Abstract
Rats were exposed to crhonic hypobaric hypoxia at a simulated altitude of 4250 m for 3, 6, 9, 12, 20, and 35 days. The in-vitro incorporation of 3H-thymidine into the DNA of lung tissue was measured and compared with that of normoxic controls: the obtained time course study showed a maximum increase of 345% on the ninth day of hypoxia, indicating a marked stimulation of cellular proliferation. Between the 12th and 20th day of hypoxia, the lung DNA-synthesis reached control values. No significant change in the DNA-concentration of the lungs was registered. The response to hypoxia was less impressive in rat livers used as controls.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALEXANDER A. F., WILL D. H., GROVER R. F., REEVES J. T. Pulmonary hypertention and right ventricular hypertrophy in catle at high altitude. Am J Vet Res. 1960 Mar;21:199–204. [PubMed] [Google Scholar]
- ARIAS-STELLA J., SALDANA M. The muscular pulmonary arteries in people native to high altitude. Med Thorac. 1962;19:484–493. doi: 10.1159/000192256. [DOI] [PubMed] [Google Scholar]
- Abraham A. S., Kay J. M., Cole R. B., Pincock A. C. Haemodynamic and pathological study of the effect of chronic hypoxia and subsequent recovery of the heart and pulmonary vasculature of the rat. Cardiovasc Res. 1971 Jan;5(1):95–102. doi: 10.1093/cvr/5.1.95. [DOI] [PubMed] [Google Scholar]
- Burton R. R., Besch E. L., Smith A. H. Effect of chronic hypoxia on the pulmonary arterial blood pressure of the chicken. Am J Physiol. 1968 Jun;214(6):1438–1442. doi: 10.1152/ajplegacy.1968.214.6.1438. [DOI] [PubMed] [Google Scholar]
- Crocker T. T., Teeter A., Nielsen B. Postnatal cellular proliferation in mouse and hamster lung. Cancer Res. 1970 Feb;30(2):357–361. [PubMed] [Google Scholar]
- Lodi S. T., Viswanathan R. Effect of 7 per cent CO2 breathing on muscular pulmonary arteries and on the right ventricle in rats. Respiration. 1974;31(3):201–207. doi: 10.1159/000193110. [DOI] [PubMed] [Google Scholar]
- McGrath J. J., Procházka J., Pelouch V., Ostádal B. Physiological responses of rats to intermittent high-altitude stress: effects of age. J Appl Physiol. 1973 Mar;34(3):289–293. doi: 10.1152/jappl.1973.34.3.289. [DOI] [PubMed] [Google Scholar]
- McMurtry I. F., Frith C. H., Will D. H. Cardiopulmonary responses of male and female swine to simulated high altitude. J Appl Physiol. 1973 Oct;35(4):459–462. doi: 10.1152/jappl.1973.35.4.459. [DOI] [PubMed] [Google Scholar]
- Moret P. R., Duchosal F. Effets du propranolol sur l'hypertension pulmonaire, l'hypertrophie ventriculaire droite et les altérations métaboliques myocardiques dues à l'hypoxémie aiguë de haute altitude. Schweiz Med Wochenschr. 1976 Nov 6;106(45):1564–1566. [PubMed] [Google Scholar]
- Mungall I. P. Hypoxia and lung mast cells: influence of disodium cromoglycate. Thorax. 1976 Feb;31(1):94–100. doi: 10.1136/thx.31.1.94. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAEYE R. L. Hypoxemia, effects on the pulmonary vascular bed. Med Thorac. 1962;19:494–501. doi: 10.1159/000192257. [DOI] [PubMed] [Google Scholar]
- Novi A. M. Molecular basis of a control mechanism of DNA synthesis in mammalian cells. Klin Wochenschr. 1976 Oct 15;54(20):961–968. doi: 10.1007/BF01468946. [DOI] [PubMed] [Google Scholar]