Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jan 1;72(Pt 1):21–24. doi: 10.1107/S2056989015023269

Crystal structure of poly[di­aqua­(μ-2-carb­oxy­acetato-κ3 O,O′:O′′)(2-carb­oxy­acetato-κO)di-μ-chlorido-dicobalt(II)]

Yasmina Bouaoud a, Zouaoui Setifi a,b,*, Andrii Buvailo c,d,*, Vadim A Potaskalov e, Hocine Merazig a, Georges Dénés f
PMCID: PMC4704765  PMID: 26870577

In the title coordination polymer, [Co(C3H3O4)Cl(H2O)]n, the sixfold coordination environment of the CoII atom consists of two O atoms from a chelating hydrogen malonate anion (HMal), one O atom originating from a μ2-bridging malonate ligand (HMal), one O atom from a water mol­ecule and two μ2-bridging Cl atoms, connecting neighbouring Co2Cl4 motifs into a two-dimensional polymer extending parallel to (001). Inter­layer O—H⋯O hydrogen bonds link the layers into a three-dimensional network.

Keywords: crystal structure, malonate, cobalt, coordination polymer

Abstract

The asymmetric unit of the title polymer, [Co2(C3H3O4)2Cl2(H2O)2]n, comprises one CoII atom, one water mol­ecule, one singly deprotonated malonic acid mol­ecule (HMal; systematic name 2-carb­oxy­acetate) and one Cl anion. The CoII atom is octa­hedrally coordinated by the O atom of a water mol­ecule, by one terminally bound carboxyl­ate O atom of an HMal anion and by two O atoms of a chelating HMal anion, as well as by two Cl anions. The Cl anions bridge two CoII atoms, forming a centrosymmetric Co2Cl2 core. Each malonate ligand is involved in the formation of six-membered chelate rings involving one CoII atom of the dinuclear unit and at the same time is coordinating to another CoII atom of a neighbouring dinuclear unit in a bridging mode. The combination of chelating and bridging coordination modes leads to the formation of a two-dimensional coordination polymer extending parallel to (001). Within a layer, O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds are present. Adjacent layers are linked through O—H⋯O=C hydrogen bonds involving the carb­oxy­lic acid OH and carbonyl groups.

Chemical context  

Complexes with paramagnetic metal ions and extended structures are inter­esting due to their potential applications in mol­ecular magnetism (Moroz et al., 2012; Pavlishchuk et al., 2010, 2011; Yuste et al., 2009). Malonic acid exhibits both chelating and bridging modes of coordination and is an efficient ligand for achieving two- or three-dimensional polymeric structures (Delgado et al., 2004). In the present communication we report on the structure of a two-dimensional coord­ination polymer, [Co(C3H3O4)Cl(H2O)]n, containing both chelating and bridging functions of singly deprotonated malonic acid ligands.

Structural commentary  

The structure of the title compound is characterized by the presence of a two-dimensional coordination polymer extending parallel to (001). The monomeric fragment can be described as being composed of a centrosymmetric binuclear Co2Cl4 motif with the CoII atoms having an overall distorted octa­hedral environment. The two octa­hedra are fused together via two bridging Cl atoms with Co—Cl bond lengths of 2.4312 (12) and 2.4657 (16) Å. graphic file with name e-72-00021-scheme1.jpg

In the octa­hedron, the Cl atoms occupy equatorial positions, the other two equatorial positions being defined by the carboxyl­ate O atom of a bridging hydrogenmalonate anion (HMal) and one O atom of a chelating HMal anion, while one water O atom and the other O atom of the chelating HMal anion are in axial positions (Fig. 1). The corresponding Co—Omalonate bond lengths range from 2.051 (3) to 2.165 (3) Å which is similar to other structures containing this ligand in chelating and bridging modes (Delgado et al., 2004). The Co—Owater bond has a length of 2.046 (3) Å. The C—O bond lengths in the carb­oxy­lic group differ significantly [1.225 (2) and 1.306 (4) Å] while those in the carboxyl­ate group [1.258 (4) and 1.267 (4) Å] are more or less the same, which is typical for this functional group (Wörl et al., 2005a ,b ).

Figure 1.

Figure 1

A fragment of the title coordination polymer, showing the atom labelling. All H atoms, except those of hy­droxy groups, have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level. The intra­layer O—H⋯Cl hydrogen bonds are shown as dashed lines. [Symmetry codes: (a) Inline graphic + x, Inline graphic − y, 1 − z; (b) 1 − x, 1 − y, 1 − z; (c) Inline graphic − x, −Inline graphic + y, z; (d) Inline graphic − x, Inline graphic + y, z.]

Supra­molecular features  

The distribution of the dinuclear units within a coordination layer follows a chess-like pattern whereby each dinuclear coordination node is inter­connected with each other through four bridging HMal ligands (Fig. 2). The binuclear coordin­ation nodes are additionally connected via intra­layer O—Hwater⋯Cl and O—Hwater⋯O hydrogen bonds (Table 1 and Fig. 3). Adjacent layers are linked along [001] via inter­layer O—H⋯O=C hydrogen bonds involving two HMal ligands (Table 1 and Fig. 3).

Figure 2.

Figure 2

A view of the polymeric coordination layer in the crystal of the title compound, extending parallel to (001).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯O5i 0.93 1.94 2.689 (4) 136
O2—H2O2⋯Cl1ii 0.92 2.32 3.135 (3) 147
O4—H1O4⋯O1iii 0.97 1.67 2.629 (4) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 3.

Figure 3

A view along [010] of the crystal packing of the title compound showing the inter- and intra­layer hydrogen-bonding system (dashed lines).

Database survey  

A search of the Cambridge Structural Database (Groom & Allen, 2014) revealed a number of coordination polymeric structures containing cobalt(II) malonate moieties in different coordination modes. While the most typical coordination mode of malonate ligands in polymeric structures appears to be a μ3-bridging mode of the fully deprotonated acid involving all four oxygen atoms (usually two of them forming a chelating ring with one CoII atom) (Delgado et al., 2004; Xue et al., 2003; Lightfoot & Snedden, 1999; Walter-Levy et al., 1973; Zheng & Xie, 2004; Montney et al., 2008; Fu et al., 2006; Djeghri et al., 2006), there are also cases of less-common coordination modes in polymeric structures such as a μ2-bridging mode of the fully deprotonated ligand connecting two metal atoms (Gil de Muro et al., 1999; Pérez-Yáñez et al., 2009; Jin & Chen, 2007). Much less common in coordination polymers is a mono-deprotonated state of malonic acid (Adarsh et al., 2010), while there are also few examples of non-polymeric coordination compounds (Walter-Levy et al., 1973; Clarkson et al., 2001; Wang et al., 2005).

Synthesis and crystallization  

The title compound was synthesized by heating together 0.104 g (1 mmol) malonic acid dissolved in 15 ml of propanol and 0.238 g (1 mmol) of CoCl2·6H2O dissolved in 5 ml of water. Violet crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of the solvent from the resulting mixture. Crystals were washed with small amounts of propanol and dried in air yielding 0.071 g (36%) of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bound to O atoms were located from a difference-Fourier map and constrained to ride on their parent atoms, with U iso(H) = 1.5 U eq(O). All C-bound H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula [Co2(C3H3O4)2Cl2(H2O)2]
M r 430.90
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 296
a, b, c (Å) 7.568 (5), 8.879 (5), 19.168 (5)
V3) 1288.0 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.04
Crystal size (mm) 0.20 × 0.14 × 0.07
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.632, 0.820
No. of measured, independent and observed [I > 2σ(I)] reflections 6888, 1875, 1400
R int 0.055
(sin θ/λ)max−1) 0.704
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.046, 0.116, 1.05
No. of reflections 1875
No. of parameters 91
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.05, −1.00

Computer programs: COLLECT (Nonius, 2000), DENZO/SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 and SHELXL97 (Sheldrick, 2008) and DIAMOND (Brandenburg, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235sup1.cif

e-72-00021-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235Isup2.hkl

e-72-00021-Isup2.hkl (92.4KB, hkl)

CCDC reference: 1440440

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Algerian MESRS (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique), the DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) and URCHEMS for financial support.

supplementary crystallographic information

Crystal data

[Co2(C3H3O4)2Cl2(H2O)2] F(000) = 856
Mr = 430.90 Dx = 2.222 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1003 reflections
a = 7.568 (5) Å θ = 3.4–27.6°
b = 8.879 (5) Å µ = 3.04 mm1
c = 19.168 (5) Å T = 296 K
V = 1288.0 (12) Å3 Block, violet
Z = 4 0.20 × 0.14 × 0.07 mm

Data collection

Nonius KappaCCD diffractometer 1875 independent reflections
Radiation source: fine-focus sealed tube 1400 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromator Rint = 0.055
Detector resolution: 9 pixels mm-1 θmax = 30.0°, θmin = 3.4°
φ scans and ω scans with κ offset h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −12→12
Tmin = 0.632, Tmax = 0.820 l = −24→26
6888 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.9469P] where P = (Fo2 + 2Fc2)/3
1875 reflections (Δ/σ)max < 0.001
91 parameters Δρmax = 1.05 e Å3
0 restraints Δρmin = −1.00 e Å3

Special details

Experimental. The O—H H atoms were located from the difference Fourier map but constrained to ride it's parent atom, with Uiso = 1.5 Ueq(parent atom). Other H atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.97 Å, and Uiso = 1.2 Ueq(parent atom).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.57087 (6) 0.47694 (6) 0.58530 (2) 0.01449 (15)
Cl1 0.71412 (10) 0.46924 (11) 0.47183 (5) 0.0223 (2)
C1 0.4104 (4) 0.6347 (4) 0.70892 (19) 0.0177 (7)
C2 0.4303 (4) 0.7853 (4) 0.6731 (2) 0.0176 (7)
H2A 0.3323 0.7991 0.6411 0.021*
H2B 0.4237 0.8644 0.7079 0.021*
C3 0.6012 (4) 0.8016 (4) 0.63323 (18) 0.0133 (7)
O1 0.6877 (3) 0.9227 (3) 0.64044 (14) 0.0179 (5)
O2 0.5004 (3) 0.2544 (3) 0.58516 (16) 0.0276 (6)
H1O2 0.5966 0.1929 0.5746 0.041*
H2O2 0.3970 0.2004 0.5857 0.041*
O3 0.4575 (3) 0.5133 (3) 0.68488 (14) 0.0202 (6)
O4 0.3363 (4) 0.6465 (3) 0.77023 (15) 0.0321 (7)
H1O4 0.3361 0.5574 0.7994 0.048*
O5 0.6515 (3) 0.6967 (3) 0.59383 (13) 0.0175 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0156 (2) 0.0112 (2) 0.0167 (3) −0.00042 (16) −0.00079 (17) −0.00210 (19)
Cl1 0.0181 (4) 0.0284 (5) 0.0204 (4) 0.0089 (3) 0.0002 (3) −0.0038 (4)
C1 0.0123 (13) 0.0175 (19) 0.0233 (19) −0.0019 (12) 0.0039 (13) 0.0013 (15)
C2 0.0146 (13) 0.0125 (17) 0.0257 (19) 0.0004 (12) 0.0054 (13) 0.0009 (15)
C3 0.0148 (13) 0.0099 (16) 0.0152 (17) 0.0007 (11) 0.0005 (11) 0.0014 (13)
O1 0.0206 (11) 0.0110 (12) 0.0220 (13) −0.0028 (9) 0.0063 (10) −0.0034 (11)
O2 0.0171 (11) 0.0177 (15) 0.0481 (19) −0.0021 (10) −0.0059 (12) −0.0016 (13)
O3 0.0274 (13) 0.0133 (13) 0.0198 (14) −0.0018 (10) 0.0038 (10) −0.0005 (11)
O4 0.0514 (17) 0.0192 (15) 0.0257 (15) 0.0046 (13) 0.0211 (14) 0.0029 (12)
O5 0.0213 (11) 0.0116 (12) 0.0196 (13) −0.0021 (9) 0.0052 (10) −0.0047 (10)

Geometric parameters (Å, º)

Co1—O2 2.046 (3) C2—C3 1.509 (4)
Co1—O5 2.051 (3) C2—H2A 0.9700
Co1—O3 2.118 (3) C2—H2B 0.9700
Co1—O1i 2.165 (3) C3—O5 1.258 (4)
Co1—Cl1 2.4312 (12) C3—O1 1.267 (4)
Co1—Cl1ii 2.4657 (16) O1—Co1iii 2.165 (3)
Cl1—Co1ii 2.4657 (16) O2—H1O2 0.9325
C1—O3 1.225 (5) O2—H2O2 0.9180
C1—O4 1.306 (4) O4—H1O4 0.9698
C1—C2 1.511 (5)
O2—Co1—O5 174.98 (11) O4—C1—C2 112.4 (3)
O2—Co1—O3 92.46 (11) C3—C2—C1 113.6 (3)
O5—Co1—O3 84.46 (10) C3—C2—H2A 108.8
O2—Co1—O1i 90.35 (10) C1—C2—H2A 108.8
O5—Co1—O1i 85.50 (10) C3—C2—H2B 108.8
O3—Co1—O1i 86.33 (10) C1—C2—H2B 108.8
O2—Co1—Cl1 95.04 (9) H2A—C2—H2B 107.7
O5—Co1—Cl1 88.02 (7) O5—C3—O1 122.5 (3)
O3—Co1—Cl1 172.49 (8) O5—C3—C2 119.5 (3)
O1i—Co1—Cl1 93.10 (8) O1—C3—C2 118.0 (3)
O2—Co1—Cl1ii 87.62 (8) C3—O1—Co1iii 124.9 (2)
O5—Co1—Cl1ii 96.38 (8) Co1—O2—H1O2 111.3
O3—Co1—Cl1ii 90.93 (8) Co1—O2—H2O2 136.6
O1i—Co1—Cl1ii 176.52 (8) H1O2—O2—H2O2 111.2
Cl1—Co1—Cl1ii 89.89 (4) C1—O3—Co1 126.2 (3)
Co1—Cl1—Co1ii 90.11 (4) C1—O4—H1O4 117.0
O3—C1—O4 122.3 (4) C3—O5—Co1 131.5 (2)
O3—C1—C2 125.3 (3)
O2—Co1—Cl1—Co1ii 87.60 (8) C2—C1—O3—Co1 −2.5 (5)
O5—Co1—Cl1—Co1ii −96.39 (8) O2—Co1—O3—C1 −158.3 (3)
O1i—Co1—Cl1—Co1ii 178.22 (8) O5—Co1—O3—C1 25.7 (3)
Cl1ii—Co1—Cl1—Co1ii 0.0 O1i—Co1—O3—C1 111.5 (3)
O3—C1—C2—C3 −38.3 (5) Cl1ii—Co1—O3—C1 −70.6 (3)
O4—C1—C2—C3 141.5 (3) O1—C3—O5—Co1 166.5 (2)
C1—C2—C3—O5 46.5 (5) C2—C3—O5—Co1 −14.4 (5)
C1—C2—C3—O1 −134.3 (4) O3—Co1—O5—C3 −17.1 (3)
O5—C3—O1—Co1iii 2.2 (5) O1i—Co1—O5—C3 −103.9 (3)
C2—C3—O1—Co1iii −176.9 (2) Cl1—Co1—O5—C3 162.9 (3)
O4—C1—O3—Co1 177.8 (2) Cl1ii—Co1—O5—C3 73.2 (3)

Symmetry codes: (i) −x+3/2, y−1/2, z; (ii) −x+1, −y+1, −z+1; (iii) −x+3/2, y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H1O2···O5i 0.93 1.94 2.689 (4) 136
O2—H2O2···Cl1iv 0.92 2.32 3.135 (3) 147
O4—H1O4···O1v 0.97 1.67 2.629 (4) 169

Symmetry codes: (i) −x+3/2, y−1/2, z; (iv) x−1/2, −y+1/2, −z+1; (v) −x+1, y−1/2, −z+3/2.

References

  1. Adarsh, N. N., Sahoo, P. & Dastidar, P. (2010). Cryst. Growth Des. 10, 4976–4986.
  2. Brandenburg, K. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2004). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Clarkson, A. J., Blackman, A. G. & Clark, C. R. (2001). J. Chem. Soc. Dalton Trans. pp. 758–765.
  5. Delgado, F. S., Hernandez-Molina, M., Sanchiz, J., Ruiz-Perez, C., Rodriguez-Martin, Y., Lopez, T., Lloret, F. & Julve, M. (2004). CrystEngComm, 6, 106–111.
  6. Djeghri, A., Balegroune, F., Guehria Laidoudi, A. & Toupet, L. (2006). Acta Cryst. C62, m126–m128. [DOI] [PubMed]
  7. Fu, X.-C., Nie, L., Zhang, Q., Li, M.-T. & Wang, X.-Y. (2006). Chin J. Struct. Chem. (Jiegou Huaxue), 25, 1449–1452.
  8. Gil de Muro, I., Insausti, M., Lezama, L., Pizarro, J. L., Arriortua, M. I. & Rojo, T. (1999). Eur. J. Inorg. Chem. pp. 935–943.
  9. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  10. Jin, S.-W. & Chen, W.-Z. (2007). Polyhedron, 26, 3074–3084.
  11. Lightfoot, P. & Snedden, A. (1999). J. Chem. Soc. Dalton Trans. pp. 3549–3551.
  12. Montney, M. R., Supkowski, R. M. & LaDuca, R. L. (2008). Polyhedron, 27, 2997–3003.
  13. Moroz, Y. S., Demeshko, S., Haukka, M., Mokhir, A., Mitra, U., Stocker, M., Müller, P., Meyer, F. & Fritsky, I. O. (2012). Inorg. Chem. 51, 7445–7447. [DOI] [PubMed]
  14. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Shvets, O. V., Fritsky, I. O., Lofland, S. E., Addison, A. W. & Hunter, A. D. (2011). Eur. J. Inorg. Chem. pp. 4826–4836.
  17. Pavlishchuk, A. V., Kolotilov, S. V., Zeller, M., Thompson, L. K., Fritsky, I. O., Addison, A. W. & Hunter, A. D. (2010). Eur. J. Inorg. Chem. pp. 4851–4858.
  18. Pérez-Yáñez, S., Castillo, O., Cepeda, J., García-Terán, J. P., Luque, A. & Román, P. (2009). Eur. J. Inorg. Chem. pp. 3889–3899.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Walter-Levy, L., Perrotey, J. & Visser, J. W. (1973). C. R. Acad. Sci. Ser. C, 277, 1351–1354.
  21. Wang, Z.-L., Wei, L.-H. & Niu, J.-Y. (2005). Acta Cryst. E61, m1907–m1908.
  22. Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005b). Eur. J. Inorg. Chem. pp. 759–765.
  23. Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005a). Dalton Trans. pp. 27–29. [DOI] [PubMed]
  24. Xue, Y.-H., Lin, D.-D. & Xu, D.-J. (2003). Acta Cryst. E59, m750–m752.
  25. Yuste, C., Bentama, A., Marino, N., Armentano, D., Setifi, F., Triki, S., Lloret, F. & Julve, M. (2009). Polyhedron, 28, 1287–1294.
  26. Zheng, Y.-Q. & Xie, H.-Z. (2004). J. Coord. Chem. 57, 1537–

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235sup1.cif

e-72-00021-sup1.cif (16.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023269/wm5235Isup2.hkl

e-72-00021-Isup2.hkl (92.4KB, hkl)

CCDC reference: 1440440

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES