In the title coordination polymer, [Co(C3H3O4)Cl(H2O)]n, the sixfold coordination environment of the CoII atom consists of two O atoms from a chelating hydrogen malonate anion (HMal−), one O atom originating from a μ2-bridging malonate ligand (HMal−), one O atom from a water molecule and two μ2-bridging Cl− atoms, connecting neighbouring Co2Cl4 motifs into a two-dimensional polymer extending parallel to (001). Interlayer O—H⋯O hydrogen bonds link the layers into a three-dimensional network.
Keywords: crystal structure, malonate, cobalt, coordination polymer
Abstract
The asymmetric unit of the title polymer, [Co2(C3H3O4)2Cl2(H2O)2]n, comprises one CoII atom, one water molecule, one singly deprotonated malonic acid molecule (HMal−; systematic name 2-carboxyacetate) and one Cl− anion. The CoII atom is octahedrally coordinated by the O atom of a water molecule, by one terminally bound carboxylate O atom of an HMal− anion and by two O atoms of a chelating HMal− anion, as well as by two Cl− anions. The Cl− anions bridge two CoII atoms, forming a centrosymmetric Co2Cl2 core. Each malonate ligand is involved in the formation of six-membered chelate rings involving one CoII atom of the dinuclear unit and at the same time is coordinating to another CoII atom of a neighbouring dinuclear unit in a bridging mode. The combination of chelating and bridging coordination modes leads to the formation of a two-dimensional coordination polymer extending parallel to (001). Within a layer, O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds are present. Adjacent layers are linked through O—H⋯O=C hydrogen bonds involving the carboxylic acid OH and carbonyl groups.
Chemical context
Complexes with paramagnetic metal ions and extended structures are interesting due to their potential applications in molecular magnetism (Moroz et al., 2012 ▸; Pavlishchuk et al., 2010 ▸, 2011 ▸; Yuste et al., 2009 ▸). Malonic acid exhibits both chelating and bridging modes of coordination and is an efficient ligand for achieving two- or three-dimensional polymeric structures (Delgado et al., 2004 ▸). In the present communication we report on the structure of a two-dimensional coordination polymer, [Co(C3H3O4)Cl(H2O)]n, containing both chelating and bridging functions of singly deprotonated malonic acid ligands.
Structural commentary
The structure of the title compound is characterized by the presence of a two-dimensional coordination polymer extending parallel to (001). The monomeric fragment can be described as being composed of a centrosymmetric binuclear Co2Cl4 motif with the CoII atoms having an overall distorted octahedral environment. The two octahedra are fused together via two bridging Cl atoms with Co—Cl bond lengths of 2.4312 (12) and 2.4657 (16) Å.
In the octahedron, the Cl− atoms occupy equatorial positions, the other two equatorial positions being defined by the carboxylate O atom of a bridging hydrogenmalonate anion (HMal−) and one O atom of a chelating HMal− anion, while one water O atom and the other O atom of the chelating HMal− anion are in axial positions (Fig. 1 ▸). The corresponding Co—Omalonate bond lengths range from 2.051 (3) to 2.165 (3) Å which is similar to other structures containing this ligand in chelating and bridging modes (Delgado et al., 2004 ▸). The Co—Owater bond has a length of 2.046 (3) Å. The C—O bond lengths in the carboxylic group differ significantly [1.225 (2) and 1.306 (4) Å] while those in the carboxylate group [1.258 (4) and 1.267 (4) Å] are more or less the same, which is typical for this functional group (Wörl et al., 2005a ▸,b ▸).
Figure 1.
A fragment of the title coordination polymer, showing the atom labelling. All H atoms, except those of hydroxy groups, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The intralayer O—H⋯Cl hydrogen bonds are shown as dashed lines. [Symmetry codes: (a)
+ x,
− y, 1 − z; (b) 1 − x, 1 − y, 1 − z; (c)
− x, −
+ y, z; (d)
− x,
+ y, z.]
Supramolecular features
The distribution of the dinuclear units within a coordination layer follows a chess-like pattern whereby each dinuclear coordination node is interconnected with each other through four bridging HMal− ligands (Fig. 2 ▸). The binuclear coordination nodes are additionally connected via intralayer O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds (Table 1 ▸ and Fig. 3 ▸). Adjacent layers are linked along [001] via interlayer O—H⋯O=C hydrogen bonds involving two HMal− ligands (Table 1 ▸ and Fig. 3 ▸).
Figure 2.
A view of the polymeric coordination layer in the crystal of the title compound, extending parallel to (001).
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O2—H1O2⋯O5i | 0.93 | 1.94 | 2.689 (4) | 136 |
| O2—H2O2⋯Cl1ii | 0.92 | 2.32 | 3.135 (3) | 147 |
| O4—H1O4⋯O1iii | 0.97 | 1.67 | 2.629 (4) | 169 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Figure 3.
A view along [010] of the crystal packing of the title compound showing the inter- and intralayer hydrogen-bonding system (dashed lines).
Database survey
A search of the Cambridge Structural Database (Groom & Allen, 2014 ▸) revealed a number of coordination polymeric structures containing cobalt(II) malonate moieties in different coordination modes. While the most typical coordination mode of malonate ligands in polymeric structures appears to be a μ3-bridging mode of the fully deprotonated acid involving all four oxygen atoms (usually two of them forming a chelating ring with one CoII atom) (Delgado et al., 2004 ▸; Xue et al., 2003 ▸; Lightfoot & Snedden, 1999 ▸; Walter-Levy et al., 1973 ▸; Zheng & Xie, 2004 ▸; Montney et al., 2008 ▸; Fu et al., 2006 ▸; Djeghri et al., 2006 ▸), there are also cases of less-common coordination modes in polymeric structures such as a μ2-bridging mode of the fully deprotonated ligand connecting two metal atoms (Gil de Muro et al., 1999 ▸; Pérez-Yáñez et al., 2009 ▸; Jin & Chen, 2007 ▸). Much less common in coordination polymers is a mono-deprotonated state of malonic acid (Adarsh et al., 2010 ▸), while there are also few examples of non-polymeric coordination compounds (Walter-Levy et al., 1973 ▸; Clarkson et al., 2001 ▸; Wang et al., 2005 ▸).
Synthesis and crystallization
The title compound was synthesized by heating together 0.104 g (1 mmol) malonic acid dissolved in 15 ml of propanol and 0.238 g (1 mmol) of CoCl2·6H2O dissolved in 5 ml of water. Violet crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of the solvent from the resulting mixture. Crystals were washed with small amounts of propanol and dried in air yielding 0.071 g (36%) of the title compound.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. H atoms bound to O atoms were located from a difference-Fourier map and constrained to ride on their parent atoms, with U iso(H) = 1.5 U eq(O). All C-bound H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and U iso(H) = 1.2U eq(C).
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | [Co2(C3H3O4)2Cl2(H2O)2] |
| M r | 430.90 |
| Crystal system, space group | Orthorhombic, P b c a |
| Temperature (K) | 296 |
| a, b, c (Å) | 7.568 (5), 8.879 (5), 19.168 (5) |
| V (Å3) | 1288.0 (12) |
| Z | 4 |
| Radiation type | Mo Kα |
| μ (mm−1) | 3.04 |
| Crystal size (mm) | 0.20 × 0.14 × 0.07 |
| Data collection | |
| Diffractometer | Nonius KappaCCD |
| Absorption correction | Multi-scan (SADABS; Bruker, 2004 ▸) |
| T min, T max | 0.632, 0.820 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 6888, 1875, 1400 |
| R int | 0.055 |
| (sin θ/λ)max (Å−1) | 0.704 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.046, 0.116, 1.05 |
| No. of reflections | 1875 |
| No. of parameters | 91 |
| H-atom treatment | H-atom parameters constrained |
| Δρmax, Δρmin (e Å−3) | 1.05, −1.00 |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235Isup2.hkl
CCDC reference: 1440440
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors acknowledge the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and URCHEMS for financial support.
supplementary crystallographic information
Crystal data
| [Co2(C3H3O4)2Cl2(H2O)2] | F(000) = 856 |
| Mr = 430.90 | Dx = 2.222 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 1003 reflections |
| a = 7.568 (5) Å | θ = 3.4–27.6° |
| b = 8.879 (5) Å | µ = 3.04 mm−1 |
| c = 19.168 (5) Å | T = 296 K |
| V = 1288.0 (12) Å3 | Block, violet |
| Z = 4 | 0.20 × 0.14 × 0.07 mm |
Data collection
| Nonius KappaCCD diffractometer | 1875 independent reflections |
| Radiation source: fine-focus sealed tube | 1400 reflections with I > 2σ(I) |
| Horizontally mounted graphite crystal monochromator | Rint = 0.055 |
| Detector resolution: 9 pixels mm-1 | θmax = 30.0°, θmin = 3.4° |
| φ scans and ω scans with κ offset | h = −10→10 |
| Absorption correction: multi-scan (SADABS; Bruker, 2004) | k = −12→12 |
| Tmin = 0.632, Tmax = 0.820 | l = −24→26 |
| 6888 measured reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.116 | H-atom parameters constrained |
| S = 1.05 | w = 1/[σ2(Fo2) + (0.0552P)2 + 0.9469P] where P = (Fo2 + 2Fc2)/3 |
| 1875 reflections | (Δ/σ)max < 0.001 |
| 91 parameters | Δρmax = 1.05 e Å−3 |
| 0 restraints | Δρmin = −1.00 e Å−3 |
Special details
| Experimental. The O—H H atoms were located from the difference Fourier map but constrained to ride it's parent atom, with Uiso = 1.5 Ueq(parent atom). Other H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and Uiso = 1.2 Ueq(parent atom). |
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Co1 | 0.57087 (6) | 0.47694 (6) | 0.58530 (2) | 0.01449 (15) | |
| Cl1 | 0.71412 (10) | 0.46924 (11) | 0.47183 (5) | 0.0223 (2) | |
| C1 | 0.4104 (4) | 0.6347 (4) | 0.70892 (19) | 0.0177 (7) | |
| C2 | 0.4303 (4) | 0.7853 (4) | 0.6731 (2) | 0.0176 (7) | |
| H2A | 0.3323 | 0.7991 | 0.6411 | 0.021* | |
| H2B | 0.4237 | 0.8644 | 0.7079 | 0.021* | |
| C3 | 0.6012 (4) | 0.8016 (4) | 0.63323 (18) | 0.0133 (7) | |
| O1 | 0.6877 (3) | 0.9227 (3) | 0.64044 (14) | 0.0179 (5) | |
| O2 | 0.5004 (3) | 0.2544 (3) | 0.58516 (16) | 0.0276 (6) | |
| H1O2 | 0.5966 | 0.1929 | 0.5746 | 0.041* | |
| H2O2 | 0.3970 | 0.2004 | 0.5857 | 0.041* | |
| O3 | 0.4575 (3) | 0.5133 (3) | 0.68488 (14) | 0.0202 (6) | |
| O4 | 0.3363 (4) | 0.6465 (3) | 0.77023 (15) | 0.0321 (7) | |
| H1O4 | 0.3361 | 0.5574 | 0.7994 | 0.048* | |
| O5 | 0.6515 (3) | 0.6967 (3) | 0.59383 (13) | 0.0175 (5) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.0156 (2) | 0.0112 (2) | 0.0167 (3) | −0.00042 (16) | −0.00079 (17) | −0.00210 (19) |
| Cl1 | 0.0181 (4) | 0.0284 (5) | 0.0204 (4) | 0.0089 (3) | 0.0002 (3) | −0.0038 (4) |
| C1 | 0.0123 (13) | 0.0175 (19) | 0.0233 (19) | −0.0019 (12) | 0.0039 (13) | 0.0013 (15) |
| C2 | 0.0146 (13) | 0.0125 (17) | 0.0257 (19) | 0.0004 (12) | 0.0054 (13) | 0.0009 (15) |
| C3 | 0.0148 (13) | 0.0099 (16) | 0.0152 (17) | 0.0007 (11) | 0.0005 (11) | 0.0014 (13) |
| O1 | 0.0206 (11) | 0.0110 (12) | 0.0220 (13) | −0.0028 (9) | 0.0063 (10) | −0.0034 (11) |
| O2 | 0.0171 (11) | 0.0177 (15) | 0.0481 (19) | −0.0021 (10) | −0.0059 (12) | −0.0016 (13) |
| O3 | 0.0274 (13) | 0.0133 (13) | 0.0198 (14) | −0.0018 (10) | 0.0038 (10) | −0.0005 (11) |
| O4 | 0.0514 (17) | 0.0192 (15) | 0.0257 (15) | 0.0046 (13) | 0.0211 (14) | 0.0029 (12) |
| O5 | 0.0213 (11) | 0.0116 (12) | 0.0196 (13) | −0.0021 (9) | 0.0052 (10) | −0.0047 (10) |
Geometric parameters (Å, º)
| Co1—O2 | 2.046 (3) | C2—C3 | 1.509 (4) |
| Co1—O5 | 2.051 (3) | C2—H2A | 0.9700 |
| Co1—O3 | 2.118 (3) | C2—H2B | 0.9700 |
| Co1—O1i | 2.165 (3) | C3—O5 | 1.258 (4) |
| Co1—Cl1 | 2.4312 (12) | C3—O1 | 1.267 (4) |
| Co1—Cl1ii | 2.4657 (16) | O1—Co1iii | 2.165 (3) |
| Cl1—Co1ii | 2.4657 (16) | O2—H1O2 | 0.9325 |
| C1—O3 | 1.225 (5) | O2—H2O2 | 0.9180 |
| C1—O4 | 1.306 (4) | O4—H1O4 | 0.9698 |
| C1—C2 | 1.511 (5) | ||
| O2—Co1—O5 | 174.98 (11) | O4—C1—C2 | 112.4 (3) |
| O2—Co1—O3 | 92.46 (11) | C3—C2—C1 | 113.6 (3) |
| O5—Co1—O3 | 84.46 (10) | C3—C2—H2A | 108.8 |
| O2—Co1—O1i | 90.35 (10) | C1—C2—H2A | 108.8 |
| O5—Co1—O1i | 85.50 (10) | C3—C2—H2B | 108.8 |
| O3—Co1—O1i | 86.33 (10) | C1—C2—H2B | 108.8 |
| O2—Co1—Cl1 | 95.04 (9) | H2A—C2—H2B | 107.7 |
| O5—Co1—Cl1 | 88.02 (7) | O5—C3—O1 | 122.5 (3) |
| O3—Co1—Cl1 | 172.49 (8) | O5—C3—C2 | 119.5 (3) |
| O1i—Co1—Cl1 | 93.10 (8) | O1—C3—C2 | 118.0 (3) |
| O2—Co1—Cl1ii | 87.62 (8) | C3—O1—Co1iii | 124.9 (2) |
| O5—Co1—Cl1ii | 96.38 (8) | Co1—O2—H1O2 | 111.3 |
| O3—Co1—Cl1ii | 90.93 (8) | Co1—O2—H2O2 | 136.6 |
| O1i—Co1—Cl1ii | 176.52 (8) | H1O2—O2—H2O2 | 111.2 |
| Cl1—Co1—Cl1ii | 89.89 (4) | C1—O3—Co1 | 126.2 (3) |
| Co1—Cl1—Co1ii | 90.11 (4) | C1—O4—H1O4 | 117.0 |
| O3—C1—O4 | 122.3 (4) | C3—O5—Co1 | 131.5 (2) |
| O3—C1—C2 | 125.3 (3) | ||
| O2—Co1—Cl1—Co1ii | 87.60 (8) | C2—C1—O3—Co1 | −2.5 (5) |
| O5—Co1—Cl1—Co1ii | −96.39 (8) | O2—Co1—O3—C1 | −158.3 (3) |
| O1i—Co1—Cl1—Co1ii | 178.22 (8) | O5—Co1—O3—C1 | 25.7 (3) |
| Cl1ii—Co1—Cl1—Co1ii | 0.0 | O1i—Co1—O3—C1 | 111.5 (3) |
| O3—C1—C2—C3 | −38.3 (5) | Cl1ii—Co1—O3—C1 | −70.6 (3) |
| O4—C1—C2—C3 | 141.5 (3) | O1—C3—O5—Co1 | 166.5 (2) |
| C1—C2—C3—O5 | 46.5 (5) | C2—C3—O5—Co1 | −14.4 (5) |
| C1—C2—C3—O1 | −134.3 (4) | O3—Co1—O5—C3 | −17.1 (3) |
| O5—C3—O1—Co1iii | 2.2 (5) | O1i—Co1—O5—C3 | −103.9 (3) |
| C2—C3—O1—Co1iii | −176.9 (2) | Cl1—Co1—O5—C3 | 162.9 (3) |
| O4—C1—O3—Co1 | 177.8 (2) | Cl1ii—Co1—O5—C3 | 73.2 (3) |
Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—H1O2···O5i | 0.93 | 1.94 | 2.689 (4) | 136 |
| O2—H2O2···Cl1iv | 0.92 | 2.32 | 3.135 (3) | 147 |
| O4—H1O4···O1v | 0.97 | 1.67 | 2.629 (4) | 169 |
Symmetry codes: (i) −x+3/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1, y−1/2, −z+3/2.
References
- Adarsh, N. N., Sahoo, P. & Dastidar, P. (2010). Cryst. Growth Des. 10, 4976–4986.
- Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Clarkson, A. J., Blackman, A. G. & Clark, C. R. (2001). J. Chem. Soc. Dalton Trans. pp. 758–765.
- Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106–111.
- Djeghri, A., Balegroune, F., Guehria Laidoudi, A. & Toupet, L. (2006). Acta Cryst. C62, m126–m128. [DOI] [PubMed]
- Fu, X.-C., Nie, L., Zhang, Q., Li, M.-T. & Wang, X.-Y. (2006). Chin J. Struct. Chem. (Jiegou Huaxue), 25, 1449–1452.
- Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Jin, S.-W. & Chen, W.-Z. (2007). Polyhedron, 26, 3074–3084.
- Lightfoot, P. & Snedden, A. (1999). J. Chem. Soc. Dalton Trans. pp. 3549–3551.
- Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003.
- Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.
- Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
- Pérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. & Román, P. (2009). Eur. J. Inorg. Chem. pp. 3889–3899.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351–1354.
- Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907–m1908.
- Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.
- Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29. [DOI] [PubMed]
- Xue, Y.-H., Lin, D.-D. & Xu, D.-J. (2003). Acta Cryst. E59, m750–m752.
- Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.
- Zheng, Y.-Q. & Xie, H.-Z. (2004). J. Coord. Chem. 57, 1537–
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235Isup2.hkl
CCDC reference: 1440440
Additional supporting information: crystallographic information; 3D view; checkCIF report



