Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 1;72(Pt 1):40–43. doi: 10.1107/S2056989015023348

Crystal structure of the thermochromic bis­(di­ethyl­ammonium) tetra­chlorido­cuprate(II) complex

Emily P Aldrich a, Katherine A Bussey a, Jennifer R Connell a, Erin F Reinhart a, Kayode D Oshin a,*, Brandon Q Mercado b, Allen G Oliver c
PMCID: PMC4704760  PMID: 26870581

The low-temperature structure of bis­(di­ethyl­ammonium) tetra­chlorido­cuprate is reported. The complex exhibits thermochromism and has a two-dimensional hydrogen-bonded network through N—H⋯Cl hydrogen bonds.

Keywords: crystal structure, four-coordinate copper(II) complex, thermochromism

Abstract

In the structure of the title complex salt, (Et2NH2)2[CuCl4], the asymmetric unit consists of four unique di­ethyl­ammonium cations and three unique tetra­chlorido­cuprate anions. Two of the three anions are located with their copper atoms on independent crystallographic twofold axes, while the remaining tetra­chlorido­cuprate is located at a general position of the ortho­rhom­bic space group P21212. Two of the three Cu atoms adopt a distorted square-planar/disphenoidal geometry and the third Cu atom has a regular square-planar coordination environment. The di­ethyl­ammonium cations form an extensive hydrogen-bonded network through N—H⋯Cl inter­actions with the tetra­chlorido­cuprate anions, resulting in a two-dimensional sheet-like hydrogen-bonded network parallel to the ab direction. The complex was observed to undergo a color shift from deep green at room temperature to pale yellow at temperatures above 328 K.

Chemical context  

Thermochromic compounds exhibit a reversible change in color corresponding to a change in temperature. This change can occur in the solid state or in solution and is typically due to geometry rearrangement at the mol­ecular level. Several mechanisms have been proposed for this rearrangement, including phase transitions, changes in solvation, changes in ligand geometry, coordination number, and finally crystal packing (White & LeBlanc, 1999). There are two generally accepted classes of thermochromism: (i) continuous; used to describe a gradual change in color, most likely due to breaking or rearrangement of the crystal structure (Roberts et al., 1981), and (ii) discontinuous; used to describe a dramatic change in color over a specific or small temperature range (Van Oort, 1988). Two classes of thermochromic compounds that have practical applications today include liquid crystals and leuco dyes. Liquid crystals exist on the boundary between the liquid and solid states. They are classified as discontinuous due to the chemistry of their transitions (Amberger & Savji, 2008). As a result, thermochromic liquid crystals have been used to make ‘mood rings’, thermometers, and game pieces (Chandler, 2012). Although color changes in liquid crystals are more sensitive to external stimuli such as temperature changes, they have a highly specialized manufacturing process and are difficult to make. For this reason, new thermochromic compounds such as leuco dyes are highly sought after. Leuco dyes are easier to work with and less sensitive to temperature changes. They have been used in advertising labels, textiles, and packaging for microwaveable syrup bottles and beverage cans that indicate content temperature changes (Muthyala, 1997). Given the intriguing applications of thermochromic compounds, we report the synthesis and structural characterization of a bis­(di­ethyl­ammonium) tetra­chlorido­cuprate complex (I) that displays thermochromic properties.graphic file with name e-72-00040-scheme1.jpg

Structural commentary  

The asymmetric unit of the thermochromic complex (Et2NH2)2[CuCl4] consists of four unique di­ethyl­ammonium cations and one full and two half tetra­chlorido­cuprate anions (Fig. 1). The di­ethyl­ammonium cations and the complete anion (Cu1) occupy general positions within the unit cell. The two half-tetra­chlorido­cuprate anions are located on crystallographic twofold axes at [½, ½, z] and [½, 0, z]. Each copper cation exhibits different coordination geometries. Cu2, located on a twofold rotation axis, has close to ideal square-planar geometry, with trans Cl—Cu—Cl angles close to 180° (Table 1). Analysis of these angles through the τ4 metric developed by Yang et al. (2007) yields a τ4 value of 0.02 for Cu2. A value of zero (0) is indicative of an ideal square-planar geometry while a value of one (1) indicates an ideal tetra­hedral geometry. In contrast, Cu1 and Cu3 adopt distorted square-planar geometries, tending to a disphenoidal (or ‘see-saw’) type geometry with τ4 = 0.27 and 0.48, respectively. The τ4 value is calculated from: [360 − (α + β)]/141; where α and β are the two largest angles about the four-coordinate copper(II) atom in question. However, these distortions are solely in the bond angles about the copper(II) atoms: all of the Cu—Cl bond lengths are similar (Table 1). A mean-plane analysis of each copper(II) atom shows the gradual change from the atoms being nearly co-planar (Cu2), through an inter­mediate distortion (Cu1) to a more pronounced out-of-plane arrangement of chlorine atoms around Cu3, in which the chlorine atoms are located 0.68 Å from the mean plane (Table 2). These distortions, along with the hydrogen-bonded network described below, are likely the cause for the thermochromism observed within the sample.

Figure 1.

Figure 1

Atom labelling scheme for bis­(di­ethyl­ammonium) tetra­chlorido­cuprate. Atomic displacement ellipsoids are depicted at the 50% probability level and H atoms as spheres of an arbitrary radius. [Symmetry codes: (i) −x + 1, −y + 1, z; (ii) −x + 1, −y, z.]

Table 1. Selected geometric parameters (Å, °).

Cu1—Cl2 2.2474 (7) Cu2—Cl6i 2.2689 (6)
Cu1—Cl1 2.2598 (7) Cu2—Cl6 2.2689 (6)
Cu1—Cl3 2.2620 (7) Cu3—Cl8 2.2475 (7)
Cu1—Cl4 2.2702 (7) Cu3—Cl8ii 2.2475 (7)
Cu2—Cl5 2.2644 (6) Cu3—Cl7 2.2481 (6)
Cu2—Cl5i 2.2644 (6) Cu3—Cl7ii 2.2481 (6)
       
Cl2—Cu1—Cl1 93.20 (3) Cl5—Cu2—Cl6 90.34 (2)
Cl2—Cu1—Cl3 92.13 (3) Cl5i—Cu2—Cl6 89.66 (2)
Cl1—Cu1—Cl3 161.22 (3) Cl6i—Cu2—Cl6 179.81 (4)
Cl2—Cu1—Cl4 160.16 (3) Cl8—Cu3—Cl8ii 146.10 (4)
Cl1—Cu1—Cl4 90.46 (3) Cl8—Cu3—Cl7 94.66 (2)
Cl3—Cu1—Cl4 90.60 (3) Cl8ii—Cu3—Cl7 95.17 (2)
Cl5—Cu2—Cl5i 176.78 (4) Cl8—Cu3—Cl7ii 95.17 (2)
Cl5—Cu2—Cl6i 89.66 (2) Cl8ii—Cu3—Cl7ii 94.66 (2)
Cl5i—Cu2—Cl6i 90.34 (2) Cl7—Cu3—Cl7ii 145.83 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Mean plane deviations for [CuCl4]2− anions (Å).

*Because these pairs of atoms are symmetry related by a twofold axis, deviations are identical.

Atom Deviation Atom Deviation Atom Deviation
Cu1 0.0091 (4) Cu2 0.0239 (5) Cu3 −0.0021 (5)
Cl1 0.3740 (4) Cl5/Cl5i* −0.0397 (6) Cl7/Cl7ii* 0.6583 (5)
Cl2 −0.3745 (4) Cl6/Cl6i* 0.0277 (6) Cl8/Cl8ii* −0.6573 (6)
Cl3 0.3769 (4)        
Cl4 −0.3854 (4)        
           
r.m.s. deviation 0.3379   0.0324   0.5883

Symmetry codes: (i) −x + 1, −y + 1, z; (ii) −x + 1, −y, z.

Supra­molecular features  

The extended structure consists of the di­ethyl­ammonium cations forming an extended hydrogen-bonded network with the chlorine atoms of the tetra­chlorido­cuprate anions. All of the ammonium cations serve as hydrogen-bond donors; the ammonium cation hydrogen atoms were located in difference Fourier maps and refined freely. Ammonium cations involving N1, N2 and N3 all serve as donors of a single hydrogen-bond to one chlorine and as a donor of a bifurcated hydrogen bond to a pair of chlorine atoms on one copper(II) atom. The hydrogen atoms on N4 both form bifurcated inter­actions, albeit weakly (Table 3). All of the chlorine atoms serve as hydrogen-bond acceptors (Table 3, Fig. 2). While some of the reported inter­actions are quite long (N⋯Cl > 3.2 Å), and could be classified as weak inter­actions (Jeffrey, 1997), they are observed where the hydrogen atom is inter­acting with two chlorine atoms that are adjacent to each other/bonded to the same copper (II) atom and are considered by us to be bifurcated hydrogen bonds.

Table 3. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl5iii 0.84 (3) 2.74 (3) 3.316 (2) 128 (2)
N1—H1A⋯Cl6iv 0.84 (3) 2.53 (3) 3.323 (2) 158 (2)
N1—H1B⋯Cl1 0.96 (3) 2.23 (3) 3.192 (2) 178 (3)
N2—H2C⋯Cl2v 0.84 (3) 2.53 (3) 3.316 (2) 155 (3)
N2—H2C⋯Cl3v 0.84 (3) 2.72 (3) 3.319 (3) 129 (2)
N2—H2D⋯Cl4 0.91 (3) 2.28 (3) 3.180 (2) 171 (3)
N3—H3C⋯Cl7 0.82 (3) 2.39 (3) 3.209 (3) 176 (3)
N3—H3D⋯Cl3 0.92 (3) 2.53 (3) 3.383 (2) 154 (3)
N3—H3D⋯Cl4 0.92 (3) 2.56 (3) 3.198 (3) 127 (2)
N4—H4D⋯Cl7vi 0.82 (3) 2.93 (3) 3.374 (3) 116 (2)
N4—H4D⋯Cl8vii 0.82 (3) 2.40 (3) 3.202 (3) 167 (2)
N4—H4E⋯Cl5 0.86 (3) 2.47 (3) 3.283 (2) 159 (3)
N4—H4E⋯Cl6 0.86 (3) 2.75 (3) 3.311 (3) 125 (2)

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 2.

Figure 2

Hydrogen-bonding scheme for bis­(di­ethyl­ammonium) tetra­chlorido­cuprate viewed (a) along the c axis and (b) along the a axis. Atomic displacement ellipsoids are depicted at the 50% probability level and H atoms as spheres of an arbitrary radius. Ethyl H atoms have been omitted for clarity. Hydrogen bonds are shown as blue dashed lines.

The Cu2 anion is notable because all four chlorine atoms are acceptors of bifurcated hydrogen bonds from N1 and N4; Cu2 is located on a twofold rotation axis. N1 also donates a single hydrogen bond to Cl1. N2 has a bifurcated hydrogen bond to chlorine atoms Cl2 and Cl3 on Cu1 and also forms a single donor hydrogen bond to Cl4 of an adjacent Cu1 anion. The di­ethyl­ammonium cation that includes N3 has both a bifurcated hydrogen bond to Cl3 and Cl4 (Cu1) and a single donor hydrogen bond to Cl7 (Cu3). The hydrogen atoms on N4 are donor atoms of bifurcated hydrogen bonds to Cl5/Cl6 on Cu2 and Cl7/Cl8 on Cu3. The ultimate result of this prolific hydrogen-bond bridging of [CuCl4]2− anions is a two-dimensional sheet extending parallel to the ab plane (Fig. 2). Inspection of this plane along the crystallographic a axis reveals a gentle corrugation of the sheet (Fig. 2 b). This hydrogen-bonded sheet is likely the driving force for crystallization (Desiraju, 2002).

Database survey  

There are 59 structures that incorporate the bis-di­ethyl­ammonium ligand moiety with a tetra­chlorido­cuprate complex (Groom & Allen 2014; CSD Version 5.36). Of those 59 structures, 23 incorporate bridging chloride ligands, while 36 have independent tetra­chlorido­cuprate complexes present. Thirteen structures incorporate the bis-ethyl­ammonium ligand as a linear structure as presented in this manuscript. In addition, of the 59 structures, eleven show the tetra­chlorido­cuprate complex adopting a distorted square-planar geometry as presented in complex (I).

Synthesis and crystallization  

The synthetic procedure is outlined in Fig. 3.

Figure 3.

Figure 3

The synthetic scheme.

General Procedure: Bis-di­ethyl­ammonium tetra­chlorido­cuprate was synthesized according to literature procedures (Choi & Larrabee, 1989). Reagents and solvents used were purchased from commercial sources (Sigma-Aldrich and Fisher Scientific). A Perkin Elmer FT–ATR spectrometer was used to collect IR spectra with three scans from 200 nm to 800 nm at a resolution of 1 cm−1. The melting point was recorded on a Fluka Mel-Temp melting point apparatus (Electrothermal) equipped with 51 II thermometer.

Synthesis of bis-di­ethyl­ammonium tetra­chlorido­cuprate: Di­ethyl­ammonium hydro­chloride (2.22 g, 20.3 mmol) was dissolved in 15 mL of 2-propanol to afford a clear solution. Copper(II) chloride dihydrate (1.75 g, 10.1 mmol) was dissolved in 3 ml ethanol producing a dark green solution. Both solutions were mixed, generating a brownish-black colored product that was heated in a water bath for 3 min. Upon removal from the water bath, a 10 ml solution of 20% v/v 2-propanol and ethyl acetate was added to the mixture. The mixture was placed in an ice bath, which gave a bright-green precipitate. The precipitate was filtered, washed with three 10 ml aliquots of ethyl acetate, then air dried to produce the desired product as a bright green thermochromic solid (1.72 g, 48%). M.p. 359.2–359.5 K.

Thermochromic properties: Green-colored solid at temperatures lower than 327 K and bright-yellow colored solid at temperatures greater than 328 K.

FT–ATR (solid): v (cm−1) = 3060 (s), 3009 (s), 2986 (br), 2956 (s), 2852 (s), 2826 (s). Green crystals for complex (I) were obtained by slow diffusion of diethyl ether into a solution of bis-di­ethyl­ammonium tetra­chlorido­cuprate made in methanol.

Refinement  

Details of the refinement are found in Table 4. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Hydrogen atoms bonded to carbon were included in geometrically calculated positions with U iso(H) = 1.2U eq(Cmethyl­ene) and 1.5U eq(Cmeth­yl). Methyl groups were allowed a torsional degree of freedom and C—H distances were set to 0.99 Å (methyl­ene) and 0.98 Å (meth­yl). Ammonium hydrogen atoms were located in difference Fourier maps and refined freely. The structure was refined as an inversion twin, with a 0.52:0.48 twin ratio. Because this ratio is close to 0.5, data were inspected carefully for signs of missed inversion symmetry; no higher symmetry was found. One reflection (0 0 1) was obscured by the beamstop and was omitted from the refinement.

Table 4. Experimental details.

Crystal data
Chemical formula (C4H12N)[Cl4Cu]
M r 353.63
Crystal system, space group Orthorhombic, P21212
Temperature (K) 120
a, b, c (Å) 14.8766 (13), 29.903 (3), 7.3102 (6)
V3) 3252.0 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.98
Crystal size (mm) 0.20 × 0.13 × 0.09
 
Data collection
Diffractometer Bruker APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.868, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 67459, 6699, 6278
R int 0.040
(sin θ/λ)max−1) 0.627
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.020, 0.043, 1.10
No. of reflections 6699
No. of parameters 313
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.22
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.523 (10)

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), OLEX2 (Dolomanov et al., 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023348/pk2565sup1.cif

e-72-00040-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023348/pk2565Isup2.hkl

e-72-00040-Isup2.hkl (532.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023348/pk2565Isup3.pdf

e-72-00040-Isup3.pdf (222.1KB, pdf)

CCDC reference: 1440683

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the University of Notre Dame for instrument support. The Weber Foundation, Thermo-Fisher Scientific, Kimble-Chase Life Sciences, and Hamilton Company are also gratefully acknowledged for funding support.

supplementary crystallographic information

Crystal data

(C4H12N)[Cl4Cu] Dx = 1.445 Mg m3
Mr = 353.63 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212 Cell parameters from 9060 reflections
a = 14.8766 (13) Å θ = 2.5–26.4°
b = 29.903 (3) Å µ = 1.98 mm1
c = 7.3102 (6) Å T = 120 K
V = 3252.0 (5) Å3 Block, green
Z = 8 0.20 × 0.13 × 0.09 mm
F(000) = 1464

Data collection

Bruker APEXII diffractometer 6699 independent reflections
Radiation source: fine-focus sealed tube 6278 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1 Rint = 0.040
combination of ω and φ–scans θmax = 26.5°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −18→18
Tmin = 0.868, Tmax = 1.000 k = −37→37
67459 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.020 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.043 w = 1/[σ2(Fo2) + (0.0186P)2 + 0.6108P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max = 0.001
6699 reflections Δρmax = 0.34 e Å3
313 parameters Δρmin = −0.22 e Å3
0 restraints Absolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.523 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.50594 (2) 0.24256 (2) 0.71725 (4) 0.01615 (8)
Cl1 0.44388 (5) 0.30272 (2) 0.85530 (10) 0.02928 (17)
Cl2 0.63668 (5) 0.27793 (2) 0.66434 (11) 0.02476 (15)
Cl3 0.56951 (4) 0.17463 (2) 0.67495 (10) 0.02242 (14)
Cl4 0.36734 (4) 0.21319 (2) 0.66777 (11) 0.02605 (16)
Cu2 0.5000 0.5000 0.17777 (5) 0.01407 (9)
Cl5 0.36104 (4) 0.53083 (2) 0.16907 (11) 0.02239 (14)
Cl6 0.43871 (4) 0.43052 (2) 0.17828 (10) 0.02188 (14)
Cu3 0.5000 0.0000 0.23370 (6) 0.01802 (10)
Cl7 0.57118 (4) 0.06253 (2) 0.32404 (10) 0.02721 (16)
Cl8 0.37459 (5) 0.03573 (2) 0.14408 (10) 0.02458 (15)
N1 0.59486 (16) 0.37538 (8) 0.9442 (3) 0.0175 (5)
H1A 0.5680 (18) 0.3946 (8) 1.007 (4) 0.010 (7)*
H1B 0.549 (2) 0.3539 (11) 0.914 (4) 0.040 (10)*
C1 0.6240 (2) 0.33898 (9) 1.2396 (4) 0.0286 (7)
H1C 0.5724 0.3196 1.2146 0.043*
H1D 0.6042 0.3651 1.3098 0.043*
H1E 0.6690 0.3224 1.3102 0.043*
C2 0.66469 (18) 0.35417 (9) 1.0618 (4) 0.0211 (6)
H2A 0.7134 0.3759 1.0865 0.025*
H2B 0.6911 0.3282 0.9972 0.025*
C3 0.62953 (18) 0.39622 (8) 0.7727 (4) 0.0194 (6)
H3A 0.6612 0.3734 0.6989 0.023*
H3B 0.6731 0.4201 0.8038 0.023*
C4 0.55385 (19) 0.41575 (9) 0.6626 (4) 0.0274 (6)
H4A 0.5779 0.4292 0.5506 0.041*
H4B 0.5231 0.4387 0.7349 0.041*
H4C 0.5111 0.3921 0.6306 0.041*
N2 0.24950 (17) 0.29865 (7) 0.5700 (3) 0.0179 (5)
H2C 0.209 (2) 0.2864 (10) 0.506 (4) 0.026 (9)*
H2D 0.288 (2) 0.2763 (11) 0.604 (5) 0.040 (10)*
C5 0.3393 (2) 0.31134 (10) 0.2914 (4) 0.0360 (8)
H5A 0.2911 0.2986 0.2164 0.054*
H5B 0.3811 0.2876 0.3275 0.054*
H5C 0.3716 0.3341 0.2206 0.054*
C6 0.29959 (19) 0.33250 (9) 0.4599 (4) 0.0232 (6)
H6A 0.3482 0.3456 0.5352 0.028*
H6B 0.2583 0.3569 0.4236 0.028*
C7 0.20750 (19) 0.31699 (8) 0.7396 (4) 0.0215 (6)
H7A 0.1604 0.3389 0.7060 0.026*
H7B 0.2537 0.3328 0.8127 0.026*
C8 0.1665 (2) 0.28018 (9) 0.8528 (4) 0.0287 (7)
H8A 0.1200 0.2649 0.7814 0.043*
H8B 0.1396 0.2930 0.9634 0.043*
H8C 0.2133 0.2587 0.8874 0.043*
N3 0.40456 (16) 0.12593 (8) 0.4264 (3) 0.0175 (5)
H3C 0.446 (2) 0.1091 (9) 0.396 (4) 0.022 (8)*
H3D 0.434 (2) 0.1453 (10) 0.504 (5) 0.035 (9)*
C9 0.4391 (2) 0.17652 (10) 0.1694 (5) 0.0391 (8)
H9A 0.4126 0.1933 0.0677 0.059*
H9B 0.4839 0.1555 0.1218 0.059*
H9C 0.4681 0.1973 0.2545 0.059*
C10 0.36649 (19) 0.15100 (9) 0.2681 (4) 0.0240 (6)
H10A 0.3200 0.1721 0.3120 0.029*
H10B 0.3375 0.1298 0.1824 0.029*
C11 0.33663 (19) 0.10125 (9) 0.5365 (4) 0.0232 (6)
H11A 0.3053 0.0794 0.4574 0.028*
H11B 0.2914 0.1225 0.5840 0.028*
C12 0.3800 (2) 0.07722 (11) 0.6935 (4) 0.0391 (8)
H12A 0.4234 0.0554 0.6464 0.059*
H12B 0.3339 0.0617 0.7650 0.059*
H12C 0.4112 0.0989 0.7717 0.059*
N4 0.25278 (17) 0.45225 (7) −0.0543 (3) 0.0170 (5)
H4D 0.2139 (19) 0.4704 (9) −0.082 (4) 0.014 (8)*
H4E 0.289 (2) 0.4666 (10) 0.016 (4) 0.029 (9)*
C13 0.1651 (2) 0.43942 (10) 0.2256 (4) 0.0336 (8)
H13A 0.1388 0.4163 0.3039 0.050*
H13B 0.1178 0.4598 0.1841 0.050*
H13C 0.2103 0.4562 0.2950 0.050*
C14 0.20883 (19) 0.41794 (9) 0.0629 (4) 0.0215 (6)
H14A 0.2543 0.3960 0.1048 0.026*
H14B 0.1630 0.4017 −0.0093 0.026*
C15 0.29877 (19) 0.43473 (9) −0.2199 (4) 0.0206 (6)
H15A 0.2558 0.4169 −0.2931 0.025*
H15B 0.3487 0.4148 −0.1827 0.025*
C16 0.3352 (2) 0.47240 (9) −0.3351 (4) 0.0288 (7)
H16A 0.3787 0.4897 −0.2635 0.043*
H16B 0.2857 0.4919 −0.3731 0.043*
H16C 0.3648 0.4601 −0.4437 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01612 (17) 0.01610 (13) 0.01623 (14) 0.00025 (13) −0.00063 (14) −0.00147 (11)
Cl1 0.0210 (3) 0.0272 (3) 0.0396 (4) −0.0021 (3) 0.0045 (3) −0.0171 (3)
Cl2 0.0235 (4) 0.0192 (3) 0.0315 (4) −0.0043 (3) 0.0095 (3) −0.0028 (3)
Cl3 0.0173 (3) 0.0171 (3) 0.0329 (4) 0.0018 (2) −0.0008 (3) −0.0020 (3)
Cl4 0.0167 (3) 0.0195 (3) 0.0420 (4) 0.0020 (3) −0.0057 (3) −0.0080 (3)
Cu2 0.0138 (2) 0.01348 (18) 0.01494 (19) 0.00051 (18) 0.000 0.000
Cl5 0.0150 (3) 0.0156 (3) 0.0366 (4) 0.0012 (2) −0.0013 (3) −0.0009 (3)
Cl6 0.0176 (3) 0.0145 (3) 0.0336 (4) −0.0004 (2) −0.0002 (3) 0.0003 (3)
Cu3 0.0163 (2) 0.0211 (2) 0.0167 (2) −0.0010 (2) 0.000 0.000
Cl7 0.0163 (3) 0.0299 (3) 0.0353 (4) −0.0014 (3) 0.0005 (3) −0.0148 (3)
Cl8 0.0244 (4) 0.0192 (3) 0.0301 (4) −0.0011 (3) −0.0110 (3) 0.0005 (3)
N1 0.0179 (12) 0.0165 (11) 0.0180 (12) 0.0017 (10) 0.0007 (10) −0.0014 (10)
C1 0.0357 (18) 0.0244 (14) 0.0257 (16) 0.0045 (13) −0.0027 (14) 0.0024 (12)
C2 0.0201 (15) 0.0195 (13) 0.0237 (15) 0.0045 (11) −0.0048 (12) −0.0033 (11)
C3 0.0209 (14) 0.0177 (12) 0.0197 (14) 0.0010 (11) 0.0029 (12) −0.0016 (11)
C4 0.0304 (16) 0.0282 (14) 0.0237 (14) 0.0006 (13) −0.0008 (14) 0.0042 (12)
N2 0.0162 (12) 0.0170 (11) 0.0206 (12) −0.0007 (10) 0.0002 (10) −0.0025 (10)
C5 0.042 (2) 0.0366 (16) 0.0295 (18) −0.0040 (15) 0.0156 (15) 0.0008 (14)
C6 0.0229 (15) 0.0222 (14) 0.0244 (15) −0.0025 (12) 0.0024 (12) 0.0023 (12)
C7 0.0227 (15) 0.0207 (13) 0.0209 (14) 0.0027 (11) 0.0015 (12) −0.0053 (11)
C8 0.0299 (16) 0.0290 (14) 0.0271 (16) 0.0044 (13) 0.0086 (14) 0.0009 (13)
N3 0.0147 (12) 0.0180 (12) 0.0198 (12) 0.0004 (10) 0.0008 (10) −0.0011 (10)
C9 0.0379 (19) 0.0448 (17) 0.0347 (18) −0.0064 (15) −0.0010 (17) 0.0159 (16)
C10 0.0227 (15) 0.0254 (13) 0.0237 (15) 0.0007 (12) −0.0074 (13) 0.0031 (12)
C11 0.0201 (15) 0.0245 (14) 0.0251 (15) −0.0035 (12) 0.0050 (12) −0.0008 (12)
C12 0.0382 (19) 0.0482 (19) 0.0310 (18) −0.0069 (15) 0.0045 (15) 0.0184 (16)
N4 0.0147 (13) 0.0158 (11) 0.0204 (12) −0.0008 (10) −0.0018 (10) −0.0014 (10)
C13 0.043 (2) 0.0294 (15) 0.0285 (17) −0.0068 (14) 0.0100 (15) 0.0024 (13)
C14 0.0207 (15) 0.0183 (13) 0.0255 (15) −0.0030 (11) 0.0001 (12) 0.0043 (11)
C15 0.0183 (14) 0.0217 (12) 0.0217 (14) 0.0024 (11) 0.0020 (12) −0.0046 (11)
C16 0.0289 (16) 0.0312 (15) 0.0264 (15) 0.0032 (13) 0.0082 (14) 0.0031 (14)

Geometric parameters (Å, º)

Cu1—Cl2 2.2474 (7) C7—C8 1.506 (4)
Cu1—Cl1 2.2598 (7) C7—H7A 0.9900
Cu1—Cl3 2.2620 (7) C7—H7B 0.9900
Cu1—Cl4 2.2702 (7) C8—H8A 0.9800
Cu2—Cl5 2.2644 (6) C8—H8B 0.9800
Cu2—Cl5i 2.2644 (6) C8—H8C 0.9800
Cu2—Cl6i 2.2689 (6) N3—C11 1.488 (3)
Cu2—Cl6 2.2689 (6) N3—C10 1.491 (3)
Cu3—Cl8 2.2475 (7) N3—H3C 0.82 (3)
Cu3—Cl8ii 2.2475 (7) N3—H3D 0.92 (3)
Cu3—Cl7 2.2481 (6) C9—C10 1.507 (4)
Cu3—Cl7ii 2.2481 (6) C9—H9A 0.9800
N1—C2 1.490 (3) C9—H9B 0.9800
N1—C3 1.492 (3) C9—H9C 0.9800
N1—H1A 0.84 (3) C10—H10A 0.9900
N1—H1B 0.96 (3) C10—H10B 0.9900
C1—C2 1.504 (4) C11—C12 1.500 (4)
C1—H1C 0.9800 C11—H11A 0.9900
C1—H1D 0.9800 C11—H11B 0.9900
C1—H1E 0.9800 C12—H12A 0.9800
C2—H2A 0.9900 C12—H12B 0.9800
C2—H2B 0.9900 C12—H12C 0.9800
C3—C4 1.502 (4) N4—C15 1.486 (3)
C3—H3A 0.9900 N4—C14 1.488 (3)
C3—H3B 0.9900 N4—H4D 0.82 (3)
C4—H4A 0.9800 N4—H4E 0.86 (3)
C4—H4B 0.9800 C13—C14 1.500 (4)
C4—H4C 0.9800 C13—H13A 0.9800
N2—C6 1.492 (3) C13—H13B 0.9800
N2—C7 1.493 (3) C13—H13C 0.9800
N2—H2C 0.84 (3) C14—H14A 0.9900
N2—H2D 0.91 (3) C14—H14B 0.9900
C5—C6 1.506 (4) C15—C16 1.507 (4)
C5—H5A 0.9800 C15—H15A 0.9900
C5—H5B 0.9800 C15—H15B 0.9900
C5—H5C 0.9800 C16—H16A 0.9800
C6—H6A 0.9900 C16—H16B 0.9800
C6—H6B 0.9900 C16—H16C 0.9800
Cl2—Cu1—Cl1 93.20 (3) N2—C7—H7B 109.5
Cl2—Cu1—Cl3 92.13 (3) C8—C7—H7B 109.5
Cl1—Cu1—Cl3 161.22 (3) H7A—C7—H7B 108.0
Cl2—Cu1—Cl4 160.16 (3) C7—C8—H8A 109.5
Cl1—Cu1—Cl4 90.46 (3) C7—C8—H8B 109.5
Cl3—Cu1—Cl4 90.60 (3) H8A—C8—H8B 109.5
Cl5—Cu2—Cl5i 176.78 (4) C7—C8—H8C 109.5
Cl5—Cu2—Cl6i 89.66 (2) H8A—C8—H8C 109.5
Cl5i—Cu2—Cl6i 90.34 (2) H8B—C8—H8C 109.5
Cl5—Cu2—Cl6 90.34 (2) C11—N3—C10 114.3 (2)
Cl5i—Cu2—Cl6 89.66 (2) C11—N3—H3C 110 (2)
Cl6i—Cu2—Cl6 179.81 (4) C10—N3—H3C 112 (2)
Cl8—Cu3—Cl8ii 146.10 (4) C11—N3—H3D 108 (2)
Cl8—Cu3—Cl7 94.66 (2) C10—N3—H3D 110 (2)
Cl8ii—Cu3—Cl7 95.17 (2) H3C—N3—H3D 102 (3)
Cl8—Cu3—Cl7ii 95.17 (2) C10—C9—H9A 109.5
Cl8ii—Cu3—Cl7ii 94.66 (2) C10—C9—H9B 109.5
Cl7—Cu3—Cl7ii 145.83 (4) H9A—C9—H9B 109.5
C2—N1—C3 114.9 (2) C10—C9—H9C 109.5
C2—N1—H1A 108.0 (18) H9A—C9—H9C 109.5
C3—N1—H1A 109.8 (18) H9B—C9—H9C 109.5
C2—N1—H1B 109.9 (19) N3—C10—C9 110.7 (2)
C3—N1—H1B 109 (2) N3—C10—H10A 109.5
H1A—N1—H1B 104 (3) C9—C10—H10A 109.5
C2—C1—H1C 109.5 N3—C10—H10B 109.5
C2—C1—H1D 109.5 C9—C10—H10B 109.5
H1C—C1—H1D 109.5 H10A—C10—H10B 108.1
C2—C1—H1E 109.5 N3—C11—C12 111.0 (2)
H1C—C1—H1E 109.5 N3—C11—H11A 109.4
H1D—C1—H1E 109.5 C12—C11—H11A 109.4
N1—C2—C1 110.3 (2) N3—C11—H11B 109.4
N1—C2—H2A 109.6 C12—C11—H11B 109.4
C1—C2—H2A 109.6 H11A—C11—H11B 108.0
N1—C2—H2B 109.6 C11—C12—H12A 109.5
C1—C2—H2B 109.6 C11—C12—H12B 109.5
H2A—C2—H2B 108.1 H12A—C12—H12B 109.5
N1—C3—C4 110.7 (2) C11—C12—H12C 109.5
N1—C3—H3A 109.5 H12A—C12—H12C 109.5
C4—C3—H3A 109.5 H12B—C12—H12C 109.5
N1—C3—H3B 109.5 C15—N4—C14 115.4 (2)
C4—C3—H3B 109.5 C15—N4—H4D 111 (2)
H3A—C3—H3B 108.1 C14—N4—H4D 106.8 (19)
C3—C4—H4A 109.5 C15—N4—H4E 112 (2)
C3—C4—H4B 109.5 C14—N4—H4E 106 (2)
H4A—C4—H4B 109.5 H4D—N4—H4E 105 (3)
C3—C4—H4C 109.5 C14—C13—H13A 109.5
H4A—C4—H4C 109.5 C14—C13—H13B 109.5
H4B—C4—H4C 109.5 H13A—C13—H13B 109.5
C6—N2—C7 114.1 (2) C14—C13—H13C 109.5
C6—N2—H2C 110 (2) H13A—C13—H13C 109.5
C7—N2—H2C 109 (2) H13B—C13—H13C 109.5
C6—N2—H2D 109 (2) N4—C14—C13 110.6 (2)
C7—N2—H2D 108 (2) N4—C14—H14A 109.5
H2C—N2—H2D 106 (3) C13—C14—H14A 109.5
C6—C5—H5A 109.5 N4—C14—H14B 109.5
C6—C5—H5B 109.5 C13—C14—H14B 109.5
H5A—C5—H5B 109.5 H14A—C14—H14B 108.1
C6—C5—H5C 109.5 N4—C15—C16 110.9 (2)
H5A—C5—H5C 109.5 N4—C15—H15A 109.5
H5B—C5—H5C 109.5 C16—C15—H15A 109.5
N2—C6—C5 110.6 (2) N4—C15—H15B 109.5
N2—C6—H6A 109.5 C16—C15—H15B 109.5
C5—C6—H6A 109.5 H15A—C15—H15B 108.0
N2—C6—H6B 109.5 C15—C16—H16A 109.5
C5—C6—H6B 109.5 C15—C16—H16B 109.5
H6A—C6—H6B 108.1 H16A—C16—H16B 109.5
N2—C7—C8 110.9 (2) C15—C16—H16C 109.5
N2—C7—H7A 109.5 H16A—C16—H16C 109.5
C8—C7—H7A 109.5 H16B—C16—H16C 109.5
C3—N1—C2—C1 173.6 (2) C11—N3—C10—C9 177.6 (2)
C2—N1—C3—C4 178.9 (2) C10—N3—C11—C12 −179.6 (2)
C7—N2—C6—C5 −179.7 (2) C15—N4—C14—C13 179.8 (2)
C6—N2—C7—C8 −174.1 (2) C14—N4—C15—C16 176.0 (2)

Symmetry codes: (i) −x+1, −y+1, z; (ii) −x+1, −y, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···Cl5iii 0.84 (3) 2.74 (3) 3.316 (2) 128 (2)
N1—H1A···Cl6iv 0.84 (3) 2.53 (3) 3.323 (2) 158 (2)
N1—H1B···Cl1 0.96 (3) 2.23 (3) 3.192 (2) 178 (3)
N2—H2C···Cl2v 0.84 (3) 2.53 (3) 3.316 (2) 155 (3)
N2—H2C···Cl3v 0.84 (3) 2.72 (3) 3.319 (3) 129 (2)
N2—H2D···Cl4 0.91 (3) 2.28 (3) 3.180 (2) 171 (3)
N3—H3C···Cl7 0.82 (3) 2.39 (3) 3.209 (3) 176 (3)
N3—H3D···Cl3 0.92 (3) 2.53 (3) 3.383 (2) 154 (3)
N3—H3D···Cl4 0.92 (3) 2.56 (3) 3.198 (3) 127 (2)
N4—H4D···Cl7vi 0.82 (3) 2.93 (3) 3.374 (3) 116 (2)
N4—H4D···Cl8vii 0.82 (3) 2.40 (3) 3.202 (3) 167 (2)
N4—H4E···Cl5 0.86 (3) 2.47 (3) 3.283 (2) 159 (3)
N4—H4E···Cl6 0.86 (3) 2.75 (3) 3.311 (3) 125 (2)

Symmetry codes: (iii) −x+1, −y+1, z+1; (iv) x, y, z+1; (v) x−1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, −z; (vii) −x+1/2, y+1/2, −z.

References

  1. Amberger, B. & Savji, N. (2008). http://www3.amherst.edu/thoughts/contents/amberger-thermochromism. html
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker–Nonius AXS Inc. Madison, Wisconsin, USA.
  3. Chandler, N. (2012). http://electronics.howstuffworks.com/gadgets/other-gadgets/ thermochromic-ink5.html.
  4. Choi, S. & Larrabee, J. A. (1989). J. Chem. Educ. 66, 774–776.
  5. Desiraju, G. R. (2002). Acc. Chem. Res. 35, 565–573. [DOI] [PubMed]
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Jeffrey, G. (1997). In An Introduction to Hydrogen Bonding. Oxford University Press. Oxford, England.
  9. Muthyala, R. (1997). In Chemistry and Applications of Leuco Dyes. New York: Plenum Press.
  10. Roberts, S. A., Bloomquist, D. R., Willett, R. D. & Dodgen, H. W. (1981). J. Am. Chem. Soc. 103, 2603–2610.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Van Oort, M. J. (1988). J. Chem. Educ. 65, 84–84.
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. White, M. A. & LeBlanc, M. (1999). J. Chem. Educ. 76, 1201–1205.
  16. Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023348/pk2565sup1.cif

e-72-00040-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023348/pk2565Isup2.hkl

e-72-00040-Isup2.hkl (532.4KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023348/pk2565Isup3.pdf

e-72-00040-Isup3.pdf (222.1KB, pdf)

CCDC reference: 1440683

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES