi 0.91 2.45 3.342 (4) 167
N7—H7A···Cl2iii 0.91 2.57 3.348 (4) 143
N7—H7B···Cl4 0.91 2.79 3.284 (4) 115

Symmetry codes: (i) −x+1, −y+1, −z; (iii) −x, −y, −z+1; (iv) x+1, y, z−1; (v) −x, −y+1, −z+1; (vi) x, y, z+1.

References

  1. Böhm, H. J., Banner, D., Bendels, S., Kansy, M., Kuhn, B., Müller, K., Obst-Sander, U. & Stahl, M. (2004). ChemBioChem, 5, 637–643. [DOI] [PubMed]
  2. Bruker (2013). APEX2, SAINT, and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolbier, W. R. (2009). Guide to Fluorine NMR for Organic Chemists, ch. 5, pp. 137–176. Hoboken: John Wiley and Sons.
  4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  5. Dubinina, G. G., Ogikubo, J. & Vicic, D. A. (2008). Organometallics, 27, 6233–6235.
  6. Ferrari, M. B., Fava, G. G., Leporati, E., Pelosi, G. K., Rossi, R., Tarasconi, P., Albertini, R., Bonati, A., Lunghi, P. & Pinelli, S. (1998). J. Inorg. Biochem. 70, 145–154. [DOI] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Halcrow, M. A. (2013). Chem. Soc. Rev. 42, 1784–1795. [DOI] [PubMed]
  9. Krysiak, Y., Fink, L., Bernert, T., Glinnemann, J., Kapuscinski, M., Zhao, H., Alig, E. & Schmidt, M. U. (2014). Z. Anorg. Allg. Chem. 640, 3190–3196.
  10. Murphy, B. & Hathaway, B. (2003). Coord. Chem. Rev. 243, 2370–262.
  11. Odoko, M., Yamamoto, K. & Okabe, N. (2002). Acta Cryst. C58, m506–m508. [DOI] [PubMed]
  12. Palmer, D. (2007). CrystalMaker. CrystalMaker Software, Bicester, England.
  13. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330. [DOI] [PubMed]
  14. Rossi, A. R. & Hoffmann, R. (1975). Inorg. Chem. 14, 365–374.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Singh, R. P. & Shreeve, J. M. (2000). Tetrahedron, 56, 7613–7632.
  18. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  19. Tucker, D. A., White, P. S., Trojan, K. L., Kirk, M. J. & Hatfield, W. E. (1991). Inorg. Chem. 30, 823–826.
  20. Welch, J. T. (1987). Tetrahedron, 43, 3123–3197.
  21. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015024147/pk2570sup1.cif

e-72-00083-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015024147/pk2570Isup2.hkl

e-72-00083-Isup2.hkl (709.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015024147/pk2570Isup3.pdf

e-72-00083-Isup3.pdf (230.1KB, pdf)

CCDC reference: 1442779

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES