Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Aug 1;90(15):7144–7148. doi: 10.1073/pnas.90.15.7144

Molecular cloning and sequencing of a canine tracheobronchial mucin cDNA containing a cysteine-rich domain.

M Verma 1, E A Davidson 1
PMCID: PMC47092  PMID: 8346228

Abstract

To date the complete sequence of only one mammalian mucin cDNA, MUC1, has been reported, although several mucin proteins have been partially characterized. Here we report the nucleotide sequence of a canine tracheal mucin cDNA containing two potential translation initiation codons, one translation termination codon and a poly(A) tail. A lambda gt11 cDNA library prepared from canine tracheal epithelial cells was screened with polyclonal anti-apo-canine tracheal mucin antibodies with the aim of obtaining the deduced amino acid sequence of the mucin core protein. Antibody-positive clones containing overlapping inserts of various lengths were purified and used for nucleotide sequencing. Based on the sequencing data, synthetic oligonucleotide primers were constructed and both ends (5' and 3') of the cDNA were determined. The complete sequence was 3.7 kb and included an open reading frame with coding capacity for 1118 aa, two translation initiation ATG codons in context with Kozak consensus sequences, one polyadenylylation site, and a poly(A) stretch. The protein was rich in Thr, Pro, Ser, Gly, and Ala and poor in Tyr, Phe, and Trp. Although tandem repeats of amino acids were absent in the deduced canine tracheal mucin sequence, motifs TPTPTP and TTTTPV appeared 13 and 19 times, respectively. The C-terminal region contained a Cys-rich domain (although a few Cys residues were also present in the middle of the protein) as has been reported for bovine submaxillary mucin, porcine submaxillary mucin, rat intestinal mucin, human intestinal mucin, and frog skin mucin. This suggested that a broad group of mucins contain such a Cys-rich domain whose functional significance is yet to be understood. Three potential N-glycosylation sites were present in canine tracheal mucin and the amino acid sequence showed homology with both human tracheal and intestinal mucins. The N-terminal domain showed more flexibility (probably due to a high number of Pro residues in this region) when analyzed by the University of Wisconsin Genetics Computer Group program package to determine the predicted secondary structure. Evaluation of the transcripts using the canine mucin cDNA as a probe indicated a polydisperse message with total RNA.

Full text

PDF
7144

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa T., Shimura S., Sasaki H., Takishima T., Yaegashi H., Takahashi T. Morphometric analysis of intraluminal mucus in airways in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1989 Aug;140(2):477–482. doi: 10.1164/ajrccm/140.2.477. [DOI] [PubMed] [Google Scholar]
  2. Bailey J. M., Verma M. Analytical procedures for a cryptic messenger RNA that mediates translational control of prostaglandin synthase by glucocorticoids. Anal Biochem. 1991 Jul;196(1):11–18. doi: 10.1016/0003-2697(91)90110-f. [DOI] [PubMed] [Google Scholar]
  3. Bailey J. M., Verma M. Identification of a highly conserved 3' UTR in the translationally regulated mRNA for prostaglandin synthase. Prostaglandins. 1990 Dec;40(6):585–590. doi: 10.1016/0090-6980(90)90003-e. [DOI] [PubMed] [Google Scholar]
  4. Bhargava A. K., Woitach J. T., Davidson E. A., Bhavanandan V. P. Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6798–6802. doi: 10.1073/pnas.87.17.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eckhardt A. E., Timpte C. S., Abernethy J. L., Zhao Y., Hill R. L. Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J Biol Chem. 1991 May 25;266(15):9678–9686. [PubMed] [Google Scholar]
  7. Feldhoff P. A., Bhavanandan V. P., Davidson E. A. Purification, properties, and analysis of human asthmatic bronchial mucin. Biochemistry. 1979 May 29;18(11):2430–2436. doi: 10.1021/bi00578a044. [DOI] [PubMed] [Google Scholar]
  8. Gendler S. J., Burchell J. M., Duhig T., Lamport D., White R., Parker M., Taylor-Papadimitriou J. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc Natl Acad Sci U S A. 1987 Sep;84(17):6060–6064. doi: 10.1073/pnas.84.17.6060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gendler S. J., Lancaster C. A., Taylor-Papadimitriou J., Duhig T., Peat N., Burchell J., Pemberton L., Lalani E. N., Wilson D. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem. 1990 Sep 5;265(25):15286–15293. [PubMed] [Google Scholar]
  10. Gendler S., Taylor-Papadimitriou J., Duhig T., Rothbard J., Burchell J. A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem. 1988 Sep 15;263(26):12820–12823. [PubMed] [Google Scholar]
  11. Gerard C., Eddy R. L., Jr, Shows T. B. The core polypeptide of cystic fibrosis tracheal mucin contains a tandem repeat structure. Evidence for a common mucin in airway and gastrointestinal tissue. J Clin Invest. 1990 Dec;86(6):1921–1927. doi: 10.1172/JCI114925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gum J. R., Byrd J. C., Hicks J. W., Toribara N. W., Lamport D. T., Kim Y. S. Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem. 1989 Apr 15;264(11):6480–6487. [PubMed] [Google Scholar]
  13. Gum J. R., Hicks J. W., Swallow D. M., Lagace R. L., Byrd J. C., Lamport D. T., Siddiki B., Kim Y. S. Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biochem Biophys Res Commun. 1990 Aug 31;171(1):407–415. doi: 10.1016/0006-291x(90)91408-k. [DOI] [PubMed] [Google Scholar]
  14. Gum J. R., Jr, Hicks J. W., Toribara N. W., Rothe E. M., Lagace R. E., Kim Y. S. The human MUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem. 1992 Oct 25;267(30):21375–21383. [PubMed] [Google Scholar]
  15. Gum J. R., Jr Mucin genes and the proteins they encode: structure, diversity, and regulation. Am J Respir Cell Mol Biol. 1992 Dec;7(6):557–564. doi: 10.1165/ajrcmb/7.6.557. [DOI] [PubMed] [Google Scholar]
  16. Lalani E. N., Berdichevsky F., Boshell M., Shearer M., Wilson D., Stauss H., Gendler S. J., Taylor-Papadimitriou J. Expression of the gene coding for a human mucin in mouse mammary tumor cells can affect their tumorigenicity. J Biol Chem. 1991 Aug 15;266(23):15420–15426. [PubMed] [Google Scholar]
  17. Lange P., Nyboe J., Appleyard M., Jensen G., Schnohr P. Ventilatory function and chronic mucus hypersecretion as predictors of death from lung cancer. Am Rev Respir Dis. 1990 Mar;141(3):613–617. doi: 10.1164/ajrccm/141.3.613. [DOI] [PubMed] [Google Scholar]
  18. Larsen R. D., Rajan V. P., Ruff M. M., Kukowska-Latallo J., Cummings R. D., Lowe J. B. Isolation of a cDNA encoding a murine UDPgalactose:beta-D-galactosyl- 1,4-N-acetyl-D-glucosaminide alpha-1,3-galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci U S A. 1989 Nov;86(21):8227–8231. doi: 10.1073/pnas.86.21.8227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ligtenberg M. J., Vos H. L., Gennissen A. M., Hilkens J. Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J Biol Chem. 1990 Apr 5;265(10):5573–5578. [PubMed] [Google Scholar]
  20. Loh E. Y., Elliott J. F., Cwirla S., Lanier L. L., Davis M. M. Polymerase chain reaction with single-sided specificity: analysis of T cell receptor delta chain. Science. 1989 Jan 13;243(4888):217–220. doi: 10.1126/science.2463672. [DOI] [PubMed] [Google Scholar]
  21. Probst J. C., Gertzen E. M., Hoffmann W. An integumentary mucin (FIM-B.1) from Xenopus laevis homologous with von Willebrand factor. Biochemistry. 1990 Jul 3;29(26):6240–6244. doi: 10.1021/bi00478a018. [DOI] [PubMed] [Google Scholar]
  22. Ringler N. J., Selvakumar R., Woodward H. D., Bhavanandan V. P., Davidson E. A. Protein components of human tracheobronchial mucin: partial characterization of a closely associated 65-kilodalton protein. Biochemistry. 1988 Oct 18;27(21):8056–8063. doi: 10.1021/bi00421a013. [DOI] [PubMed] [Google Scholar]
  23. Ringler N. J., Selvakumar R., Woodward H. D., Simet I. M., Bhavanandan V. P., Davidson E. A. Structure of canine tracheobronchial mucin glycoprotein. Biochemistry. 1987 Aug 25;26(17):5322–5328. doi: 10.1021/bi00391a016. [DOI] [PubMed] [Google Scholar]
  24. Ringler N. J., Selvakumar R., Woodward H. D., Simet I. M., Bhavanandan V. P., Davidson E. A. Structure of canine tracheobronchial mucin glycoprotein. Biochemistry. 1987 Aug 25;26(17):5322–5328. doi: 10.1021/bi00391a016. [DOI] [PubMed] [Google Scholar]
  25. Rose M. C. Characterization of human tracheobronchial mucin glycoproteins. Methods Enzymol. 1989;179:3–17. doi: 10.1016/0076-6879(89)79109-6. [DOI] [PubMed] [Google Scholar]
  26. Rose M. C. Mucins: structure, function, and role in pulmonary diseases. Am J Physiol. 1992 Oct;263(4 Pt 1):L413–L429. doi: 10.1152/ajplung.1992.263.4.L413. [DOI] [PubMed] [Google Scholar]
  27. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith C. W., Patton J. G., Nadal-Ginard B. Alternative splicing in the control of gene expression. Annu Rev Genet. 1989;23:527–577. doi: 10.1146/annurev.ge.23.120189.002523. [DOI] [PubMed] [Google Scholar]
  29. Spicer A. P., Parry G., Patton S., Gendler S. J. Molecular cloning and analysis of the mouse homologue of the tumor-associated mucin, MUC1, reveals conservation of potential O-glycosylation sites, transmembrane, and cytoplasmic domains and a loss of minisatellite-like polymorphism. J Biol Chem. 1991 Aug 15;266(23):15099–15109. [PubMed] [Google Scholar]
  30. Strous G. J., Dekker J. Mucin-type glycoproteins. Crit Rev Biochem Mol Biol. 1992;27(1-2):57–92. doi: 10.3109/10409239209082559. [DOI] [PubMed] [Google Scholar]
  31. Toribara N. W., Gum J. R., Jr, Culhane P. J., Lagace R. E., Hicks J. W., Petersen G. M., Kim Y. S. MUC-2 human small intestinal mucin gene structure. Repeated arrays and polymorphism. J Clin Invest. 1991 Sep;88(3):1005–1013. doi: 10.1172/JCI115360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wardell J. R., Jr, Chakrin L. W., Payne B. J. The canine tracheal pouch. A model for use in respiratory mucus research. Am Rev Respir Dis. 1970 May;101(5):741–754. doi: 10.1164/arrd.1970.101.5.741. [DOI] [PubMed] [Google Scholar]
  33. Woodward H. D., Ringler N. J., Selvakumar R., Simet I. M., Bhavanandan V. P., Davidson E. A. Deglycosylation studies on tracheal mucin glycoproteins. Biochemistry. 1987 Aug 25;26(17):5315–5322. doi: 10.1021/bi00391a015. [DOI] [PubMed] [Google Scholar]
  34. Xu G., Huan L. J., Khatri I. A., Wang D., Bennick A., Fahim R. E., Forstner G. G., Forstner J. F. cDNA for the carboxyl-terminal region of a rat intestinal mucin-like peptide. J Biol Chem. 1992 Mar 15;267(8):5401–5407. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES