Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 1;72(Pt 1):8–13. doi: 10.1107/S2056989015022781

Crystal structures of ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate

Ligia R Gomes a,b, John Nicolson Low c,*, Carlos Fernandes d, Alexandra Gaspar d, Fernanda Borges d
PMCID: PMC4704759  PMID: 26870574

The crystal structures of two chromone derivatives are described, one of which has two independent mol­ecules in the asymmetric unit. A comparison of the dihedral angles between the mean planes of the central chromone core with those of the substituents shows that each mol­ecule differs significantly from the others.

Keywords: crystal structure, drug design, chromone, conformation supra­molecular structure

Abstract

The crystal structures of two chromone derivatives, viz. ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate, C19H16O4, (1), and ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate C18H13FO4, (2), have been determined: (1) crystallizes with two mol­ecules in the asymmetric unit. A comparison of the dihedral angles beween the mean planes of the central chromone core with those of the substituents, an ethyl ester moiety at the 2-position and a para-substituted phenyl ring at the 6-position shows that each mol­ecule differs significantly from the others, even the two independent mol­ecules (a and b) of (1). In all three mol­ecules, the carbonyl groups of the chromone and the carboxyl­ate are trans-related. The supra­molecular structure of (1) involves only weak C—H⋯π inter­actions between H atoms of the substituent phenyl group and the phenyl group, which link mol­ecules into a chain of alternating mol­ecules a and b, and weak π–π stacking inter­actions between the chromone units. The packing in (2) involves C—H⋯O inter­actions, which form a network of two inter­secting ladders involving the carbonyl atom of the carboxyl­ate group as the acceptor for H atoms at the 7-position of the chromone ring and from an ortho-H atom of the exocyclic benzene ring. The carbonyl atom of the chromone acts as an acceptor from a meta-H atom of the exocyclic benzene ring. π–π inter­actions stack the mol­ecules by unit translation along the a axis.

Chemical context  

Benzo­pyran derivatives represent a large class of natural and synthetic heterocycles that are often linked to a broad array of biological activities, (Gaspar et al., 2014, 2015). Within this vast class of compounds, the chromone core has emerged as a privileged structure for drug discovery and development programs (Welsch et al., 2010). Chemically, the chromone scaffold is a rigid benzoannelated γ-pyrone ring, which can be modulated by diversity-oriented synthesis, (Gaspar et al., 2015; Welsch et al., 2010; Ko et al., 2006; Nicolaou et al., 2000), exhibiting a diversity of pharmacological properties such as anti-inflammatory, anti­microbial and anti­cancer among others (Gaspar et al., 2015). The application of chromones as a valid scaffold for the development of therapeutic solutions for aging-related diseases is still an emerging field, even though the data acquired indicate their importance in the development of new drug candidates for targets ascribed with respect to Alzheimer’s and Parkinson’s diseases, namely as adenosine receptors ligands (Cagide et al., 2015a ) and/or as mono­amino oxidase B inhibitors, (Cagide et al., 2015b ).graphic file with name e-72-00008-scheme1.jpg

Within this framework, our project has been focused on the discovery of new chemical entities based on a chromone scaffold. Herein we describe the crystal structures of two new chromone derivatives, viz. ethyl-6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (1) and ethyl-6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (2).

Mol­ecular Geometry  

Ellipsoid plots of the mol­ecules are given in Figs. 1 and 2. Compound (1) crystallizes with two mol­ecules (a and b) in the asymmetric unit.

Figure 1.

Figure 1

A view of the asymmetric unit of (1), with displacement ellipsoids drawn at the 70% probability level.

Figure 2.

Figure 2

A view of the asymmetric unit of (2), with displacement ellipsoids drawn at the 70% probability level.

The mol­ecules consist of a central chromone core with an ethyl­ester substituent at the 2-position and a p-substituted phenyl group at the 6-position of the chromone ring system. Those constitutive fragments are essentially planar, therefore the major contribution to the definition of the mol­ecular conformations are the rotations around the C—C bonds that connect the substituents to the chromone ring. As such, the analysis of the mol­ecular geometry will be based on the values for the dihedral angles between the mean planes of the chromone and the phenyl ring (θChr–Phe) and the chromone and the ethyl carboxyl­ate moiety (θChr–carboxlylate), Table 1. As can be seen, the dihedral angles for mol­ecules a and b of (1) are significantly different from each other. An overlay fit using the quaternion transformation method (Mackay, 1984) shows that mol­ecule i inverts on mol­ecule ii where the weighted/unit weight r.m.s. fits are 0.090/0.089 Å for 23 atoms. The largest individual displacement is 0.169 Å (O14/O24 pair). The r.m.s. bond fit is 0.0021 Å and the r.m.s. angle fit is 0.376°. These values show that, in spite of the large differences in the dihedral angles, the mol­ecules are quite similar overall.

Table 1. Selected dihedral angles (°).

θChr–C3ring is the dihedral angle between the mean planes of the chromene and the phenyl ring. θChr–C6ester is the dihedral angle between the mean planes of the chromone ring and the plane defined by the ester atoms attached to C2 but not including it. θChr–OCO is the dihedral angle between the mean planes of the chromone ring and the OCO atoms of the ester.

Compound θChr–Phe θChr–carboxyl­ate θChr–OCO
(1) molecule a 32.8754) 23.23 (7) 21.16 (16)
(1) molecule b 24.14 (5) 14.191 (7) 12.16 (17)
(2) 36.05 (5) 9.52 (6) 12.97 (13)

Considering the relative position of the ethyl carboxyl­ate residue with respect to the chromone ring as may be seen in Fig. 3, the mol­ecules may have any conformation between two possible extremes: conformation A where the carbonyl groups are trans-related and conformation B where they are cis-related. A theoretical calculation made with Gaussian03 (Frisch et al., 2004) at the B3LYP /631++(d,p) level shows that the energy associated with each of the boundary conformations is similar in adiabatic conditions [see supporting information; the B3LYP model combines the hybrid exchange functional of Becke (1997) with the gradient-correlation functional of Lee et al. (1988) and the split-valence polarized 6-311+G(d, p) basis set (Hehre et al., 1986)]. Thus the adopted conformation in the solid state, with a geometry closer to A where the degree of twist lies between 9 and 21° (as measured by dihedral angles) may be due to packing factors. Preliminary results for the structures of similar compounds such as 6-(phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate, 6-(4-meth­oxy­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate and 6-(4-3,4-di­meth­oxy­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate indicate that the major components have the same trans conformation as described above. These structures are imprecisely determined (the crystal quality was poor and the structures appeared to be intra­ctably disordered).

Figure 3.

Figure 3

The relative position of the ethyl carboxyl­ate residue with respect to the chromone ring. Mol­ecules may have any conformation between two possible extremes: conformation A where the carbonyl groups are trans-related and conformation B where they are cis-related.

The rotation around the C(phen­yl)—C(chromone) bond is higher than the rotation around the C(chromone)—C(carb­oxy­eth­yl) bond for all of the three mol­ecules. This rotation may also contribute to the mol­ecular packing since, in the absence of electronically crowded substituents in the o- or m- positions, the phenyl substituent does not impose steric hindrance with respect to the chromone ring.

Supra­molecular structures  

In the absence of strong hydrogen-bond donors, the supra­molecular structures depend on weak C—H⋯O hydrogen bonds and C—H⋯π and very weak π–π inter­actions.

In (1) there are no weak C—H⋯O inter­actions and aromatic inter­actions appear to play the major role in the establishment of the packing. There are two T-shaped C—H⋯π inter­actions, one between C162 and the centroid of the phenyl ring with pivot atom C261, Cg(C261) within the selected asymmetric unit, and the other between C262 and the centroid of the phenyl ring with pivot atom C161, Cg(C161)(x, Inline graphic − y, −Inline graphic + z), Table 2. This forms a chain of alternating glide-related asymmetric units which runs parallel to the c axis. Within the asymmetric unit, the shortest packing contact is between the rings containing C15 and C25 and has a value of 4.2901 (9) Å, with an average perpendicular distance between the planes of 3.5350 Å and an angle between the planes of 6.46 (7)°, suggesting a possible very weak π–π inter­action. Centrosymmetrically related pairs of mol­ecule i form π–π stacked pairs, as do centrosymmetric pairs of mol­ecule ii, Table 3. These base-paired units form a column of mol­ecule along the a axis, Fig. 4.

Table 2. Hydrogen-bond geometry (Å, °) for (1) .

D—H⋯A D—H H⋯A DA D—H⋯A
C162—H162⋯Cg(C261) 0.95 2.85 3.4914 (15) 126
C262—H262⋯Cg(C161)i 0.95 2.84 3.5408 (4) 131

Symmetry code: (i) Inline graphic.

Table 3. Selected π–π contacts and short inter­molecular contacts (Å, °).

In compound (1), Cg1, Cg2, Cg5 and Cg6 are the centroids of the rings containing atoms O11, C15, O21 and C25, respectively. In compound (2), Cg1, Cg2 and Cg6 are the centroids of the rings containing atoms O1, C5 and C61. Values marked with an asterisk are average perpendicular distances and angles between the planes.

Compound contacts distance perp. distance slippage/angle*
(1) Cg1⋯Cg2i 3.7338 (8) 3.503* 0.45*
  Cg2⋯Cg2i 3.7226 (8) 3.5040 (6) 1.257
  Cg5⋯Cg6ii 3.6743 (9) 3.824* 0.98*
  Cg6⋯Cg6ii 3.9299 (9) 3.5762 (6) 1.630
(2) Cg1⋯Cg1iii 3.8521 (7) 3.3989 (4) 1.813
  Cg2⋯Cg2iii 3.8521 (7) 3.3957 (4) 1.819
  Cg3⋯Cg3iii 3.8521 (7) 3.5811 (5) 1.419

Symmetry codes: (i) −x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 1 + x, y, z.

Figure 4.

Figure 4

A view showing the stacking of the mol­ecules along the a axis. Symmetry codes: (*) −x, −y + 1, −z + 1; (#) −x + 1, −y + 1, −z + 1. H atoms are omitted.

In contrast, compound (2) has a more intricate supra­molecular structure, based on C—H⋯O and π–π inter­actions (Tables 3 and 4). Both carb­oxy­lic oxygen atoms (O21 and O4) act as acceptors of C—H⋯O hydrogen bonds. Atom O21 is involved in two centrosymmetrically linked ring structures. In one of these, the C7—H7⋯O21(−x, −y + 1, −z + 1) hydrogen bond forms an Inline graphic(16) ring, Fig. 5, and in the other the C66—H66⋯O21(−x + 1, −y + 1, −z + 1) hydrogen bond forms an Inline graphic(22) ring (Fig. 6). These inter­actions combine to link the mol­ecules into zigzag chains of rings which run parallel to the a axis, Fig. 7. These are linked to form a three-dimensional network by the C65—H65⋯O4(−x + 2, y + Inline graphic, −z + 3/2) weak hydrogen bond formed by the action of the twofold screw axis at (1, y, 3/4), Fig. 8. The mol­ecules are π–π stacked above each other with unit translation along the a axis, Table 3 and Fig. 9.

Table 4. Hydrogen-bond geometry (Å, °) for (2) .

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O21i 0.95 2.47 3.1977 (13) 133
C65—H65⋯O4ii 0.95 2.50 3.4447 (13) 175
C66—H66⋯O21iii 0.95 2.53 3.4425 (13) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

Compound (2), view of the C7—H7⋯O21 centrosymetric Inline graphic(16) ring structure centred on (0, ½, ½). Atoms labelelled with a postscript,(i), are in mol­ecules at (−x, −y + 1, −z + 1). Hydrogen atoms not involved in the hydrogen bonding are omitted.

Figure 6.

Figure 6

Compound (2), view of the C66—H66⋯O21 centrosymetric Inline graphic(22) ring structure centred on (½, ½, ½). Symmetry code: (i) = −x + 1, −y + 1, −z + 1. H atoms not involved in the hydrogen bonding are omitted.

Figure 7.

Figure 7

Compound (2), the combined ring structure formed by the combination of the ring structures in Figs. 4 and 5. This chain of rings extends along the a axis. H atoms not involved in the hydrogen bonding are omitted.

Figure 8.

Figure 8

Compound (2), the simple C9 chain formed by the C65—H65⋯O4 weak hydrogen bond. This chain of rings extends along the a axis and is generated by the twofold screw axis at (1, y, Inline graphic). Symmetry codes: (i) −x + 2, y + Inline graphic, −z + Inline graphic; (ii) −x + 2, y − Inline graphic, −z + Inline graphic. H atoms not involved in the hydrogen bonding are omitted.

Figure 9.

Figure 9

A view showing the stacking of the mol­ecules along the a axis. Symmetry codes: (*) x − 1, y, z; (#) x + 1, y, z + 1. H atoms are omitted.

The inter­molecular inter­actions probably account for the significant difference (about 36 K) in the melting points for these compounds [411–418 K for (1) and 446–455 K for (2)]. They also may have an influence in the conformations of the mol­ecules since in (2) the atoms in the carb­oxy­ethyl group are involved either as donors or acceptors; these inter­actions may constrain the conformation of the orientation of the carb­oxy­ethyl moiety.

Synthesis and crystallization  

Compounds (1) and (2) were obtained, in moderate yields, by a two-step synthetic procedure. In the first step, the required phenyl­aceto­phenone derivatives were obtained from 5′-bromo-2′-hy­droxy­aceto­phenone by a Suzuki C–C cross-coupling reaction assisted by microwave (MW) heating (Soares et al., 2015). In the second step, the phenyl­aceto­phenone derivatives were converted in the corresponding chromones via an intra­molecular Claisen condensation reaction accomplished with diethyl oxalate in the presence of ethano­lic sodium ethoxide and cyclization under acidic conditions of the inter­mediate formed in situ.

Ethyl 6-(4-methyl­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (1). Overall yield 50.7%; m.p. 411–418 K. Crystallization: ethyl acetate to form colourless prisms.

Ethyl 6-(4-fluoro­phen­yl)-4-oxo-4H-chromene-2-carboxyl­ate (2). Overall yield 55.9%; m.p. 446–455 K. Crystallization: ethyl acetate, to form colourless needles.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5. H atoms were treated as riding atoms with C—H(aromatic) = 0.95 Å, with U iso = 1.2U eq(C) and C—H(meth­yl) = 0.98 Å with U iso = 1.5U eq(C).

Table 5. Experimental details.

  (1) (2)
Crystal data
Chemical formula C19H16O4 C18H13FO4
M r 308.32 312.28
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 14.7129 (11), 18.9613 (13), 11.3031 (6) 3.8521 (2), 20.6970 (15), 17.5478 (11)
β (°) 111.632 (7) 91.546 (1)
V3) 2931.2 (4) 1398.52 (15)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.10 0.11
Crystal size (mm) 0.20 × 0.09 × 0.05 0.42 × 0.02 × 0.01
 
Data collection
Diffractometer Rigaku Saturn724+ Rigaku Saturn724+
Absorption correction Multi-scan (CrystalClear-SM Expert; Rigaku, 20112) Multi-scan CrystalClear-SM Expert (Rigaku, 20112)
T min, T max 0.981, 0.995 0.954, 0.999
No. of measured, independent and observed [I > 2σ(I)] reflections 22133, 6680, 5311 16479, 3177, 2725
R int 0.033 0.035
(sin θ/λ)max−1) 0.649 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.104, 1.11 0.031, 0.087, 0.98
No. of reflections 6680 3176
No. of parameters 419 209
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.23 0.31, −0.20

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), OSCAIL (McArdle et al., 2004), ShelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2006) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) general, 1, 2. DOI: 10.1107/S2056989015022781/hb7543sup1.cif

e-72-00008-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989015022781/hb75431sup2.hkl

e-72-00008-1sup2.hkl (530.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989015022781/hb75432sup3.hkl

e-72-00008-2sup3.hkl (253.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022781/hb75431sup4.cml

Supporting information file. DOI: 10.1107/S2056989015022781/hb75432sup5.cml

Supporting information file. DOI: 10.1107/S2056989015022781/hb7543sup6.pdf

e-72-00008-sup6.pdf (141.4KB, pdf)

CCDC references: 1439394, 1439393

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the staff at the National Crystallographic Service, University of Southampton, for the data collection, help and advice (Coles & Gale, 2012), and the Foundation for Science and Technology (FCT) of Portugal (QUI/UI0081/2015) for financial support. CF (SFRH/BD/98519/2013) and AG (SFRH/BPD/93331/2013) are supported by FCT, POPH and QREN.

supplementary crystallographic information

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Crystal data

C19H16O4 F(000) = 1296
Mr = 308.32 Dx = 1.397 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 14.7129 (11) Å Cell parameters from 18061 reflections
b = 18.9613 (13) Å θ = 3.0–27.5°
c = 11.3031 (6) Å µ = 0.10 mm1
β = 111.632 (7)° T = 100 K
V = 2931.2 (4) Å3 Prism, colourless
Z = 8 0.20 × 0.09 × 0.05 mm

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer 6680 independent reflections
Radiation source: Rotating Anode 5311 reflections with I > 2σ(I)
Confocal monochromator Rint = 0.033
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 3.0°
profile data from ω–scans h = −17→19
Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 20112) k = −17→24
Tmin = 0.981, Tmax = 0.995 l = −14→14
22133 measured reflections

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038 H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.4579P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max = 0.001
6680 reflections Δρmax = 0.33 e Å3
419 parameters Δρmin = −0.23 e Å3

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O11 0.13984 (7) 0.39931 (4) 0.51267 (8) 0.0167 (2)
O14 0.14523 (8) 0.46234 (5) 0.86202 (8) 0.0239 (2)
O121 0.18698 (7) 0.26721 (4) 0.47772 (8) 0.0186 (2)
O122 0.13729 (7) 0.23141 (4) 0.63468 (8) 0.0162 (2)
C12 0.14765 (9) 0.35255 (6) 0.60658 (11) 0.0153 (3)
C13 0.14901 (9) 0.37041 (6) 0.72208 (11) 0.0161 (3)
H13 0.1540 0.3344 0.7827 0.019*
C14 0.14293 (10) 0.44401 (6) 0.75658 (11) 0.0166 (3)
C14A 0.13289 (9) 0.49463 (6) 0.65301 (11) 0.0150 (2)
C15 0.12422 (9) 0.56769 (6) 0.66738 (11) 0.0156 (3)
H15 0.1247 0.5855 0.7462 0.019*
C16 0.11494 (9) 0.61435 (6) 0.56912 (11) 0.0147 (2)
C17 0.11434 (10) 0.58625 (6) 0.45309 (11) 0.0171 (3)
H17 0.1084 0.6175 0.3849 0.021*
C18 0.12206 (10) 0.51512 (7) 0.43612 (11) 0.0176 (3)
H18 0.1209 0.4972 0.3571 0.021*
C18A 0.13157 (9) 0.46978 (6) 0.53635 (11) 0.0150 (3)
C121 0.15961 (9) 0.27911 (6) 0.56400 (11) 0.0152 (3)
C122 0.16128 (10) 0.15886 (6) 0.61422 (11) 0.0173 (3)
H12A 0.2328 0.1535 0.6384 0.021*
H12B 0.1288 0.1457 0.5235 0.021*
C123 0.12554 (11) 0.11295 (6) 0.69613 (12) 0.0222 (3)
H12C 0.1445 0.0639 0.6900 0.033*
H12D 0.0542 0.1162 0.6671 0.033*
H12E 0.1546 0.1287 0.7848 0.033*
C161 0.10558 (9) 0.69191 (6) 0.58084 (11) 0.0141 (2)
C162 0.14423 (9) 0.73832 (6) 0.51543 (11) 0.0160 (3)
H162 0.1776 0.7200 0.4645 0.019*
C163 0.13461 (9) 0.81085 (6) 0.52375 (11) 0.0168 (3)
H163 0.1612 0.8412 0.4779 0.020*
C164 0.08671 (9) 0.83989 (6) 0.59792 (11) 0.0162 (3)
C165 0.04831 (9) 0.79352 (6) 0.66303 (11) 0.0164 (3)
H165 0.0150 0.8120 0.7140 0.020*
C166 0.05741 (9) 0.72085 (6) 0.65533 (11) 0.0157 (3)
H166 0.0306 0.6906 0.7011 0.019*
C167 0.07977 (10) 0.91884 (6) 0.60848 (12) 0.0208 (3)
H16A 0.0176 0.9310 0.6167 0.031*
H16B 0.0831 0.9412 0.5320 0.031*
H16C 0.1341 0.9356 0.6836 0.031*
O21 0.36690 (7) 0.39338 (4) 0.38688 (8) 0.0173 (2)
O24 0.39990 (8) 0.46146 (5) 0.74405 (8) 0.0256 (2)
O221 0.34285 (7) 0.25860 (4) 0.32365 (8) 0.0197 (2)
O222 0.39836 (7) 0.22764 (4) 0.53103 (8) 0.0170 (2)
C22 0.37715 (9) 0.34766 (6) 0.48321 (11) 0.0151 (3)
C23 0.38783 (9) 0.36726 (6) 0.60153 (11) 0.0166 (3)
H23 0.3942 0.3321 0.6639 0.020*
C24 0.38986 (10) 0.44161 (6) 0.63652 (11) 0.0170 (3)
C24A 0.37849 (9) 0.49097 (6) 0.53085 (11) 0.0152 (3)
C25 0.37738 (9) 0.56447 (6) 0.54600 (11) 0.0155 (3)
H25 0.3850 0.5832 0.6270 0.019*
C26 0.36546 (9) 0.61053 (6) 0.44566 (11) 0.0154 (3)
C27 0.35322 (10) 0.58073 (6) 0.32652 (12) 0.0182 (3)
H27 0.3446 0.6111 0.2564 0.022*
C28 0.35334 (10) 0.50898 (7) 0.30850 (12) 0.0190 (3)
H28 0.3444 0.4901 0.2271 0.023*
C28A 0.36677 (9) 0.46452 (6) 0.41131 (11) 0.0159 (3)
C221 0.37034 (9) 0.27309 (6) 0.43493 (11) 0.0156 (3)
C222 0.38561 (10) 0.15314 (6) 0.49520 (11) 0.0187 (3)
H22A 0.4129 0.1431 0.4289 0.022*
H22B 0.3154 0.1405 0.4615 0.022*
C223 0.43928 (11) 0.11188 (7) 0.61367 (12) 0.0211 (3)
H22C 0.4313 0.0613 0.5947 0.032*
H22D 0.4127 0.1233 0.6791 0.032*
H22E 0.5089 0.1240 0.6446 0.032*
C261 0.36521 (9) 0.68856 (6) 0.46004 (11) 0.0146 (3)
C262 0.31923 (9) 0.73240 (6) 0.35536 (11) 0.0163 (3)
H262 0.2869 0.7120 0.2738 0.020*
C263 0.31995 (9) 0.80523 (6) 0.36846 (11) 0.0167 (3)
H263 0.2885 0.8336 0.2955 0.020*
C264 0.36574 (9) 0.83778 (6) 0.48628 (11) 0.0165 (3)
C265 0.41121 (10) 0.79387 (6) 0.59067 (11) 0.0175 (3)
H265 0.4428 0.8144 0.6723 0.021*
C266 0.41138 (9) 0.72107 (7) 0.57822 (11) 0.0166 (3)
H266 0.4434 0.6928 0.6512 0.020*
C267 0.36524 (11) 0.91687 (6) 0.49995 (12) 0.0211 (3)
H26A 0.3662 0.9391 0.4221 0.032*
H26B 0.4231 0.9316 0.5725 0.032*
H26C 0.3061 0.9313 0.5141 0.032*

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O11 0.0239 (5) 0.0110 (4) 0.0160 (4) 0.0018 (4) 0.0083 (4) 0.0015 (3)
O14 0.0381 (6) 0.0187 (5) 0.0180 (4) −0.0004 (4) 0.0138 (4) −0.0006 (4)
O121 0.0209 (5) 0.0164 (4) 0.0209 (4) 0.0001 (4) 0.0103 (4) −0.0004 (3)
O122 0.0215 (5) 0.0103 (4) 0.0174 (4) 0.0006 (3) 0.0079 (4) 0.0009 (3)
C12 0.0135 (6) 0.0129 (6) 0.0182 (6) −0.0002 (5) 0.0044 (5) 0.0023 (4)
C13 0.0154 (7) 0.0149 (6) 0.0175 (6) −0.0010 (5) 0.0053 (5) 0.0023 (5)
C14 0.0173 (7) 0.0157 (6) 0.0168 (6) −0.0006 (5) 0.0063 (5) −0.0002 (5)
C14A 0.0131 (6) 0.0145 (6) 0.0167 (6) 0.0002 (5) 0.0047 (5) 0.0006 (5)
C15 0.0155 (6) 0.0157 (6) 0.0155 (6) −0.0011 (5) 0.0058 (5) −0.0015 (5)
C16 0.0123 (6) 0.0138 (6) 0.0170 (6) −0.0001 (5) 0.0042 (5) −0.0010 (4)
C17 0.0210 (7) 0.0138 (6) 0.0163 (6) 0.0017 (5) 0.0065 (5) 0.0023 (4)
C18 0.0228 (7) 0.0158 (6) 0.0149 (6) 0.0022 (5) 0.0076 (5) −0.0006 (5)
C18A 0.0145 (7) 0.0111 (6) 0.0190 (6) 0.0008 (5) 0.0059 (5) −0.0011 (4)
C121 0.0123 (6) 0.0139 (6) 0.0175 (6) 0.0001 (5) 0.0033 (5) 0.0005 (5)
C122 0.0224 (7) 0.0106 (6) 0.0186 (6) 0.0017 (5) 0.0071 (5) −0.0009 (4)
C123 0.0317 (8) 0.0125 (6) 0.0231 (6) 0.0001 (6) 0.0109 (6) 0.0015 (5)
C161 0.0136 (6) 0.0125 (6) 0.0140 (5) 0.0001 (5) 0.0024 (5) −0.0006 (4)
C162 0.0161 (7) 0.0165 (6) 0.0159 (6) 0.0015 (5) 0.0065 (5) −0.0012 (5)
C163 0.0180 (7) 0.0146 (6) 0.0172 (6) −0.0015 (5) 0.0059 (5) 0.0008 (5)
C164 0.0152 (7) 0.0136 (6) 0.0155 (6) 0.0007 (5) 0.0005 (5) −0.0020 (4)
C165 0.0155 (7) 0.0177 (6) 0.0151 (6) 0.0014 (5) 0.0047 (5) −0.0032 (5)
C166 0.0155 (7) 0.0164 (6) 0.0140 (5) −0.0009 (5) 0.0042 (5) −0.0003 (4)
C167 0.0241 (8) 0.0141 (6) 0.0237 (6) 0.0007 (5) 0.0084 (6) −0.0017 (5)
O21 0.0246 (5) 0.0114 (4) 0.0164 (4) 0.0006 (4) 0.0082 (4) 0.0010 (3)
O24 0.0415 (7) 0.0190 (5) 0.0152 (4) −0.0008 (4) 0.0091 (4) −0.0007 (3)
O221 0.0232 (5) 0.0172 (5) 0.0163 (4) 0.0007 (4) 0.0046 (4) −0.0006 (3)
O222 0.0224 (5) 0.0109 (4) 0.0163 (4) 0.0013 (4) 0.0053 (4) 0.0008 (3)
C22 0.0137 (6) 0.0134 (6) 0.0167 (6) 0.0003 (5) 0.0040 (5) 0.0025 (4)
C23 0.0160 (7) 0.0151 (6) 0.0166 (6) 0.0000 (5) 0.0037 (5) 0.0028 (5)
C24 0.0169 (7) 0.0168 (6) 0.0154 (6) −0.0008 (5) 0.0036 (5) 0.0012 (5)
C24A 0.0130 (6) 0.0152 (6) 0.0156 (6) 0.0000 (5) 0.0031 (5) 0.0011 (4)
C25 0.0155 (7) 0.0155 (6) 0.0147 (5) −0.0011 (5) 0.0047 (5) −0.0018 (4)
C26 0.0126 (6) 0.0162 (6) 0.0174 (6) −0.0004 (5) 0.0055 (5) −0.0008 (5)
C27 0.0226 (7) 0.0149 (6) 0.0188 (6) 0.0012 (5) 0.0096 (5) 0.0028 (5)
C28 0.0257 (7) 0.0165 (6) 0.0161 (6) 0.0003 (5) 0.0092 (5) −0.0010 (5)
C28A 0.0154 (7) 0.0130 (6) 0.0196 (6) 0.0008 (5) 0.0068 (5) −0.0006 (5)
C221 0.0130 (6) 0.0151 (6) 0.0186 (6) 0.0004 (5) 0.0055 (5) 0.0014 (5)
C222 0.0235 (7) 0.0114 (6) 0.0202 (6) −0.0015 (5) 0.0070 (5) −0.0021 (5)
C223 0.0280 (8) 0.0142 (6) 0.0222 (6) 0.0005 (5) 0.0107 (6) 0.0024 (5)
C261 0.0139 (6) 0.0138 (6) 0.0179 (6) 0.0006 (5) 0.0082 (5) −0.0001 (4)
C262 0.0149 (7) 0.0181 (6) 0.0157 (6) −0.0011 (5) 0.0056 (5) −0.0021 (5)
C263 0.0158 (7) 0.0170 (6) 0.0168 (6) 0.0019 (5) 0.0056 (5) 0.0029 (5)
C264 0.0151 (7) 0.0158 (6) 0.0207 (6) −0.0004 (5) 0.0090 (5) −0.0013 (5)
C265 0.0174 (7) 0.0175 (6) 0.0171 (6) −0.0009 (5) 0.0057 (5) −0.0039 (5)
C266 0.0157 (7) 0.0179 (6) 0.0159 (6) 0.0014 (5) 0.0054 (5) 0.0020 (5)
C267 0.0253 (8) 0.0148 (6) 0.0228 (6) 0.0002 (5) 0.0085 (6) −0.0023 (5)

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Geometric parameters (Å, º)

O11—C12 1.3551 (14) O21—C22 1.3561 (14)
O11—C18A 1.3769 (14) O21—C28A 1.3770 (14)
O14—C14 1.2299 (14) O24—C24 1.2282 (14)
O121—C121 1.2057 (14) O221—C221 1.2025 (14)
O122—C121 1.3258 (14) O222—C221 1.3274 (14)
O122—C122 1.4597 (14) O222—C222 1.4625 (14)
C12—C13 1.3418 (16) C22—C23 1.3403 (16)
C12—C121 1.5046 (17) C22—C221 1.5056 (17)
C13—C14 1.4606 (17) C23—C24 1.4615 (17)
C13—H13 0.9500 C23—H23 0.9500
C14—C14A 1.4785 (16) C24—C24A 1.4777 (16)
C14A—C18A 1.3936 (16) C24A—C28A 1.3911 (16)
C14A—C15 1.4061 (16) C24A—C25 1.4049 (17)
C15—C16 1.3869 (16) C25—C26 1.3904 (17)
C15—H15 0.9500 C25—H25 0.9500
C16—C17 1.4126 (16) C26—C27 1.4095 (16)
C16—C161 1.4875 (16) C26—C261 1.4885 (16)
C17—C18 1.3729 (17) C27—C28 1.3757 (17)
C17—H17 0.9500 C27—H27 0.9500
C18—C18A 1.3877 (16) C28—C28A 1.3895 (17)
C18—H18 0.9500 C28—H28 0.9500
C122—C123 1.5001 (17) C222—C223 1.4998 (17)
C122—H12A 0.9900 C222—H22A 0.9900
C122—H12B 0.9900 C222—H22B 0.9900
C123—H12C 0.9800 C223—H22C 0.9800
C123—H12D 0.9800 C223—H22D 0.9800
C123—H12E 0.9800 C223—H22E 0.9800
C161—C166 1.3973 (17) C261—C266 1.3989 (16)
C161—C162 1.3979 (17) C261—C262 1.3995 (16)
C162—C163 1.3893 (17) C262—C263 1.3885 (17)
C162—H162 0.9500 C262—H262 0.9500
C163—C164 1.3924 (17) C263—C264 1.3952 (17)
C163—H163 0.9500 C263—H263 0.9500
C164—C165 1.3930 (17) C264—C265 1.3968 (17)
C164—C167 1.5083 (16) C264—C267 1.5079 (17)
C165—C166 1.3901 (17) C265—C266 1.3875 (17)
C165—H165 0.9500 C265—H265 0.9500
C166—H166 0.9500 C266—H266 0.9500
C167—H16A 0.9800 C267—H26A 0.9800
C167—H16B 0.9800 C267—H26B 0.9800
C167—H16C 0.9800 C267—H26C 0.9800
C12—O11—C18A 118.08 (9) C22—O21—C28A 118.25 (9)
C121—O122—C122 114.80 (9) C221—O222—C222 115.53 (9)
C13—C12—O11 124.30 (11) C23—C22—O21 124.14 (11)
C13—C12—C121 125.68 (11) C23—C22—C221 126.14 (11)
O11—C12—C121 109.95 (10) O21—C22—C221 109.67 (9)
C12—C13—C14 121.37 (11) C22—C23—C24 121.38 (11)
C12—C13—H13 119.3 C22—C23—H23 119.3
C14—C13—H13 119.3 C24—C23—H23 119.3
O14—C14—C13 123.11 (11) O24—C24—C23 123.13 (11)
O14—C14—C14A 122.88 (11) O24—C24—C24A 122.83 (11)
C13—C14—C14A 114.01 (10) C23—C24—C24A 114.04 (10)
C18A—C14A—C15 118.18 (11) C28A—C24A—C25 118.24 (11)
C18A—C14A—C14 119.48 (11) C28A—C24A—C24 119.56 (11)
C15—C14A—C14 122.34 (10) C25—C24A—C24 122.19 (11)
C16—C15—C14A 121.49 (11) C26—C25—C24A 121.82 (11)
C16—C15—H15 119.3 C26—C25—H25 119.1
C14A—C15—H15 119.3 C24A—C25—H25 119.1
C15—C16—C17 117.90 (11) C25—C26—C27 117.43 (11)
C15—C16—C161 122.99 (10) C25—C26—C261 122.68 (11)
C17—C16—C161 119.11 (10) C27—C26—C261 119.89 (10)
C18—C17—C16 121.85 (11) C28—C27—C26 122.09 (11)
C18—C17—H17 119.1 C28—C27—H27 119.0
C16—C17—H17 119.1 C26—C27—H27 119.0
C17—C18—C18A 118.90 (11) C27—C28—C28A 118.93 (11)
C17—C18—H18 120.6 C27—C28—H28 120.5
C18A—C18—H18 120.6 C28A—C28—H28 120.5
O11—C18A—C18 115.60 (10) O21—C28A—C28 115.91 (10)
O11—C18A—C14A 122.73 (10) O21—C28A—C24A 122.62 (10)
C18—C18A—C14A 121.67 (11) C28—C28A—C24A 121.47 (11)
O121—C121—O122 126.18 (11) O221—C221—O222 126.22 (11)
O121—C121—C12 123.04 (11) O221—C221—C22 123.05 (11)
O122—C121—C12 110.77 (10) O222—C221—C22 110.73 (10)
O122—C122—C123 106.78 (10) O222—C222—C223 106.56 (10)
O122—C122—H12A 110.4 O222—C222—H22A 110.4
C123—C122—H12A 110.4 C223—C222—H22A 110.4
O122—C122—H12B 110.4 O222—C222—H22B 110.4
C123—C122—H12B 110.4 C223—C222—H22B 110.4
H12A—C122—H12B 108.6 H22A—C222—H22B 108.6
C122—C123—H12C 109.5 C222—C223—H22C 109.5
C122—C123—H12D 109.5 C222—C223—H22D 109.5
H12C—C123—H12D 109.5 H22C—C223—H22D 109.5
C122—C123—H12E 109.5 C222—C223—H22E 109.5
H12C—C123—H12E 109.5 H22C—C223—H22E 109.5
H12D—C123—H12E 109.5 H22D—C223—H22E 109.5
C166—C161—C162 117.85 (11) C266—C261—C262 117.31 (11)
C166—C161—C16 121.74 (11) C266—C261—C26 121.49 (11)
C162—C161—C16 120.40 (11) C262—C261—C26 121.20 (11)
C163—C162—C161 121.06 (11) C263—C262—C261 121.22 (11)
C163—C162—H162 119.5 C263—C262—H262 119.4
C161—C162—H162 119.5 C261—C262—H262 119.4
C162—C163—C164 121.27 (11) C262—C263—C264 121.58 (11)
C162—C163—H163 119.4 C262—C263—H263 119.2
C164—C163—H163 119.4 C264—C263—H263 119.2
C163—C164—C165 117.54 (11) C263—C264—C265 117.07 (11)
C163—C164—C167 120.28 (11) C263—C264—C267 121.25 (11)
C165—C164—C167 122.16 (11) C265—C264—C267 121.68 (11)
C166—C165—C164 121.70 (11) C266—C265—C264 121.70 (11)
C166—C165—H165 119.2 C266—C265—H265 119.1
C164—C165—H165 119.2 C264—C265—H265 119.1
C165—C166—C161 120.59 (11) C265—C266—C261 121.12 (11)
C165—C166—H166 119.7 C265—C266—H266 119.4
C161—C166—H166 119.7 C261—C266—H266 119.4
C164—C167—H16A 109.5 C264—C267—H26A 109.5
C164—C167—H16B 109.5 C264—C267—H26B 109.5
H16A—C167—H16B 109.5 H26A—C267—H26B 109.5
C164—C167—H16C 109.5 C264—C267—H26C 109.5
H16A—C167—H16C 109.5 H26A—C267—H26C 109.5
H16B—C167—H16C 109.5 H26B—C267—H26C 109.5
C18A—O11—C12—C13 −0.81 (19) C28A—O21—C22—C23 −0.43 (19)
C18A—O11—C12—C121 −177.93 (10) C28A—O21—C22—C221 177.20 (10)
O11—C12—C13—C14 −0.6 (2) O21—C22—C23—C24 −0.4 (2)
C121—C12—C13—C14 176.04 (12) C221—C22—C23—C24 −177.63 (12)
C12—C13—C14—O14 −179.03 (13) C22—C23—C24—O24 −179.71 (13)
C12—C13—C14—C14A 1.46 (18) C22—C23—C24—C24A 0.44 (18)
O14—C14—C14A—C18A 179.54 (12) O24—C24—C24A—C28A −179.56 (13)
C13—C14—C14A—C18A −0.96 (17) C23—C24—C24A—C28A 0.29 (18)
O14—C14—C14A—C15 −0.7 (2) O24—C24—C24A—C25 −0.7 (2)
C13—C14—C14A—C15 178.85 (12) C23—C24—C24A—C25 179.18 (12)
C18A—C14A—C15—C16 −0.24 (19) C28A—C24A—C25—C26 −0.31 (19)
C14—C14A—C15—C16 179.95 (12) C24—C24A—C25—C26 −179.21 (12)
C14A—C15—C16—C17 0.05 (19) C24A—C25—C26—C27 0.75 (19)
C14A—C15—C16—C161 179.98 (12) C24A—C25—C26—C261 −179.29 (12)
C15—C16—C17—C18 0.36 (19) C25—C26—C27—C28 −0.3 (2)
C161—C16—C17—C18 −179.57 (12) C261—C26—C27—C28 179.72 (12)
C16—C17—C18—C18A −0.6 (2) C26—C27—C28—C28A −0.5 (2)
C12—O11—C18A—C18 −178.91 (11) C22—O21—C28A—C28 −178.28 (11)
C12—O11—C18A—C14A 1.31 (18) C22—O21—C28A—C24A 1.20 (18)
C17—C18—C18A—O11 −179.42 (11) C27—C28—C28A—O21 −179.49 (12)
C17—C18—C18A—C14A 0.4 (2) C27—C28—C28A—C24A 1.0 (2)
C15—C14A—C18A—O11 179.80 (11) C25—C24A—C28A—O21 179.94 (11)
C14—C14A—C18A—O11 −0.39 (19) C24—C24A—C28A—O21 −1.13 (19)
C15—C14A—C18A—C18 0.03 (19) C25—C24A—C28A—C28 −0.60 (19)
C14—C14A—C18A—C18 179.84 (12) C24—C24A—C28A—C28 178.33 (12)
C122—O122—C121—O121 8.49 (18) C222—O222—C221—O221 −5.78 (19)
C122—O122—C121—C12 −170.74 (10) C222—O222—C221—C22 174.17 (10)
C13—C12—C121—O121 −156.97 (13) C23—C22—C221—O221 165.68 (13)
O11—C12—C121—O121 20.10 (17) O21—C22—C221—O221 −11.89 (17)
C13—C12—C121—O122 22.30 (18) C23—C22—C221—O222 −14.27 (18)
O11—C12—C121—O122 −160.63 (10) O21—C22—C221—O222 168.16 (10)
C121—O122—C122—C123 −176.76 (10) C221—O222—C222—C223 168.94 (11)
C15—C16—C161—C166 −33.27 (18) C25—C26—C261—C266 24.15 (19)
C17—C16—C161—C166 146.65 (12) C27—C26—C261—C266 −155.89 (12)
C15—C16—C161—C162 147.55 (12) C25—C26—C261—C262 −156.33 (12)
C17—C16—C161—C162 −32.53 (18) C27—C26—C261—C262 23.63 (18)
C166—C161—C162—C163 −0.31 (18) C266—C261—C262—C263 0.30 (18)
C16—C161—C162—C163 178.90 (11) C26—C261—C262—C263 −179.24 (11)
C161—C162—C163—C164 0.36 (19) C261—C262—C263—C264 −0.47 (19)
C162—C163—C164—C165 −0.32 (18) C262—C263—C264—C265 0.19 (18)
C162—C163—C164—C167 178.21 (12) C262—C263—C264—C267 −179.32 (12)
C163—C164—C165—C166 0.26 (18) C263—C264—C265—C266 0.26 (19)
C167—C164—C165—C166 −178.24 (11) C267—C264—C265—C266 179.76 (12)
C164—C165—C166—C161 −0.23 (19) C264—C265—C266—C261 −0.4 (2)
C162—C161—C166—C165 0.25 (18) C262—C261—C266—C265 0.14 (19)
C16—C161—C166—C165 −178.95 (11) C26—C261—C266—C265 179.68 (12)

(1) Ethyl 6-(4-methylphenyl)-4-oxo-4H-chromene-2-carboxylate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C162—H162···Cg(C261) 0.95 2.85 3.4914 (15) 126
C262—H262···Cg(C161)i 0.95 2.84 3.5408 (4) 131

Symmetry code: (i) x, −y+1/2, z−1/2.

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Crystal data

C18H13FO4 F(000) = 648
Mr = 312.28 Dx = 1.483 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71075 Å
a = 3.8521 (2) Å Cell parameters from 15331 reflections
b = 20.6970 (15) Å θ = 2.3–27.5°
c = 17.5478 (11) Å µ = 0.11 mm1
β = 91.546 (1)° T = 100 K
V = 1398.52 (15) Å3 Needle, colourless
Z = 4 0.42 × 0.02 × 0.01 mm

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Data collection

Rigaku Saturn724+ (2x2 bin mode) diffractometer 3177 independent reflections
Radiation source: Sealed Tube 2725 reflections with I > 2σ(I)
Graphite Monochromator monochromator Rint = 0.035
Detector resolution: 28.5714 pixels mm-1 θmax = 27.5°, θmin = 2.3°
profile data from ω–scans h = −4→4
Absorption correction: multi-scan CrystalClear-SM Expert (Rigaku, 20112) k = −26→26
Tmin = 0.954, Tmax = 0.999 l = −22→22
16479 measured reflections

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.087 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4787P] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max = 0.001
3176 reflections Δρmax = 0.31 e Å3
209 parameters Δρmin = −0.20 e Å3

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.3562 (3) 0.34130 (5) 0.52749 (6) 0.0141 (2)
C3 0.5254 (3) 0.30718 (5) 0.58218 (6) 0.0155 (2)
H3 0.5714 0.2626 0.5741 0.019*
C4 0.6397 (3) 0.33746 (5) 0.65381 (6) 0.0149 (2)
C5 0.6674 (3) 0.44460 (5) 0.72144 (6) 0.0138 (2)
H5 0.7882 0.4245 0.7630 0.017*
C4A 0.5615 (3) 0.40718 (5) 0.65824 (6) 0.0135 (2)
C6 0.5990 (3) 0.51041 (5) 0.72442 (6) 0.0137 (2)
C7 0.4184 (3) 0.53915 (5) 0.66195 (6) 0.0145 (2)
H7 0.3699 0.5841 0.6633 0.017*
C8 0.3108 (3) 0.50362 (5) 0.59912 (6) 0.0147 (2)
H8 0.1891 0.5237 0.5577 0.018*
C8A 0.3843 (3) 0.43766 (5) 0.59763 (6) 0.0134 (2)
C21 0.2302 (3) 0.31555 (5) 0.45161 (6) 0.0143 (2)
C22 0.2530 (3) 0.22857 (5) 0.36482 (6) 0.0175 (2)
H22A 0.3781 0.2496 0.3230 0.021*
H22B 0.0005 0.2343 0.3553 0.021*
C23 0.3417 (3) 0.15775 (5) 0.36840 (6) 0.0193 (2)
H23A 0.2795 0.1373 0.3195 0.029*
H23B 0.2120 0.1372 0.4091 0.029*
H23C 0.5914 0.1526 0.3789 0.029*
C61 0.7187 (3) 0.55070 (5) 0.79004 (6) 0.0142 (2)
C62 0.7275 (3) 0.52672 (5) 0.86460 (6) 0.0169 (2)
H62 0.6491 0.4840 0.8740 0.020*
C63 0.8493 (3) 0.56456 (5) 0.92520 (6) 0.0193 (2)
H63 0.8535 0.5483 0.9759 0.023*
C64 0.9640 (3) 0.62638 (5) 0.90974 (6) 0.0182 (2)
C65 0.9542 (3) 0.65260 (5) 0.83766 (6) 0.0179 (2)
H65 1.0299 0.6956 0.8290 0.021*
C66 0.8302 (3) 0.61423 (5) 0.77786 (6) 0.0161 (2)
H66 0.8207 0.6315 0.7277 0.019*
F64 1.0940 (2) 0.66280 (3) 0.96871 (4) 0.02586 (17)
O1 0.27388 (19) 0.40483 (3) 0.53315 (4) 0.01485 (17)
O4 0.7946 (2) 0.30785 (4) 0.70522 (4) 0.02071 (19)
O21 0.0372 (2) 0.34557 (4) 0.40948 (4) 0.02041 (18)
O22 0.3576 (2) 0.25727 (4) 0.43820 (4) 0.01680 (17)

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0153 (5) 0.0131 (5) 0.0141 (5) −0.0001 (4) 0.0014 (4) −0.0013 (4)
C3 0.0180 (5) 0.0132 (5) 0.0151 (5) 0.0016 (4) −0.0001 (4) −0.0010 (4)
C4 0.0163 (5) 0.0143 (5) 0.0141 (5) 0.0011 (4) 0.0001 (4) 0.0009 (4)
C5 0.0141 (5) 0.0151 (5) 0.0121 (5) −0.0001 (4) −0.0001 (4) 0.0018 (4)
C4A 0.0134 (5) 0.0139 (5) 0.0132 (5) 0.0004 (4) 0.0012 (4) 0.0005 (4)
C6 0.0130 (5) 0.0155 (5) 0.0126 (5) −0.0014 (4) 0.0011 (4) −0.0006 (4)
C7 0.0151 (5) 0.0126 (4) 0.0157 (5) 0.0002 (4) 0.0012 (4) 0.0006 (4)
C8 0.0154 (5) 0.0150 (5) 0.0138 (5) 0.0013 (4) −0.0005 (4) 0.0020 (4)
C8A 0.0140 (5) 0.0149 (5) 0.0113 (4) −0.0014 (4) 0.0005 (4) −0.0011 (4)
C21 0.0154 (5) 0.0144 (5) 0.0133 (5) −0.0012 (4) 0.0014 (4) 0.0006 (4)
C22 0.0198 (5) 0.0194 (5) 0.0130 (5) 0.0002 (4) −0.0033 (4) −0.0046 (4)
C23 0.0193 (6) 0.0183 (5) 0.0203 (5) 0.0004 (4) −0.0002 (4) −0.0050 (4)
C61 0.0135 (5) 0.0152 (5) 0.0139 (5) 0.0013 (4) 0.0001 (4) −0.0015 (4)
C62 0.0201 (5) 0.0143 (5) 0.0161 (5) −0.0008 (4) 0.0006 (4) 0.0004 (4)
C63 0.0250 (6) 0.0199 (5) 0.0130 (5) 0.0004 (4) −0.0004 (4) 0.0007 (4)
C64 0.0197 (5) 0.0198 (5) 0.0149 (5) −0.0013 (4) −0.0010 (4) −0.0065 (4)
C65 0.0199 (5) 0.0149 (5) 0.0190 (5) −0.0019 (4) 0.0020 (4) −0.0017 (4)
C66 0.0180 (5) 0.0159 (5) 0.0144 (5) 0.0004 (4) 0.0009 (4) 0.0005 (4)
F64 0.0363 (4) 0.0244 (3) 0.0167 (3) −0.0080 (3) −0.0025 (3) −0.0070 (3)
O1 0.0197 (4) 0.0123 (3) 0.0123 (3) 0.0017 (3) −0.0030 (3) −0.0008 (3)
O4 0.0290 (5) 0.0163 (4) 0.0165 (4) 0.0055 (3) −0.0062 (3) 0.0002 (3)
O21 0.0265 (4) 0.0183 (4) 0.0161 (4) 0.0045 (3) −0.0046 (3) 0.0003 (3)
O22 0.0204 (4) 0.0154 (4) 0.0143 (4) 0.0026 (3) −0.0039 (3) −0.0039 (3)

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Geometric parameters (Å, º)

C2—C3 1.3457 (14) C21—O22 1.3257 (12)
C2—O1 1.3568 (12) C22—O22 1.4647 (12)
C2—C21 1.5025 (14) C22—C23 1.5059 (15)
C3—C4 1.4617 (14) C22—H22A 0.9900
C3—H3 0.9500 C22—H22B 0.9900
C4—O4 1.2315 (13) C23—H23A 0.9800
C4—C4A 1.4766 (14) C23—H23B 0.9800
C5—C6 1.3886 (14) C23—H23C 0.9800
C5—C4A 1.4042 (14) C61—C62 1.3989 (14)
C5—H5 0.9500 C61—C66 1.4015 (14)
C4A—C8A 1.3984 (14) C62—C63 1.3920 (15)
C6—C7 1.4135 (14) C62—H62 0.9500
C6—C61 1.4851 (14) C63—C64 1.3829 (16)
C7—C8 1.3797 (14) C63—H63 0.9500
C7—H7 0.9500 C64—F64 1.3646 (12)
C8—C8A 1.3948 (14) C64—C65 1.3759 (15)
C8—H8 0.9500 C65—C66 1.3903 (14)
C8A—O1 1.3774 (12) C65—H65 0.9500
C21—O21 1.2065 (13) C66—H66 0.9500
C3—C2—O1 124.47 (9) O22—C22—H22A 110.2
C3—C2—C21 125.77 (9) C23—C22—H22A 110.2
O1—C2—C21 109.76 (8) O22—C22—H22B 110.2
C2—C3—C4 121.14 (9) C23—C22—H22B 110.2
C2—C3—H3 119.4 H22A—C22—H22B 108.5
C4—C3—H3 119.4 C22—C23—H23A 109.5
O4—C4—C3 123.05 (9) C22—C23—H23B 109.5
O4—C4—C4A 122.91 (9) H23A—C23—H23B 109.5
C3—C4—C4A 114.03 (9) C22—C23—H23C 109.5
C6—C5—C4A 121.29 (9) H23A—C23—H23C 109.5
C6—C5—H5 119.4 H23B—C23—H23C 109.5
C4A—C5—H5 119.4 C62—C61—C66 118.41 (9)
C8A—C4A—C5 118.51 (9) C62—C61—C6 121.68 (9)
C8A—C4A—C4 119.79 (9) C66—C61—C6 119.91 (9)
C5—C4A—C4 121.69 (9) C63—C62—C61 120.93 (10)
C5—C6—C7 118.26 (9) C63—C62—H62 119.5
C5—C6—C61 121.65 (9) C61—C62—H62 119.5
C7—C6—C61 120.07 (9) C64—C63—C62 118.27 (10)
C8—C7—C6 121.77 (9) C64—C63—H63 120.9
C8—C7—H7 119.1 C62—C63—H63 120.9
C6—C7—H7 119.1 F64—C64—C65 118.67 (10)
C7—C8—C8A 118.68 (9) F64—C64—C63 118.35 (10)
C7—C8—H8 120.7 C65—C64—C63 122.98 (10)
C8A—C8—H8 120.7 C64—C65—C66 117.97 (10)
O1—C8A—C8 116.10 (9) C64—C65—H65 121.0
O1—C8A—C4A 122.40 (9) C66—C65—H65 121.0
C8—C8A—C4A 121.50 (9) C65—C66—C61 121.41 (10)
O21—C21—O22 125.79 (10) C65—C66—H66 119.3
O21—C21—C2 122.64 (9) C61—C66—H66 119.3
O22—C21—C2 111.57 (9) C2—O1—C8A 118.08 (8)
O22—C22—C23 107.55 (8) C21—O22—C22 115.51 (8)
O1—C2—C3—C4 −0.66 (17) C3—C2—C21—O22 −11.10 (15)
C21—C2—C3—C4 179.33 (10) O1—C2—C21—O22 168.89 (8)
C2—C3—C4—O4 179.88 (11) C5—C6—C61—C62 −35.73 (15)
C2—C3—C4—C4A −1.71 (15) C7—C6—C61—C62 145.98 (11)
C6—C5—C4A—C8A 0.07 (15) C5—C6—C61—C66 143.58 (11)
C6—C5—C4A—C4 178.64 (10) C7—C6—C61—C66 −34.71 (15)
O4—C4—C4A—C8A −179.98 (10) C66—C61—C62—C63 −1.07 (16)
C3—C4—C4A—C8A 1.60 (14) C6—C61—C62—C63 178.25 (10)
O4—C4—C4A—C5 1.48 (16) C61—C62—C63—C64 −0.46 (17)
C3—C4—C4A—C5 −176.94 (9) C62—C63—C64—F64 −177.91 (10)
C4A—C5—C6—C7 0.08 (15) C62—C63—C64—C65 1.81 (18)
C4A—C5—C6—C61 −178.24 (9) F64—C64—C65—C66 178.21 (10)
C5—C6—C7—C8 −0.02 (16) C63—C64—C65—C66 −1.50 (17)
C61—C6—C7—C8 178.33 (10) C64—C65—C66—C61 −0.15 (16)
C6—C7—C8—C8A −0.20 (16) C62—C61—C66—C65 1.39 (16)
C7—C8—C8A—O1 −179.34 (9) C6—C61—C66—C65 −177.94 (10)
C7—C8—C8A—C4A 0.36 (16) C3—C2—O1—C8A 3.16 (15)
C5—C4A—C8A—O1 179.38 (9) C21—C2—O1—C8A −176.84 (8)
C4—C4A—C8A—O1 0.79 (15) C8—C8A—O1—C2 176.53 (9)
C5—C4A—C8A—C8 −0.30 (15) C4A—C8A—O1—C2 −3.17 (14)
C4—C4A—C8A—C8 −178.89 (10) O21—C21—O22—C22 0.82 (15)
C3—C2—C21—O21 168.95 (11) C2—C21—O22—C22 −179.12 (8)
O1—C2—C21—O21 −11.05 (14) C23—C22—O22—C21 −165.47 (9)

(2) Ethyl 6-(4-fluorophenyl)-4-oxo-4H-chromene-2-carboxylate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7···O21i 0.95 2.47 3.1977 (13) 133
C65—H65···O4ii 0.95 2.50 3.4447 (13) 175
C66—H66···O21iii 0.95 2.53 3.4425 (13) 162

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+1.

References

  1. Becke, A. D. (1997). J. Chem. Phys 107, 8554–8560.
  2. Cagide, F., Gaspar, A., Reis, J., Chavarria, D., Vilar, S., Hripcsak, S., Uriarte, E., Kachler, S., Klotz, K. N. & Borges, F. (2015a). RSC Adv. 5, 78572–78585.
  3. Cagide, F., Silva, T., Reis, J., Gaspar, A., Borges, F., Gomes, L. R. & Low, J. N. (2015b). Chem. Commun. 51, 2832–2835. [DOI] [PubMed]
  4. Coles, S. J. & Gale, P. A. (2012). Chem. Sci. 3, 683–689.
  5. Frisch, M. J., et al. (2004). GAUSSIAN 03. Gaussian, Inc., Wallingford, Connecticut, USA.
  6. Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960–4992. [DOI] [PubMed]
  7. Gaspar, A., Milhazes, N., Santana, L., Uriarte, E., Borges, F. & Matos, M. J. (2015). Curr. Top. Med. Chem. 15, 432–445. [PubMed]
  8. Hehre, W. J., Radom, L., Schleyer, P. V. R. & Pople, J. A. (1986). Ab Initio Molecular Orbital Theory. New York: Wiley.
  9. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  10. Ko, S. K., Jang, H. J., Kim, E. & Park, S. B. (2006). Chem. Commun. pp. 2962–2694. [DOI] [PubMed]
  11. Lee, C., Yang, W. & Parr, G. R. (1988). Phys. Rev. B, 37, 785–789. [DOI] [PubMed]
  12. Mackay, A. L. (1984). Acta Cryst. A40, 165–166.
  13. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  14. McArdle, P., Gilligan, K., Cunningham, D., Dark, R. & Mahon, M. (2004). CrystEngComm, 6, 303–309.
  15. Nicolaou, K. C., Pfefferkorn, J. A., Roecker, A. J., Cao, G. Q., Barluenga, S. & Mitchell, H. J. (2000). J. Am. Chem. Soc. 122, 9939–9953.
  16. Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.
  17. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  18. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  19. Soares, P., Fernandes, C., Chavarria, D. & Borges, F. (2015). J. Chem. Educ. 92, 575–578.
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Welsch, M. E., Snyder, S. A. & Stockwell, B. R. (2010). Curr. Opin. Chem. Biol. 14, 347–361. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, 1, 2. DOI: 10.1107/S2056989015022781/hb7543sup1.cif

e-72-00008-sup1.cif (2MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989015022781/hb75431sup2.hkl

e-72-00008-1sup2.hkl (530.9KB, hkl)

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989015022781/hb75432sup3.hkl

e-72-00008-2sup3.hkl (253.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022781/hb75431sup4.cml

Supporting information file. DOI: 10.1107/S2056989015022781/hb75432sup5.cml

Supporting information file. DOI: 10.1107/S2056989015022781/hb7543sup6.pdf

e-72-00008-sup6.pdf (141.4KB, pdf)

CCDC references: 1439394, 1439393

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES