Skip to main content
Thorax logoLink to Thorax
. 1977 Jun;32(3):287–295. doi: 10.1136/thx.32.3.287

Lung mast cells in rats exposed to acute hypoxia, and chronic hypoxia with recovery.

A Williams, D Heath, J M Kay, P Smith
PMCID: PMC470600  PMID: 882942

Abstract

Exposure to acute hypoxia (barometric pressure 263 mmHg) for 8 hours did not lead to increased numbers of mast cells in the lungs of rats. In contrast, in adult rats kept for 35 days at a barometric pressure of 380 mmHg there was a proliferation of mast cells around the pulmonary blood vessels and in the alveolar septa. This hyperplasia of lung mast cells in response to chronic hypoxia was reversible on removal of the hypoxic stimulus. There was a correlation between the logarithm of the perivascular lung mast cell density (defined in the paper) and the logarithm of the right ventricular weight. There was no increase in the mast cells in the carotid bodies of the hypoxic rats. Young male, old male, young female, and old female rats which had been subjected for 39 days to a barometric pressure of 380 mmHg showed a proliferation of mast cells around the pulmonary blood vessels and in the alveolar walls. This response was greatest in the adult animals and independent of their sex. In the age and sex experiment there was a correlation between the perivascular lung mast cell density and the medial thickness of the muscular pulmonary arteries. Since mast cell hyperplasia has been reported as preceding right ventricular hypertrophy, it is conceivable that mast cell proliferation in the lung may be a defence mechanism to limit the severity of hypoxic pulmonary hypertension rather than to mediate it.

Full text

PDF
287

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham A. S., Kay J. M., Cole R. B., Pincock A. C. Haemodynamic and pathological study of the effect of chronic hypoxia and subsequent recovery of the heart and pulmonary vasculature of the rat. Cardiovasc Res. 1971 Jan;5(1):95–102. doi: 10.1093/cvr/5.1.95. [DOI] [PubMed] [Google Scholar]
  2. Altura B. M., Zweifach B. W. Pharmacologic properties of antihistamines in relation to vascular reactivity. Am J Physiol. 1965 Sep;209(3):550–556. doi: 10.1152/ajplegacy.1965.209.3.550. [DOI] [PubMed] [Google Scholar]
  3. Aviado D. M., Samanék M., Folle L. E. Cardiopulmonary effects of tobacco and related substances. I. The release of histamine during inhalation of cigarette smoke and anoxemia in the heart-lung and intact dog preparation. Arch Environ Health. 1966 Jun;12(6):705–711. doi: 10.1080/00039896.1966.10664468. [DOI] [PubMed] [Google Scholar]
  4. Bergofsky E. H. Mechanisms underlying vasomotor regulation of regional pulmonary blood flow in normal and disease states. Am J Med. 1974 Sep;57(3):378–394. doi: 10.1016/0002-9343(74)90133-8. [DOI] [PubMed] [Google Scholar]
  5. Bjure J., Söderholm B., Widimsky J. The effect of histamine infusion on pulmonary hemodynamics and diffusing capacity. Scand J Respir Dis. 1966;47(1):53–63. [PubMed] [Google Scholar]
  6. Colebatch H. J. Adrenergic mechanisms in the effects of histamine in the pulmonary circulation of the cat. Circ Res. 1970 Mar;26(3):379–396. doi: 10.1161/01.res.26.3.379. [DOI] [PubMed] [Google Scholar]
  7. Cox J. S. Disodium cromoglycate. Mode of action and its possible relevance to the clinical use of the drug. Br J Dis Chest. 1971 Oct;65(4):189–204. doi: 10.1016/0007-0971(71)90028-3. [DOI] [PubMed] [Google Scholar]
  8. DAWES G. S., MOTT J. C. The vascular tone of the foetal lung. J Physiol. 1962 Dec;164:465–477. doi: 10.1113/jphysiol.1962.sp007032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Haas F., Bergofsky E. H. Role of the mast cell in the pulmonary pressor response to hypoxia. J Clin Invest. 1972 Dec;51(12):3154–3162. doi: 10.1172/JCI107142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hauge A., Melmon K. L. Role of histamine in hypoxic pulmonary hypertension in the rat. II. Depletion of histamine, serotonin, and catecholamines. Circ Res. 1968 Mar;22(3):385–392. doi: 10.1161/01.res.22.3.385. [DOI] [PubMed] [Google Scholar]
  11. Hauge A., Staub N. C. Prevention of hypoxic vasoconstriction in cat lung by histamine-releasing agent 48/80. J Appl Physiol. 1969 Jun;26(6):693–699. doi: 10.1152/jappl.1969.26.6.693. [DOI] [PubMed] [Google Scholar]
  12. Heath D., Edwards C., Winson M., Smith P. Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude. Thorax. 1973 Jan;28(1):24–28. doi: 10.1136/thx.28.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heath D., Trueman T., Sukonthamarn P. Pulmonary mast cells in mitral stenosis. Cardiovasc Res. 1969 Oct;3(4):467–471. doi: 10.1093/cvr/3.4.467. [DOI] [PubMed] [Google Scholar]
  14. Howard P., Barer G. R., Thompson B., Warren P. M., Abbott C. J., Mungall I. P. Factors causing and reversing vasoconstriction in unventilated lung. Respir Physiol. 1975 Sep;24(3):325–345. doi: 10.1016/0034-5687(75)90022-5. [DOI] [PubMed] [Google Scholar]
  15. Kay J. M., Gillund T. D., Heath D. Mast cells in the lungs of rats fed on Crotalaria spectabilis seeds. Am J Pathol. 1967 Dec;51(6):1031–1044. [PMC free article] [PubMed] [Google Scholar]
  16. Kay J. M., Waymire J. C., Grover R. F. Lung mast cell hyperplasia and pulmonary histamine-forming capacity in hypoxic rats. Am J Physiol. 1974 Jan;226(1):178–184. doi: 10.1152/ajplegacy.1974.226.1.178. [DOI] [PubMed] [Google Scholar]
  17. LINDELL S. E., SOEDERHOLM B., WESTLING H. HAEMODYNAMIC EFFECTS OF HISTAMINE IN MITRAL STENOSIS. Br Heart J. 1964 Mar;26:180–186. doi: 10.1136/hrt.26.2.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LINDELL S. E., SVANBORG A., SODERHOLM B., WESTLING H. Haemodynamic changes in chronic constrictive pericarditis during exercise and histamine infusion. Br Heart J. 1963 Jan;25:35–41. doi: 10.1136/hrt.25.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LLOYD T. C., Jr EFFECT OF ALVEOLAR HYPOXIA ON PULMONARY VASCULAR RESISTANCE. J Appl Physiol. 1964 Nov;19:1086–1094. doi: 10.1152/jappl.1964.19.6.1086. [DOI] [PubMed] [Google Scholar]
  20. Mungall I. P. Hypoxia and lung mast cells: influence of disodium cromoglycate. Thorax. 1976 Feb;31(1):94–100. doi: 10.1136/thx.31.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Okpako D. T. A dual action of histamine on guinea-pig lung vessels. Br J Pharmacol. 1972 Jun;45(2):311–321. doi: 10.1111/j.1476-5381.1972.tb08085.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Porcelli R. J., Bergofsky E. H. Adrenergic receptors in pulmonary vasoconstrictor responses to gaseous and humoral agents. J Appl Physiol. 1973 Apr;34(4):483–488. doi: 10.1152/jappl.1973.34.4.483. [DOI] [PubMed] [Google Scholar]
  23. Shaw J. W. Pulmonary vasodilator and vasoconstrictor actions of histamine. J Physiol. 1971 May;215(1):34P–35P. [PubMed] [Google Scholar]
  24. Silove E. D., Simcha A. J. Histamine-induced pulmonary vasodilatation in the calf: relationship to hypoxia. J Appl Physiol. 1973 Dec;35(6):830–836. doi: 10.1152/jappl.1973.35.6.830. [DOI] [PubMed] [Google Scholar]
  25. Smith P., Moosavi H., Winson M., Heath D. The influence of age and sex on the response of the right ventricle, pulmonary vasculature and carotid bodies to hypoxia in rats. J Pathol. 1974 Jan;112(1):11–18. doi: 10.1002/path.1711120104. [DOI] [PubMed] [Google Scholar]
  26. Susmano A., Carleton R. A. Prevention of hypoxic pulmonary hypertension by chlorpheniramine. J Appl Physiol. 1971 Oct;31(4):531–535. doi: 10.1152/jappl.1971.31.4.531. [DOI] [PubMed] [Google Scholar]
  27. Tucker A., Weir E. K., Reeves J. T., Grover R. F. Histamine H1- and H2-receptors in pulmonary and systemic vasculature of the dog. Am J Physiol. 1975 Oct;229(4):1008–1013. doi: 10.1152/ajplegacy.1975.229.4.1008. [DOI] [PubMed] [Google Scholar]
  28. Türker R. K. Presence of histamine H2-receptors in the guinea-pig pulmonary vascular bed. Pharmacology. 1973;9(5):306–311. doi: 10.1159/000136401. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES