Skip to main content
Springer logoLink to Springer
. 2016 Jan 5;76:4. doi: 10.1140/epjc/s10052-015-3743-8

Study of the Bc+J/ψDs+ and Bc+J/ψDs+ decays with the ATLAS detector

G Aad 111, B Abbott 141, J Abdallah 198, O Abdinov 13, R Aben 135, M Abolins 116, O S AbouZeid 205, H Abramowicz 200, H Abreu 199, R Abreu 41, Y Abulaiti 192,193, B S Acharya 212,213, L Adamczyk 56, D L Adams 33, J Adelman 136, S Adomeit 127, T Adye 167, A A Affolder 100, T Agatonovic-Jovin 15, J A Aguilar-Saavedra 156,161, S P Ahlen 27, F Ahmadov 90, G Aielli 170,171, H Akerstedt 192,193, T P A Åkesson 107, G Akimoto 202, A V Akimov 123, G L Alberghi 24,25, J Albert 219, S Albrand 76, M J Alconada Verzini 96, M Aleksa 41, I N Aleksandrov 90, C Alexa 34, G Alexander 200, T Alexopoulos 12, M Alhroob 141, G Alimonti 117, L Alio 111, J Alison 42, S P Alkire 52, B M M Allbrooke 20, P P Allport 100, A Aloisio 131,132, A Alonso 53, F Alonso 96, C Alpigiani 102, A Altheimer 52, B Alvarez Gonzalez 41, D Álvarez Piqueras 217, M G Alviggi 131,132, B T Amadio 17, K Amako 91, Y Amaral Coutinho 29, C Amelung 28, D Amidei 115, S P Amor Dos Santos 156,158, A Amorim 156,157, S Amoroso 67, N Amram 200, G Amundsen 28, C Anastopoulos 182, L S Ancu 68, N Andari 41, T Andeen 52, C F Anders 80, G Anders 41, J K Anders 100, K J Anderson 42, A Andreazza 117,118, V Andrei 79, S Angelidakis 11, I Angelozzi 135, P Anger 63, A Angerami 52, F Anghinolfi 41, A V Anisenkov 137, N Anjos 14, A Annovi 153,154, M Antonelli 66, A Antonov 125, J Antos 188, F Anulli 168, M Aoki 91, L Aperio Bella 20, G Arabidze 116, Y Arai 91, J P Araque 156, A T H Arce 64, F A Arduh 96, J-F Arguin 122, S Argyropoulos 61, M Arik 21, A J Armbruster 41, O Arnaez 41, V Arnal 108, H Arnold 67, M Arratia 39, O Arslan 26, A Artamonov 124, G Artoni 28, S Asai 202, N Asbah 61, A Ashkenazi 200, B Åsman 192,193, L Asquith 196, K Assamagan 33, R Astalos 187, M Atkinson 215, N B Atlay 184, B Auerbach 8, K Augsten 164, M Aurousseau 190, G Avolio 41, B Axen 17, M K Ayoub 145, G Azuelos 122, M A Baak 41, A E Baas 79, C Bacci 172,173, H Bachacou 179, K Bachas 201, M Backes 41, M Backhaus 41, P Bagiacchi 168,169, P Bagnaia 168,169, Y Bai 45, T Bain 52, J T Baines 167, O K Baker 226, P Balek 165, T Balestri 195, F Balli 110, E Banas 58, Sw Banerjee 223, A A E Bannoura 225, H S Bansil 20, L Barak 41, E L Barberio 114, D Barberis 69,70, M Barbero 111, T Barillari 128, M Barisonzi 212,213, T Barklow 186, N Barlow 39, S L Barnes 110, B M Barnett 167, R M Barnett 17, Z Barnovska 7, A Baroncelli 172, G Barone 68, A J Barr 148, F Barreiro 108, J Barreiro Guimarães da Costa 78, R Bartoldus 186, A E Barton 97, P Bartos 187, A Basalaev 152, A Bassalat 145, A Basye 215, R L Bates 74, S J Batista 205, J R Batley 39, M Battaglia 180, M Bauce 168,169, F Bauer 179, H S Bawa 186, J B Beacham 139, M D Beattie 97, T Beau 106, P H Beauchemin 209, R Beccherle 153,154, P Bechtle 26, H P Beck 19, K Becker 148, M Becker 109, S Becker 127, M Beckingham 220, C Becot 145, A J Beddall 22, A Beddall 22, V A Bednyakov 90, C P Bee 195, L J Beemster 135, T A Beermann 225, M Begel 33, J K Behr 148, C Belanger-Champagne 113, W H Bell 68, G Bella 200, L Bellagamba 24, A Bellerive 40, M Bellomo 112, K Belotskiy 125, O Beltramello 41, O Benary 200, D Benchekroun 174, M Bender 127, K Bendtz 192,193, N Benekos 12, Y Benhammou 200, E Benhar Noccioli 68, J A Benitez Garcia 207, D P Benjamin 64, J R Bensinger 28, S Bentvelsen 135, L Beresford 148, M Beretta 66, D Berge 135, E Bergeaas Kuutmann 216, N Berger 7, F Berghaus 219, J Beringer 17, C Bernard 27, N R Bernard 112, C Bernius 138, F U Bernlochner 26, T Berry 103, P Berta 165, C Bertella 109, G Bertoli 192,193, F Bertolucci 153,154, C Bertsche 141, D Bertsche 141, M I Besana 117, G J Besjes 134, O Bessidskaia Bylund 192,193, M Bessner 61, N Besson 179, C Betancourt 67, S Bethke 128, A J Bevan 102, W Bhimji 65, R M Bianchi 155, L Bianchini 28, M Bianco 41, O Biebel 127, S P Bieniek 104, M Biglietti 172, J Bilbao De Mendizabal 68, H Bilokon 66, M Bindi 75, S Binet 145, A Bingul 22, C Bini 168,169, C W Black 197, J E Black 186, K M Black 27, D Blackburn 181, R E Blair 8, J-B Blanchard 179, J E Blanco 103, T Blazek 187, I Bloch 61, C Blocker 28, W Blum 109, U Blumenschein 75, G J Bobbink 135, V S Bobrovnikov 137, S S Bocchetta 107, A Bocci 64, C Bock 127, M Boehler 67, J A Bogaerts 41, D Bogavac 15, A G Bogdanchikov 137, C Bohm 192, V Boisvert 103, T Bold 56, V Boldea 34, A S Boldyrev 126, M Bomben 106, M Bona 102, M Boonekamp 179, A Borisov 166, G Borissov 97, S Borroni 61, J Bortfeldt 127, V Bortolotto 83,84,85, K Bos 135, D Boscherini 24, M Bosman 14, J Boudreau 155, J Bouffard 2, E V Bouhova-Thacker 97, D Boumediene 51, C Bourdarios 145, N Bousson 142, A Boveia 41, J Boyd 41, I R Boyko 90, I Bozic 15, J Bracinik 20, A Brandt 10, G Brandt 75, O Brandt 79, U Bratzler 203, B Brau 112, J E Brau 144, H M Braun 225, S F Brazzale 212,214, W D Breaden Madden 74, K Brendlinger 151, A J Brennan 114, L Brenner 135, R Brenner 216, S Bressler 222, K Bristow 191, T M Bristow 65, D Britton 74, D Britzger 61, F M Brochu 39, I Brock 26, R Brock 116, J Bronner 128, G Brooijmans 52, T Brooks 103, W K Brooks 44, J Brosamer 17, E Brost 144, J Brown 76, P A Bruckman de Renstrom 58, D Bruncko 188, R Bruneliere 67, A Bruni 24, G Bruni 24, M Bruschi 24, N Bruscino 26, L Bryngemark 107, T Buanes 16, Q Buat 185, P Buchholz 184, A G Buckley 74, S I Buda 34, I A Budagov 90, F Buehrer 67, L Bugge 147, M K Bugge 147, O Bulekov 125, D Bullock 10, H Burckhart 41, S Burdin 100, B Burghgrave 136, S Burke 167, I Burmeister 62, E Busato 51, D Büscher 67, V Büscher 109, P Bussey 74, J M Butler 27, A I Butt 3, C M Buttar 74, J M Butterworth 104, P Butti 135, W Buttinger 33, A Buzatu 74, A R Buzykaev 137, S Cabrera Urbán 217, D Caforio 164, V M Cairo 54,55, O Cakir 4, P Calafiura 17, A Calandri 179, G Calderini 106, P Calfayan 127, L P Caloba 29, D Calvet 51, S Calvet 51, R Camacho Toro 42, S Camarda 61, P Camarri 170,171, D Cameron 147, L M Caminada 17, R Caminal Armadans 215, S Campana 41, M Campanelli 104, A Campoverde 195, V Canale 131,132, A Canepa 206, M Cano Bret 102, J Cantero 108, R Cantrill 156, T Cao 59, M D M Capeans Garrido 41, I Caprini 34, M Caprini 34, M Capua 54,55, R Caputo 109, R Cardarelli 170, F Cardillo 67, T Carli 41, G Carlino 131, L Carminati 117,118, S Caron 134, E Carquin 43, G D Carrillo-Montoya 10, J R Carter 39, J Carvalho 156,158, D Casadei 104, M P Casado 14, M Casolino 14, E Castaneda-Miranda 190, A Castelli 135, V Castillo Gimenez 217, N F Castro 156, P Catastini 78, A Catinaccio 41, J R Catmore 147, A Cattai 41, J Caudron 109, V Cavaliere 215, D Cavalli 117, M Cavalli-Sforza 14, V Cavasinni 153,154, F Ceradini 172,173, B C Cerio 64, K Cerny 165, A S Cerqueira 30, A Cerri 196, L Cerrito 102, F Cerutti 17, M Cerv 41, A Cervelli 19, S A Cetin 23, A Chafaq 174, D Chakraborty 136, I Chalupkova 165, P Chang 215, B Chapleau 113, J D Chapman 39, D G Charlton 20, C C Chau 205, C A Chavez Barajas 196, S Cheatham 199, A Chegwidden 116, S Chekanov 8, S V Chekulaev 206, G A Chelkov 90, M A Chelstowska 115, C Chen 89, H Chen 33, K Chen 195, L Chen 48, S Chen 47, X Chen 50, Y Chen 92, H C Cheng 115, Y Cheng 42, A Cheplakov 90, E Cheremushkina 166, R Cherkaoui El Moursli 178, V Chernyatin 33, E Cheu 9, L Chevalier 179, V Chiarella 66, J T Childers 8, G Chiodini 98, A S Chisholm 20, R T Chislett 104, A Chitan 34, M V Chizhov 90, K Choi 86, S Chouridou 11, B K B Chow 127, V Christodoulou 104, D Chromek-Burckhart 41, J Chudoba 163, A J Chuinard 113, J J Chwastowski 58, L Chytka 143, G Ciapetti 168,169, A K Ciftci 4, D Cinca 74, V Cindro 101, I A Cioara 26, A Ciocio 17, Z H Citron 222, M Ciubancan 34, A Clark 68, B L Clark 78, P J Clark 65, R N Clarke 17, W Cleland 155, C Clement 192,193, Y Coadou 111, M Cobal 212,214, A Coccaro 181, J Cochran 89, L Coffey 28, J G Cogan 186, B Cole 52, S Cole 136, A P Colijn 135, J Collot 76, T Colombo 81, G Compostella 128, P Conde Muiño 156,157, E Coniavitis 67, S H Connell 190, I A Connelly 103, S M Consonni 117,118, V Consorti 67, S Constantinescu 34, C Conta 149,150, G Conti 41, F Conventi 131, M Cooke 17, B D Cooper 104, A M Cooper-Sarkar 148, T Cornelissen 225, M Corradi 24, F Corriveau 113, A Corso-Radu 211, A Cortes-Gonzalez 14, G Cortiana 128, G Costa 117, M J Costa 217, D Costanzo 182, D Côté 10, G Cottin 39, G Cowan 103, B E Cox 110, K Cranmer 138, G Cree 40, S Crépé-Renaudin 76, F Crescioli 106, W A Cribbs 192,193, M Crispin Ortuzar 148, M Cristinziani 26, V Croft 134, G Crosetti 54,55, T Cuhadar Donszelmann 182, J Cummings 226, M Curatolo 66, C Cuthbert 197, H Czirr 184, P Czodrowski 3, S D’Auria 74, M D’Onofrio 100, M J Da Cunha Sargedas De Sousa 156,157, C Da Via 110, W Dabrowski 56, A Dafinca 148, T Dai 115, O Dale 16, F Dallaire 122, C Dallapiccola 112, M Dam 53, J R Dandoy 42, N P Dang 67, A C Daniells 20, M Danninger 218, M Dano Hoffmann 179, V Dao 67, G Darbo 69, S Darmora 10, J Dassoulas 3, A Dattagupta 86, W Davey 26, C David 219, T Davidek 165, E Davies 148, M Davies 200, P Davison 104, Y Davygora 79, E Dawe 114, I Dawson 182, R K Daya-Ishmukhametova 112, K De 10, R de Asmundis 131, S De Castro 24,25, S De Cecco 106, N De Groot 134, P de Jong 135, H De la Torre 108, F De Lorenzi 89, L De Nooij 135, D De Pedis 168, A De Salvo 168, U De Sanctis 196, A De Santo 196, J B De Vivie De Regie 145, W J Dearnaley 97, R Debbe 33, C Debenedetti 180, D V Dedovich 90, I Deigaard 135, J Del Peso 108, T Del Prete 153,154, D Delgove 145, F Deliot 179, C M Delitzsch 68, M Deliyergiyev 101, A Dell’Acqua 41, L Dell’Asta 27, M Dell’Orso 153,154, M Della Pietra 131, D della Volpe 68, M Delmastro 7, P A Delsart 76, C Deluca 135, D A DeMarco 205, S Demers 226, M Demichev 90, A Demilly 106, S P Denisov 166, D Derendarz 58, J E Derkaoui 177, F Derue 106, P Dervan 100, K Desch 26, C Deterre 61, P O Deviveiros 41, A Dewhurst 167, S Dhaliwal 28, A Di Ciaccio 170,171, L Di Ciaccio 7, A Di Domenico 168,169, C Di Donato 131,132, A Di Girolamo 41, B Di Girolamo 41, A Di Mattia 199, B Di Micco 172,173, R Di Nardo 66, A Di Simone 67, R Di Sipio 205, D Di Valentino 40, C Diaconu 111, M Diamond 205, F A Dias 65, M A Diaz 43, E B Diehl 115, J Dietrich 18, S Diglio 111, A Dimitrievska 15, J Dingfelder 26, P Dita 34, S Dita 34, F Dittus 41, F Djama 111, T Djobava 72, J I Djuvsland 79, M A B do Vale 31, D Dobos 41, M Dobre 34, C Doglioni 68, T Dohmae 202, J Dolejsi 165, Z Dolezal 165, B A Dolgoshein 125, M Donadelli 32, S Donati 153,154, P Dondero 149,150, J Donini 51, J Dopke 167, A Doria 131, M T Dova 96, A T Doyle 74, E Drechsler 75, M Dris 12, E Dubreuil 51, E Duchovni 222, G Duckeck 127, O A Ducu 34,111, D Duda 225, A Dudarev 41, L Duflot 145, L Duguid 103, M Dührssen 41, M Dunford 79, H Duran Yildiz 4, M Düren 73, A Durglishvili 72, D Duschinger 63, M Dyndal 56, C Eckardt 61, K M Ecker 128, R C Edgar 115, W Edson 2, N C Edwards 65, W Ehrenfeld 26, T Eifert 41, G Eigen 16, K Einsweiler 17, T Ekelof 216, M El Kacimi 176, M Ellert 216, S Elles 7, F Ellinghaus 109, A A Elliot 219, N Ellis 41, J Elmsheuser 127, M Elsing 41, D Emeliyanov 167, Y Enari 202, O C Endner 109, M Endo 146, J Erdmann 62, A Ereditato 19, G Ernis 225, J Ernst 2, M Ernst 33, S Errede 215, E Ertel 109, M Escalier 145, H Esch 62, C Escobar 155, B Esposito 66, A I Etienvre 179, E Etzion 200, H Evans 86, A Ezhilov 152, L Fabbri 24,25, G Facini 42, R M Fakhrutdinov 166, S Falciano 168, R J Falla 104, J Faltova 165, Y Fang 45, M Fanti 117,118, A Farbin 10, A Farilla 172, T Farooque 14, S Farrell 17, S M Farrington 220, P Farthouat 41, F Fassi 178, P Fassnacht 41, D Fassouliotis 11, M Faucci Giannelli 103, A Favareto 69,70, L Fayard 145, P Federic 187, O L Fedin 152, W Fedorko 218, S Feigl 41, L Feligioni 111, C Feng 48, E J Feng 8, H Feng 115, A B Fenyuk 166, L Feremenga 10, P Fernandez Martinez 217, S Fernandez Perez 41, J Ferrando 74, A Ferrari 216, P Ferrari 135, R Ferrari 149, D E Ferreira de Lima 74, A Ferrer 217, D Ferrere 68, C Ferretti 115, A Ferretto Parodi 69,70, M Fiascaris 42, F Fiedler 109, A Filipčič 101, M Filipuzzi 61, F Filthaut 134, M Fincke-Keeler 219, K D Finelli 197, M C N Fiolhais 156,158, L Fiorini 217, A Firan 59, A Fischer 2, C Fischer 14, J Fischer 225, W C Fisher 116, E A Fitzgerald 28, I Fleck 184, P Fleischmann 115, S Fleischmann 225, G T Fletcher 182, G Fletcher 102, R R M Fletcher 151, T Flick 225, A Floderus 107, L R Flores Castillo 83, M J Flowerdew 128, A Formica 179, A Forti 110, D Fournier 145, H Fox 97, S Fracchia 14, P Francavilla 106, M Franchini 24,25, D Francis 41, L Franconi 147, M Franklin 78, M Frate 211, M Fraternali 149,150, D Freeborn 104, S T French 39, F Friedrich 63, D Froidevaux 41, J A Frost 148, C Fukunaga 203, E Fullana Torregrosa 109, B G Fulsom 186, J Fuster 217, C Gabaldon 76, O Gabizon 225, A Gabrielli 24,25, A Gabrielli 168,169, S Gadatsch 135, S Gadomski 68, G Gagliardi 69,70, P Gagnon 86, C Galea 134, B Galhardo 156,158, E J Gallas 148, B J Gallop 167, P Gallus 164, G Galster 53, K K Gan 139, J Gao 46,111, Y Gao 65, Y S Gao 186, F M Garay Walls 65, F Garberson 226, C García 217, J E García Navarro 217, M Garcia-Sciveres 17, R W Gardner 42, N Garelli 186, V Garonne 147, C Gatti 66, A Gaudiello 69,70, G Gaudio 149, B Gaur 184, L Gauthier 122, P Gauzzi 168,169, I L Gavrilenko 123, C Gay 218, G Gaycken 26, E N Gazis 12, P Ge 48, Z Gecse 218, C N P Gee 167, D A A Geerts 135, Ch Geich-Gimbel 26, M P Geisler 79, C Gemme 69, M H Genest 76, S Gentile 168,169, M George 75, S George 103, D Gerbaudo 211, A Gershon 200, H Ghazlane 175, B Giacobbe 24, S Giagu 168,169, V Giangiobbe 14, P Giannetti 153,154, B Gibbard 33, S M Gibson 103, M Gilchriese 17, T P S Gillam 39, D Gillberg 41, G Gilles 51, D M Gingrich 3, N Giokaris 11, M P Giordani 212,214, F M Giorgi 24, F M Giorgi 18, P F Giraud 179, P Giromini 66, D Giugni 117, C Giuliani 67, M Giulini 80, B K Gjelsten 147, S Gkaitatzis 201, I Gkialas 201, E L Gkougkousis 145, L K Gladilin 126, C Glasman 108, J Glatzer 41, P C F Glaysher 65, A Glazov 61, M Goblirsch-Kolb 128, J R Goddard 102, J Godlewski 58, S Goldfarb 115, T Golling 68, D Golubkov 166, A Gomes 156,157,159, R Gonçalo 156, J Goncalves Pinto Firmino Da Costa 179, L Gonella 26, S González de la Hoz 217, G Gonzalez Parra 14, S Gonzalez-Sevilla 68, L Goossens 41, P A Gorbounov 124, H A Gordon 33, I Gorelov 133, B Gorini 41, E Gorini 98,99, A Gorišek 101, E Gornicki 58, A T Goshaw 64, C Gössling 62, M I Gostkin 90, D Goujdami 176, A G Goussiou 181, N Govender 190, E Gozani 199, H M X Grabas 180, L Graber 75, I Grabowska-Bold 56, P Grafström 24,25, K-J Grahn 61, J Gramling 68, E Gramstad 147, S Grancagnolo 18, V Grassi 195, V Gratchev 152, H M Gray 41, E Graziani 172, Z D Greenwood 105, K Gregersen 104, I M Gregor 61, P Grenier 186, J Griffiths 10, A A Grillo 180, K Grimm 97, S Grinstein 14, Ph Gris 51, J-F Grivaz 145, J P Grohs 63, A Grohsjean 61, E Gross 222, J Grosse-Knetter 75, G C Grossi 105, Z J Grout 196, L Guan 46, J Guenther 164, F Guescini 68, D Guest 226, O Gueta 200, E Guido 69,70, T Guillemin 145, S Guindon 2, U Gul 74, C Gumpert 63, J Guo 49, S Gupta 148, G Gustavino 168,169, P Gutierrez 141, N G Gutierrez Ortiz 74, C Gutschow 63, C Guyot 179, C Gwenlan 148, C B Gwilliam 100, A Haas 138, C Haber 17, H K Hadavand 10, N Haddad 178, P Haefner 26, S Hageböck 26, Z Hajduk 58, H Hakobyan 227, M Haleem 61, J Haley 142, D Hall 148, G Halladjian 116, G D Hallewell 111, K Hamacher 225, P Hamal 143, K Hamano 219, M Hamer 75, A Hamilton 189, G N Hamity 191, P G Hamnett 61, L Han 46, K Hanagaki 146, K Hanawa 202, M Hance 17, P Hanke 79, R Hanna 179, J B Hansen 53, J D Hansen 53, M C Hansen 26, P H Hansen 53, K Hara 208, A S Hard 223, T Harenberg 225, F Hariri 145, S Harkusha 119, R D Harrington 65, P F Harrison 220, F Hartjes 135, M Hasegawa 92, S Hasegawa 130, Y Hasegawa 183, A Hasib 141, S Hassani 179, S Haug 19, R Hauser 116, L Hauswald 63, M Havranek 163, C M Hawkes 20, R J Hawkings 41, A D Hawkins 107, T Hayashi 208, D Hayden 116, C P Hays 148, J M Hays 102, H S Hayward 100, S J Haywood 167, S J Head 20, T Heck 109, V Hedberg 107, L Heelan 10, S Heim 151, T Heim 225, B Heinemann 17, L Heinrich 138, J Hejbal 163, L Helary 27, S Hellman 192,193, D Hellmich 26, C Helsens 41, J Henderson 148, R C W Henderson 97, Y Heng 223, C Hengler 61, A Henrichs 226, A M Henriques Correia 41, S Henrot-Versille 145, G H Herbert 18, Y Hernández Jiménez 217, R Herrberg-Schubert 18, G Herten 67, R Hertenberger 127, L Hervas 41, G G Hesketh 104, N P Hessey 135, J W Hetherly 59, R Hickling 102, E Higón-Rodriguez 217, E Hill 219, J C Hill 39, K H Hiller 61, S J Hillier 20, I Hinchliffe 17, E Hines 151, R R Hinman 17, M Hirose 204, D Hirschbuehl 225, J Hobbs 195, N Hod 135, M C Hodgkinson 182, P Hodgson 182, A Hoecker 41, M R Hoeferkamp 133, F Hoenig 127, M Hohlfeld 109, D Hohn 26, T R Holmes 17, M Homann 62, T M Hong 155, L Hooft van Huysduynen 138, W H Hopkins 144, Y Horii 130, A J Horton 185, J-Y Hostachy 76, S Hou 198, A Hoummada 174, J Howard 148, J Howarth 61, M Hrabovsky 143, I Hristova 18, J Hrivnac 145, T Hryn’ova 7, A Hrynevich 120, C Hsu 191, P J Hsu 198, S-C Hsu 181, D Hu 52, Q Hu 46, X Hu 115, Y Huang 61, Z Hubacek 41, F Hubaut 111, F Huegging 26, T B Huffman 148, E W Hughes 52, G Hughes 97, M Huhtinen 41, T A Hülsing 109, N Huseynov 90, J Huston 116, J Huth 78, G Iacobucci 68, G Iakovidis 33, I Ibragimov 184, L Iconomidou-Fayard 145, E Ideal 226, Z Idrissi 178, P Iengo 41, O Igonkina 135, T Iizawa 221, Y Ikegami 91, K Ikematsu 184, M Ikeno 91, Y Ilchenko 42, D Iliadis 201, N Ilic 186, Y Inamaru 92, T Ince 128, P Ioannou 11, M Iodice 172, K Iordanidou 52, V Ippolito 78, A Irles Quiles 217, C Isaksson 216, M Ishino 93, M Ishitsuka 204, R Ishmukhametov 139, C Issever 148, S Istin 21, J M Iturbe Ponce 110, R Iuppa 170,171, J Ivarsson 107, W Iwanski 58, H Iwasaki 91, J M Izen 60, V Izzo 131, S Jabbar 3, B Jackson 151, M Jackson 100, P Jackson 1, M R Jaekel 41, V Jain 2, K Jakobs 67, S Jakobsen 41, T Jakoubek 163, J Jakubek 164, D O Jamin 198, D K Jana 105, E Jansen 104, R Jansky 87, J Janssen 26, M Janus 220, G Jarlskog 107, N Javadov 90, T Javůrek 67, L Jeanty 17, J Jejelava 71, G-Y Jeng 197, D Jennens 114, P Jenni 67, J Jentzsch 62, C Jeske 220, S Jézéquel 7, H Ji 223, J Jia 195, Y Jiang 46, S Jiggins 104, J Jimenez Pena 217, S Jin 45, A Jinaru 34, O Jinnouchi 204, M D Joergensen 53, P Johansson 182, K A Johns 9, K Jon-And 192,193, G Jones 220, R W L Jones 97, T J Jones 100, J Jongmanns 79, P M Jorge 156,157, K D Joshi 110, J Jovicevic 206, X Ju 223, C A Jung 62, P Jussel 87, A Juste Rozas 14, M Kaci 217, A Kaczmarska 58, M Kado 145, H Kagan 139, M Kagan 186, S J Kahn 111, E Kajomovitz 64, C W Kalderon 148, S Kama 59, A Kamenshchikov 166, N Kanaya 202, M Kaneda 41, S Kaneti 39, V A Kantserov 125, J Kanzaki 91, B Kaplan 138, A Kapliy 42, D Kar 74, K Karakostas 12, A Karamaoun 3, N Karastathis 12,135, M J Kareem 75, M Karnevskiy 109, S N Karpov 90, Z M Karpova 90, K Karthik 138, V Kartvelishvili 97, A N Karyukhin 166, L Kashif 223, R D Kass 139, A Kastanas 16, Y Kataoka 202, A Katre 68, J Katzy 61, K Kawagoe 95, T Kawamoto 202, G Kawamura 75, S Kazama 202, V F Kazanin 137, M Y Kazarinov 90, R Keeler 219, R Kehoe 59, J S Keller 61, J J Kempster 103, H Keoshkerian 110, O Kepka 163, B P Kerševan 101, S Kersten 225, R A Keyes 113, F Khalil-zada 13, H Khandanyan 192,193, A Khanov 142, A G Kharlamov 137, T J Khoo 39, V Khovanskiy 124, E Khramov 90, J Khubua 72, H Y Kim 10, H Kim 192,193, S H Kim 208, Y K Kim 42, N Kimura 201, O M Kind 18, B T King 100, M King 217, S B King 218, J Kirk 167, A E Kiryunin 128, T Kishimoto 92, D Kisielewska 56, F Kiss 67, K Kiuchi 208, O Kivernyk 179, E Kladiva 188, M H Klein 52, M Klein 100, U Klein 100, K Kleinknecht 109, P Klimek 192,193, A Klimentov 33, R Klingenberg 62, J A Klinger 182, T Klioutchnikova 41, E-E Kluge 79, P Kluit 135, S Kluth 128, E Kneringer 87, E B F G Knoops 111, A Knue 74, A Kobayashi 202, D Kobayashi 204, T Kobayashi 202, M Kobel 63, M Kocian 186, P Kodys 165, T Koffas 40, E Koffeman 135, L A Kogan 148, S Kohlmann 225, Z Kohout 164, T Kohriki 91, T Koi 186, H Kolanoski 18, I Koletsou 7, A A Komar 123, Y Komori 202, T Kondo 91, N Kondrashova 61, K Köneke 67, A C König 134, S König 109, T Kono 91, R Konoplich 138, N Konstantinidis 104, R Kopeliansky 199, S Koperny 56, L Köpke 109, A K Kopp 67, K Korcyl 58, K Kordas 201, A Korn 104, A A Korol 137, I Korolkov 14, E V Korolkova 182, O Kortner 128, S Kortner 128, T Kosek 165, V V Kostyukhin 26, V M Kotov 90, A Kotwal 64, A Kourkoumeli-Charalampidi 201, C Kourkoumelis 11, V Kouskoura 33, A Koutsman 206, R Kowalewski 219, T Z Kowalski 56, W Kozanecki 179, A S Kozhin 166, V A Kramarenko 126, G Kramberger 101, D Krasnopevtsev 125, M W Krasny 106, A Krasznahorkay 41, J K Kraus 26, A Kravchenko 33, S Kreiss 138, M Kretz 81, J Kretzschmar 100, K Kreutzfeldt 73, P Krieger 205, K Krizka 42, K Kroeninger 62, H Kroha 128, J Kroll 151, J Kroseberg 26, J Krstic 15, U Kruchonak 90, H Krüger 26, N Krumnack 89, Z V Krumshteyn 90, A Kruse 223, M C Kruse 64, M Kruskal 27, T Kubota 114, H Kucuk 104, S Kuday 5, S Kuehn 67, A Kugel 81, F Kuger 224, A Kuhl 180, T Kuhl 61, V Kukhtin 90, Y Kulchitsky 119, S Kuleshov 44, M Kuna 168,169, T Kunigo 93, A Kupco 163, H Kurashige 92, Y A Kurochkin 119, R Kurumida 92, V Kus 163, E S Kuwertz 219, M Kuze 204, J Kvita 143, T Kwan 219, D Kyriazopoulos 182, A La Rosa 68, J L La Rosa Navarro 32, L La Rotonda 54,55, C Lacasta 217, F Lacava 168,169, J Lacey 40, H Lacker 18, D Lacour 106, V R Lacuesta 217, E Ladygin 90, R Lafaye 7, B Laforge 106, T Lagouri 226, S Lai 67, L Lambourne 104, S Lammers 86, C L Lampen 9, W Lampl 9, E Lançon 179, U Landgraf 67, M P J Landon 102, V S Lang 79, J C Lange 14, A J Lankford 211, F Lanni 33, K Lantzsch 41, S Laplace 106, C Lapoire 41, J F Laporte 179, T Lari 117, F Lasagni Manghi 24,25, M Lassnig 41, P Laurelli 66, W Lavrijsen 17, A T Law 180, P Laycock 100, T Lazovich 78, O Le Dortz 106, E Le Guirriec 111, E Le Menedeu 14, M LeBlanc 219, T LeCompte 8, F Ledroit-Guillon 76, C A Lee 190, S C Lee 198, L Lee 1, G Lefebvre 106, M Lefebvre 219, F Legger 127, C Leggett 17, A Lehan 100, G Lehmann Miotto 41, X Lei 9, W A Leight 40, A Leisos 201, A G Leister 226, M A L Leite 32, R Leitner 165, D Lellouch 222, B Lemmer 75, K J C Leney 104, T Lenz 26, B Lenzi 41, R Leone 9, S Leone 153,154, C Leonidopoulos 65, S Leontsinis 12, C Leroy 122, C G Lester 39, M Levchenko 152, J Levêque 7, D Levin 115, L J Levinson 222, M Levy 20, A Lewis 148, A M Leyko 26, M Leyton 60, B Li 46, H Li 195, H L Li 42, L Li 64, L Li 49, S Li 64, Y Li 47, Z Liang 180, H Liao 51, B Liberti 170, A Liblong 205, P Lichard 41, K Lie 215, J Liebal 26, W Liebig 16, C Limbach 26, A Limosani 197, S C Lin 198, T H Lin 109, F Linde 135, B E Lindquist 195, J T Linnemann 116, E Lipeles 151, A Lipniacka 16, M Lisovyi 80, T M Liss 215, D Lissauer 33, A Lister 218, A M Litke 180, B Liu 198, D Liu 198, H Liu 115, J Liu 111, J B Liu 46, K Liu 111, L Liu 215, M Liu 64, M Liu 46, Y Liu 46, M Livan 149,150, A Lleres 76, J Llorente Merino 108, S L Lloyd 102, F Lo Sterzo 198, E Lobodzinska 61, P Loch 9, W S Lockman 180, F K Loebinger 110, A E Loevschall-Jensen 53, A Loginov 226, T Lohse 18, K Lohwasser 61, M Lokajicek 163, B A Long 27, J D Long 115, R E Long 97, K A Looper 139, L Lopes 156, D Lopez Mateos 78, B Lopez Paredes 182, I Lopez Paz 14, J Lorenz 127, N Lorenzo Martinez 86, M Losada 210, P Loscutoff 17, P J Lösel 127, X Lou 45, A Lounis 145, J Love 8, P A Love 97, N Lu 115, H J Lubatti 181, C Luci 168,169, A Lucotte 76, F Luehring 86, W Lukas 87, L Luminari 168, O Lundberg 192,193, B Lund-Jensen 194, D Lynn 33, R Lysak 163, E Lytken 107, H Ma 33, L L Ma 48, G Maccarrone 66, A Macchiolo 128, C M Macdonald 182, J Machado Miguens 151,157, D Macina 41, D Madaffari 111, R Madar 51, H J Maddocks 97, W F Mader 63, A Madsen 216, S Maeland 16, T Maeno 33, A Maevskiy 126, E Magradze 75, K Mahboubi 67, J Mahlstedt 135, C Maiani 179, C Maidantchik 29, A A Maier 128, T Maier 127, A Maio 156,157,159, S Majewski 144, Y Makida 91, N Makovec 145, B Malaescu 106, Pa Malecki 58, V P Maleev 152, F Malek 76, U Mallik 88, D Malon 8, C Malone 186, S Maltezos 12, V M Malyshev 137, S Malyukov 41, J Mamuzic 61, G Mancini 66, B Mandelli 41, L Mandelli 117, I Mandić 101, R Mandrysch 88, J Maneira 156,157, A Manfredini 128, L Manhaes de Andrade Filho 30, J Manjarres Ramos 207, A Mann 127, P M Manning 180, A Manousakis-Katsikakis 11, B Mansoulie 179, R Mantifel 113, M Mantoani 75, L Mapelli 41, L March 191, G Marchiori 106, M Marcisovsky 163, C P Marino 219, M Marjanovic 15, D E Marley 115, F Marroquim 29, S P Marsden 110, Z Marshall 17, L F Marti 19, S Marti-Garcia 217, B Martin 116, T A Martin 220, V J Martin 65, B Martin dit Latour 16, M Martinez 14, S Martin-Haugh 167, V S Martoiu 34, A C Martyniuk 104, M Marx 181, F Marzano 168, A Marzin 41, L Masetti 109, T Mashimo 202, R Mashinistov 123, J Masik 110, A L Maslennikov 137, I Massa 24,25, L Massa 24,25, N Massol 7, P Mastrandrea 195, A Mastroberardino 54,55, T Masubuchi 202, P Mättig 225, J Mattmann 109, J Maurer 34, S J Maxfield 100, D A Maximov 137, R Mazini 198, S M Mazza 117,118, L Mazzaferro 170,171, G Mc Goldrick 205, S P Mc Kee 115, A McCarn 115, R L McCarthy 195, T G McCarthy 40, N A McCubbin 167, K W McFarlane 77, J A Mcfayden 104, G Mchedlidze 75, S J McMahon 167, R A McPherson 219, M Medinnis 61, S Meehan 189, S Mehlhase 127, A Mehta 100, K Meier 79, C Meineck 127, B Meirose 60, B R Mellado Garcia 191, F Meloni 19, A Mengarelli 24,25, S Menke 128, E Meoni 209, K M Mercurio 78, S Mergelmeyer 26, P Mermod 68, L Merola 131,132, C Meroni 117, F S Merritt 42, A Messina 168,169, J Metcalfe 33, A S Mete 211, C Meyer 109, C Meyer 151, J-P Meyer 179, J Meyer 135, R P Middleton 167, S Miglioranzi 212,214, L Mijović 26, G Mikenberg 222, M Mikestikova 163, M Mikuž 101, M Milesi 114, A Milic 41, D W Miller 42, C Mills 65, A Milov 222, D A Milstead 192,193, A A Minaenko 166, Y Minami 202, I A Minashvili 90, A I Mincer 138, B Mindur 56, M Mineev 90, Y Ming 223, L M Mir 14, T Mitani 221, J Mitrevski 127, V A Mitsou 217, A Miucci 68, P S Miyagawa 182, J U Mjörnmark 107, T Moa 192,193, K Mochizuki 111, S Mohapatra 52, W Mohr 67, S Molander 192,193, R Moles-Valls 217, K Mönig 61, C Monini 76, J Monk 53, E Monnier 111, J Montejo Berlingen 14, F Monticelli 96, S Monzani 168,169, R W Moore 3, N Morange 145, D Moreno 210, M Moreno Llácer 75, P Morettini 69, M Morgenstern 63, M Morii 78, M Morinaga 202, V Morisbak 147, S Moritz 109, A K Morley 194, G Mornacchi 41, J D Morris 102, S S Mortensen 53, A Morton 74, L Morvaj 130, M Mosidze 72, J Moss 139, K Motohashi 204, R Mount 186, E Mountricha 33, S V Mouraviev 123, E J W Moyse 112, S Muanza 111, R D Mudd 20, F Mueller 128, J Mueller 155, K Mueller 26, R S P Mueller 127, T Mueller 39, D Muenstermann 68, P Mullen 74, G A Mullier 19, Y Munwes 200, J A Murillo Quijada 20, W J Murray 167,220, H Musheghyan 75, E Musto 199, A G Myagkov 166, M Myska 164, O Nackenhorst 75, J Nadal 75, K Nagai 148, R Nagai 204, Y Nagai 111, K Nagano 91, A Nagarkar 139, Y Nagasaka 82, K Nagata 208, M Nagel 128, E Nagy 111, A M Nairz 41, Y Nakahama 41, K Nakamura 91, T Nakamura 202, I Nakano 140, H Namasivayam 60, R F Naranjo Garcia 61, R Narayan 42, T Naumann 61, G Navarro 210, R Nayyar 9, H A Neal 115, P Yu Nechaeva 123, T J Neep 110, P D Nef 186, A Negri 149,150, M Negrini 24, S Nektarijevic 134, C Nellist 145, A Nelson 211, S Nemecek 163, P Nemethy 138, A A Nepomuceno 29, M Nessi 41, M S Neubauer 215, M Neumann 225, R M Neves 138, P Nevski 33, P R Newman 20, D H Nguyen 8, R B Nickerson 148, R Nicolaidou 179, B Nicquevert 41, J Nielsen 180, N Nikiforou 52, A Nikiforov 18, V Nikolaenko 166, I Nikolic-Audit 106, K Nikolopoulos 20, J K Nilsen 147, P Nilsson 33, Y Ninomiya 202, A Nisati 168, R Nisius 128, T Nobe 204, M Nomachi 146, I Nomidis 40, T Nooney 102, S Norberg 141, M Nordberg 41, O Novgorodova 63, S Nowak 128, M Nozaki 91, L Nozka 143, K Ntekas 12, G Nunes Hanninger 114, T Nunnemann 127, E Nurse 104, F Nuti 114, B J O’Brien 65, F O’grady 9, D C O’Neil 185, V O’Shea 74, F G Oakham 40, H Oberlack 128, T Obermann 26, J Ocariz 106, A Ochi 92, I Ochoa 104, J P Ochoa-Ricoux 43, S Oda 95, S Odaka 91, H Ogren 86, A Oh 110, S H Oh 64, C C Ohm 17, H Ohman 216, H Oide 41, W Okamura 146, H Okawa 208, Y Okumura 42, T Okuyama 202, A Olariu 34, S A Olivares Pino 65, D Oliveira Damazio 33, E Oliver Garcia 217, A Olszewski 58, J Olszowska 58, A Onofre 156,160, P U E Onyisi 42, C J Oram 206, M J Oreglia 42, Y Oren 200, D Orestano 172,173, N Orlando 201, C Oropeza Barrera 74, R S Orr 205, B Osculati 69,70, R Ospanov 110, G Otero y Garzon 38, H Otono 95, M Ouchrif 177, E A Ouellette 219, F Ould-Saada 147, A Ouraou 179, K P Oussoren 135, Q Ouyang 45, A Ovcharova 17, M Owen 74, R E Owen 20, V E Ozcan 21, N Ozturk 10, K Pachal 185, A Pacheco Pages 14, C Padilla Aranda 14, M Pagáčová 67, S Pagan Griso 17, E Paganis 182, C Pahl 128, F Paige 33, P Pais 112, K Pajchel 147, G Palacino 207, S Palestini 41, M Palka 57, D Pallin 51, A Palma 156,157, Y B Pan 223, E Panagiotopoulou 12, C E Pandini 106, J G Panduro Vazquez 103, P Pani 192,193, S Panitkin 33, D Pantea 34, L Paolozzi 68, Th D Papadopoulou 12, K Papageorgiou 201, A Paramonov 8, D Paredes Hernandez 201, M A Parker 39, K A Parker 182, F Parodi 69,70, J A Parsons 52, U Parzefall 67, E Pasqualucci 168, S Passaggio 69, F Pastore 172,173, Fr Pastore 103, G Pásztor 40, S Pataraia 225, N D Patel 197, J R Pater 110, T Pauly 41, J Pearce 219, B Pearson 141, L E Pedersen 53, M Pedersen 147, S Pedraza Lopez 217, R Pedro 156,157, S V Peleganchuk 137, D Pelikan 216, H Peng 46, B Penning 42, J Penwell 86, D V Perepelitsa 33, E Perez Codina 206, M T Pérez García-Estañ 217, L Perini 117,118, H Pernegger 41, S Perrella 131,132, R Peschke 61, V D Peshekhonov 90, K Peters 41, R F Y Peters 110, B A Petersen 41, T C Petersen 53, E Petit 61, A Petridis 192,193, C Petridou 201, E Petrolo 168, F Petrucci 172,173, N E Pettersson 204, R Pezoa 44, P W Phillips 167, G Piacquadio 186, E Pianori 220, A Picazio 68, E Piccaro 102, M Piccinini 24,25, M A Pickering 148, R Piegaia 38, D T Pignotti 139, J E Pilcher 42, A D Pilkington 110, J Pina 156,157,159, M Pinamonti 212,214, J L Pinfold 3, A Pingel 53, B Pinto 156, S Pires 106, M Pitt 222, C Pizio 117,118, L Plazak 187, M-A Pleier 33, V Pleskot 165, E Plotnikova 90, P Plucinski 192,193, D Pluth 89, R Poettgen 192,193, L Poggioli 145, D Pohl 26, G Polesello 149, A Poley 61, A Policicchio 54,55, R Polifka 205, A Polini 24, C S Pollard 74, V Polychronakos 33, K Pommès 41, L Pontecorvo 168, B G Pope 116, G A Popeneciu 35, D S Popovic 15, A Poppleton 41, S Pospisil 164, K Potamianos 17, I N Potrap 90, C J Potter 196, C T Potter 144, G Poulard 41, J Poveda 41, V Pozdnyakov 90, P Pralavorio 111, A Pranko 17, S Prasad 41, S Prell 89, D Price 110, L E Price 8, M Primavera 98, S Prince 113, M Proissl 65, K Prokofiev 85, F Prokoshin 44, E Protopapadaki 179, S Protopopescu 33, J Proudfoot 8, M Przybycien 56, E Ptacek 144, D Puddu 172,173, E Pueschel 112, D Puldon 195, M Purohit 33, P Puzo 145, J Qian 115, G Qin 74, Y Qin 110, A Quadt 75, D R Quarrie 17, W B Quayle 212,213, M Queitsch-Maitland 110, D Quilty 74, S Raddum 147, V Radeka 33, V Radescu 61, S K Radhakrishnan 195, P Radloff 144, P Rados 114, F Ragusa 117,118, G Rahal 228, S Rajagopalan 33, M Rammensee 41, C Rangel-Smith 216, F Rauscher 127, S Rave 109, T Ravenscroft 74, M Raymond 41, A L Read 147, N P Readioff 100, D M Rebuzzi 149,150, A Redelbach 224, G Redlinger 33, R Reece 180, K Reeves 60, L Rehnisch 18, H Reisin 38, M Relich 211, C Rembser 41, H Ren 45, A Renaud 145, M Rescigno 168, S Resconi 117, O L Rezanova 137, P Reznicek 165, R Rezvani 122, R Richter 128, S Richter 104, E Richter-Was 57, O Ricken 26, M Ridel 106, P Rieck 18, C J Riegel 225, J Rieger 75, M Rijssenbeek 195, A Rimoldi 149,150, L Rinaldi 24, B Ristić 68, E Ritsch 41, I Riu 14, F Rizatdinova 142, E Rizvi 102, S H Robertson 113, A Robichaud-Veronneau 113, D Robinson 39, J E M Robinson 110, A Robson 74, C Roda 153,154, S Roe 41, O Røhne 147, S Rolli 209, A Romaniouk 125, M Romano 24,25, S M Romano Saez 51, E Romero Adam 217, N Rompotis 181, M Ronzani 67, L Roos 106, E Ros 217, S Rosati 168, K Rosbach 67, P Rose 180, P L Rosendahl 16, O Rosenthal 184, V Rossetti 192,193, E Rossi 131,132, L P Rossi 69, R Rosten 181, M Rotaru 34, I Roth 222, J Rothberg 181, D Rousseau 145, C R Royon 179, A Rozanov 111, Y Rozen 199, X Ruan 191, F Rubbo 186, I Rubinskiy 61, V I Rud 126, C Rudolph 63, M S Rudolph 205, F Rühr 67, A Ruiz-Martinez 41, Z Rurikova 67, N A Rusakovich 90, A Ruschke 127, H L Russell 181, J P Rutherfoord 9, N Ruthmann 67, Y F Ryabov 152, M Rybar 215, G Rybkin 145, N C Ryder 148, A F Saavedra 197, G Sabato 135, S Sacerdoti 38, A Saddique 3, H F-W Sadrozinski 180, R Sadykov 90, F Safai Tehrani 168, M Saimpert 179, H Sakamoto 202, Y Sakurai 221, G Salamanna 172,173, A Salamon 170, M Saleem 141, D Salek 135, P H Sales De Bruin 181, D Salihagic 128, A Salnikov 186, J Salt 217, D Salvatore 54,55, F Salvatore 196, A Salvucci 134, A Salzburger 41, D Sampsonidis 201, A Sanchez 131,132, J Sánchez 217, V Sanchez Martinez 217, H Sandaker 147, R L Sandbach 102, H G Sander 109, M P Sanders 127, M Sandhoff 225, C Sandoval 210, R Sandstroem 128, D P C Sankey 167, M Sannino 69,70, A Sansoni 66, C Santoni 51, R Santonico 170,171, H Santos 156, I Santoyo Castillo 196, K Sapp 155, A Sapronov 90, J G Saraiva 156,159, B Sarrazin 26, O Sasaki 91, Y Sasaki 202, K Sato 208, G Sauvage 7, E Sauvan 7, G Savage 103, P Savard 205, C Sawyer 167, L Sawyer 105, J Saxon 42, C Sbarra 24, A Sbrizzi 24,25, T Scanlon 104, D A Scannicchio 211, M Scarcella 197, V Scarfone 54,55, J Schaarschmidt 222, P Schacht 128, D Schaefer 41, R Schaefer 61, J Schaeffer 109, S Schaepe 26, S Schaetzel 80, U Schäfer 109, A C Schaffer 145, D Schaile 127, R D Schamberger 195, V Scharf 79, V A Schegelsky 152, D Scheirich 165, M Schernau 211, C Schiavi 69,70, C Schillo 67, M Schioppa 54,55, S Schlenker 41, E Schmidt 67, K Schmieden 41, C Schmitt 109, S Schmitt 80, S Schmitt 61, B Schneider 206, Y J Schnellbach 100, U Schnoor 63, L Schoeffel 179, A Schoening 80, B D Schoenrock 116, E Schopf 26, A L S Schorlemmer 75, M Schott 109, D Schouten 206, J Schovancova 10, S Schramm 68, M Schreyer 224, C Schroeder 109, N Schuh 109, M J Schultens 26, H-C Schultz-Coulon 79, H Schulz 18, M Schumacher 67, B A Schumm 180, Ph Schune 179, C Schwanenberger 110, A Schwartzman 186, T A Schwarz 115, Ph Schwegler 128, H Schweiger 110, Ph Schwemling 179, R Schwienhorst 116, J Schwindling 179, T Schwindt 26, F G Sciacca 19, E Scifo 145, G Sciolla 28, F Scuri 153,154, F Scutti 26, J Searcy 115, G Sedov 61, E Sedykh 152, P Seema 26, S C Seidel 133, A Seiden 180, F Seifert 164, J M Seixas 29, G Sekhniaidze 131, K Sekhon 115, S J Sekula 59, D M Seliverstov 152, N Semprini-Cesari 24,25, C Serfon 41, L Serin 145, L Serkin 212,213, T Serre 111, M Sessa 172,173, R Seuster 206, H Severini 141, T Sfiligoj 101, F Sforza 41, A Sfyrla 41, E Shabalina 75, M Shamim 144, L Y Shan 45, R Shang 215, J T Shank 27, M Shapiro 17, P B Shatalov 124, K Shaw 212,213, S M Shaw 110, A Shcherbakova 192,193, C Y Shehu 196, P Sherwood 104, L Shi 198, S Shimizu 92, C O Shimmin 211, M Shimojima 129, M Shiyakova 90, A Shmeleva 123, D Shoaleh Saadi 122, M J Shochet 42, S Shojaii 117,118, S Shrestha 139, E Shulga 125, M A Shupe 9, S Shushkevich 61, P Sicho 163, O Sidiropoulou 224, D Sidorov 142, A Sidoti 24,25, F Siegert 63, Dj Sijacki 15, J Silva 156,159, Y Silver 200, S B Silverstein 192, V Simak 164, O Simard 7, Lj Simic 15, S Simion 145, E Simioni 109, B Simmons 104, D Simon 51, R Simoniello 117,118, P Sinervo 205, N B Sinev 144, G Siragusa 224, A N Sisakyan 90, S Yu Sivoklokov 126, J Sjölin 192,193, T B Sjursen 16, M B Skinner 97, H P Skottowe 78, P Skubic 141, M Slater 20, T Slavicek 164, M Slawinska 135, K Sliwa 209, V Smakhtin 222, B H Smart 65, L Smestad 16, S Yu Smirnov 125, Y Smirnov 125, L N Smirnova 126, O Smirnova 107, M N K Smith 52, R W Smith 52, M Smizanska 97, K Smolek 164, A A Snesarev 123, G Snidero 102, S Snyder 33, R Sobie 219, F Socher 63, A Soffer 200, D A Soh 198, C A Solans 41, M Solar 164, J Solc 164, E Yu Soldatov 125, U Soldevila 217, A A Solodkov 166, A Soloshenko 90, O V Solovyanov 166, V Solovyev 152, P Sommer 67, H Y Song 46, N Soni 1, A Sood 17, A Sopczak 164, B Sopko 164, V Sopko 164, V Sorin 14, D Sosa 80, M Sosebee 10, C L Sotiropoulou 153,154, R Soualah 212,214, A M Soukharev 137, D South 61, B C Sowden 103, S Spagnolo 98,99, M Spalla 153,154, F Spanò 103, W R Spearman 78, F Spettel 128, R Spighi 24, G Spigo 41, L A Spiller 114, M Spousta 165, T Spreitzer 205, R D St Denis 74, S Staerz 63, J Stahlman 151, R Stamen 79, S Stamm 18, E Stanecka 58, C Stanescu 172, M Stanescu-Bellu 61, M M Stanitzki 61, S Stapnes 147, E A Starchenko 166, J Stark 76, P Staroba 163, P Starovoitov 61, R Staszewski 58, P Stavina 187, P Steinberg 33, B Stelzer 185, H J Stelzer 41, O Stelzer-Chilton 206, H Stenzel 73, S Stern 128, G A Stewart 74, J A Stillings 26, M C Stockton 113, M Stoebe 113, G Stoicea 34, P Stolte 75, S Stonjek 128, A R Stradling 10, A Straessner 63, M E Stramaglia 19, J Strandberg 194, S Strandberg 192,193, A Strandlie 147, E Strauss 186, M Strauss 141, P Strizenec 188, R Ströhmer 224, D M Strom 144, R Stroynowski 59, A Strubig 134, S A Stucci 19, B Stugu 16, N A Styles 61, D Su 186, J Su 155, R Subramaniam 105, A Succurro 14, Y Sugaya 146, C Suhr 136, M Suk 164, V V Sulin 123, S Sultansoy 6, T Sumida 93, S Sun 78, X Sun 45, J E Sundermann 67, K Suruliz 196, G Susinno 54,55, M R Sutton 196, S Suzuki 91, Y Suzuki 91, M Svatos 163, S Swedish 218, M Swiatlowski 186, I Sykora 187, T Sykora 165, D Ta 116, C Taccini 172,173, K Tackmann 61, J Taenzer 205, A Taffard 211, R Tafirout 206, N Taiblum 200, H Takai 33, R Takashima 94, H Takeda 92, T Takeshita 183, Y Takubo 91, M Talby 111, A A Talyshev 137, J Y C Tam 224, K G Tan 114, J Tanaka 202, R Tanaka 145, S Tanaka 91, B B Tannenwald 139, N Tannoury 26, S Tapprogge 109, S Tarem 199, F Tarrade 40, G F Tartarelli 117, P Tas 165, M Tasevsky 163, T Tashiro 93, E Tassi 54,55, A Tavares Delgado 156,157, Y Tayalati 177, F E Taylor 121, G N Taylor 114, W Taylor 207, F A Teischinger 41, M Teixeira Dias Castanheira 102, P Teixeira-Dias 103, K K Temming 67, H Ten Kate 41, P K Teng 198, J J Teoh 146, F Tepel 225, S Terada 91, K Terashi 202, J Terron 108, S Terzo 128, M Testa 66, R J Teuscher 205, J Therhaag 26, T Theveneaux-Pelzer 51, J P Thomas 20, J Thomas-Wilsker 103, E N Thompson 52, P D Thompson 20, R J Thompson 110, A S Thompson 74, L A Thomsen 226, E Thomson 151, M Thomson 39, R P Thun 115, M J Tibbetts 17, R E Ticse Torres 111, V O Tikhomirov 123, Yu A Tikhonov 137, S Timoshenko 125, E Tiouchichine 111, P Tipton 226, S Tisserant 111, T Todorov 7, S Todorova-Nova 165, J Tojo 95, S Tokár 187, K Tokushuku 91, K Tollefson 116, E Tolley 78, L Tomlinson 110, M Tomoto 130, L Tompkins 186, K Toms 133, E Torrence 144, H Torres 185, E Torró Pastor 217, J Toth 111, F Touchard 111, D R Tovey 182, T Trefzger 224, L Tremblet 41, A Tricoli 41, I M Trigger 206, S Trincaz-Duvoid 106, M F Tripiana 14, W Trischuk 205, B Trocmé 76, C Troncon 117, M Trottier-McDonald 17, M Trovatelli 219, P True 116, L Truong 212,214, M Trzebinski 58, A Trzupek 58, C Tsarouchas 41, J C-L Tseng 148, P V Tsiareshka 119, D Tsionou 201, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 14, V Tsiskaridze 67, E G Tskhadadze 71, I I Tsukerman 124, V Tsulaia 17, S Tsuno 91, D Tsybychev 195, A Tudorache 34, V Tudorache 34, A N Tuna 151, S A Tupputi 24,25, S Turchikhin 126, D Turecek 164, R Turra 117,118, A J Turvey 59, P M Tuts 52, A Tykhonov 68, M Tylmad 192,193, M Tyndel 167, I Ueda 202, R Ueno 40, M Ughetto 192,193, M Ugland 16, M Uhlenbrock 26, F Ukegawa 208, G Unal 41, A Undrus 33, G Unel 211, F C Ungaro 67, Y Unno 91, C Unverdorben 127, J Urban 188, P Urquijo 114, P Urrejola 109, G Usai 10, A Usanova 87, L Vacavant 111, V Vacek 164, B Vachon 113, C Valderanis 109, N Valencic 135, S Valentinetti 24,25, A Valero 217, L Valery 14, S Valkar 165, E Valladolid Gallego 217, S Vallecorsa 68, J A Valls Ferrer 217, W Van Den Wollenberg 135, P C Van Der Deijl 135, R van der Geer 135, H van der Graaf 135, R Van Der Leeuw 135, N van Eldik 199, P van Gemmeren 8, J Van Nieuwkoop 185, I van Vulpen 135, M C van Woerden 41, M Vanadia 168,169, W Vandelli 41, R Vanguri 151, A Vaniachine 8, F Vannucci 106, G Vardanyan 227, R Vari 168, E W Varnes 9, T Varol 59, D Varouchas 106, A Vartapetian 10, K E Varvell 197, V I Vassilakopoulos 77, F Vazeille 51, T Vazquez Schroeder 113, J Veatch 9, L M Veloce 205, F Veloso 156,158, T Velz 26, S Veneziano 168, A Ventura 98,99, D Ventura 112, M Venturi 219, N Venturi 205, A Venturini 28, V Vercesi 149, M Verducci 168,169, W Verkerke 135, J C Vermeulen 135, A Vest 63, M C Vetterli 185, O Viazlo 107, I Vichou 215, T Vickey 182, O E Vickey Boeriu 182, G H A Viehhauser 148, S Viel 17, R Vigne 87, M Villa 24,25, M Villaplana Perez 117,118, E Vilucchi 66, M G Vincter 40, V B Vinogradov 90, I Vivarelli 196, F Vives Vaque 3, S Vlachos 12, D Vladoiu 127, M Vlasak 164, M Vogel 43, P Vokac 164, G Volpi 153,154, M Volpi 114, H von der Schmitt 128, H von Radziewski 67, E von Toerne 26, V Vorobel 165, K Vorobev 125, M Vos 217, R Voss 41, J H Vossebeld 100, N Vranjes 15, M Vranjes Milosavljevic 15, V Vrba 163, M Vreeswijk 135, R Vuillermet 41, I Vukotic 42, Z Vykydal 164, P Wagner 26, W Wagner 225, H Wahlberg 96, S Wahrmund 63, J Wakabayashi 130, J Walder 97, R Walker 127, W Walkowiak 184, C Wang 198, F Wang 223, H Wang 17, H Wang 59, J Wang 61, J Wang 45, K Wang 113, R Wang 8, S M Wang 198, T Wang 26, X Wang 226, C Wanotayaroj 144, A Warburton 113, C P Ward 39, D R Wardrope 104, M Warsinsky 67, A Washbrook 65, C Wasicki 61, P M Watkins 20, A T Watson 20, I J Watson 197, M F Watson 20, G Watts 181, S Watts 110, B M Waugh 104, S Webb 110, M S Weber 19, S W Weber 224, J S Webster 42, A R Weidberg 148, B Weinert 86, J Weingarten 75, C Weiser 67, H Weits 135, P S Wells 41, T Wenaus 33, T Wengler 41, S Wenig 41, N Wermes 26, M Werner 67, P Werner 41, M Wessels 79, J Wetter 209, K Whalen 144, A M Wharton 97, A White 10, M J White 1, R White 44, S White 153,154, D Whiteson 211, F J Wickens 167, W Wiedenmann 223, M Wielers 167, P Wienemann 26, C Wiglesworth 53, L A M Wiik-Fuchs 26, A Wildauer 128, H G Wilkens 41, H H Williams 151, S Williams 135, C Willis 116, S Willocq 112, A Wilson 115, J A Wilson 20, I Wingerter-Seez 7, F Winklmeier 144, B T Winter 26, M Wittgen 186, J Wittkowski 127, S J Wollstadt 109, M W Wolter 58, H Wolters 156,158, B K Wosiek 58, J Wotschack 41, M J Woudstra 110, K W Wozniak 58, M Wu 76, M Wu 42, S L Wu 223, X Wu 68, Y Wu 115, T R Wyatt 110, B M Wynne 65, S Xella 53, D Xu 45, L Xu 46, B Yabsley 197, S Yacoob 190, R Yakabe 92, M Yamada 91, Y Yamaguchi 146, A Yamamoto 91, S Yamamoto 202, T Yamanaka 202, K Yamauchi 130, Y Yamazaki 92, Z Yan 27, H Yang 49, H Yang 223, Y Yang 198, W-M Yao 17, Y Yasu 91, E Yatsenko 7, K H Yau Wong 26, J Ye 59, S Ye 33, I Yeletskikh 90, A L Yen 78, E Yildirim 61, K Yorita 221, R Yoshida 8, K Yoshihara 151, C Young 186, C J S Young 41, S Youssef 27, D R Yu 17, J Yu 10, J M Yu 115, J Yu 142, L Yuan 92, A Yurkewicz 136, I Yusuff 39, B Zabinski 58, R Zaidan 88, A M Zaitsev 166, J Zalieckas 16, A Zaman 195, S Zambito 78, L Zanello 168,169, D Zanzi 114, C Zeitnitz 225, M Zeman 164, A Zemla 56, K Zengel 28, O Zenin 166, T Ženiš 187, D Zerwas 145, D Zhang 115, F Zhang 223, H Zhang 47, J Zhang 8, L Zhang 67, R Zhang 46, X Zhang 48, Z Zhang 145, X Zhao 59, Y Zhao 48,145, Z Zhao 46, A Zhemchugov 90, J Zhong 148, B Zhou 115, C Zhou 64, L Zhou 52, L Zhou 59, N Zhou 211, C G Zhu 48, H Zhu 45, J Zhu 115, Y Zhu 46, X Zhuang 45, K Zhukov 123, A Zibell 224, D Zieminska 86, N I Zimine 90, C Zimmermann 109, S Zimmermann 67, Z Zinonos 75, M Zinser 109, M Ziolkowski 184, L Živković 15, G Zobernig 223, A Zoccoli 24,25, M zur Nedden 18, G Zurzolo 131,132, L Zwalinski 41; ATLAS Collaboration41
PMCID: PMC4710098  PMID: 26770066

Abstract

The decays Bc+J/ψDs+ and Bc+J/ψDs+ are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb-1 of pp collisions collected at centre-of-mass energies s=7 TeV and 8 TeV, respectively. Signal candidates are identified through J/ψμ+μ- and Ds()+ϕπ+(γ/π0) decays. With a two-dimensional likelihood fit involving the Bc+ reconstructed invariant mass and an angle between the μ+ and Ds+ candidate momenta in the muon pair rest frame, the yields of Bc+J/ψDs+ and Bc+J/ψDs+, and the transverse polarisation fraction in Bc+J/ψDs+ decay are measured. The transverse polarisation fraction is determined to be Γ±±(Bc+J/ψDs+)/Γ(Bc+J/ψDs+)=0.38±0.23±0.07, and the derived ratio of the branching fractions of the two modes is BBc+J/ψDs+/BBc+J/ψDs+=2.8-0.8+1.2±0.3, where the first error is statistical and the second is systematic. Finally, a sample of Bc+J/ψπ+ decays is used to derive the ratios of branching fractions BBc+J/ψDs+/BBc+J/ψπ+=3.8±1.1±0.4±0.2 and BBc+J/ψDs+/BBc+J/ψπ+=10.4±3.1±1.5±0.6, where the third error corresponds to the uncertainty of the branching fraction of Ds+ϕ(K+K-)π+ decay. The available theoretical predictions are generally consistent with the measurement.

Introduction

The Bc+ meson1 is the only known weakly decaying particle consisting of two heavy quarks. The ground b¯c state was first observed by CDF [1] via its semileptonic decay Bc+J/ψ+ν. An excited b¯c state has been observed recently by ATLAS [2] using the Bc+ decay mode Bc+J/ψπ+. The presence of two heavy quarks, each of which can decay weakly, affects theoretical calculations of the decay properties of the Bc+ meson. In the case of b¯c¯cs¯ processes, decays to charmonium and a Ds+ or a Ds+ meson are predicted to occur via colour-suppressed and colour-favoured spectator diagrams as well as via the weak annihilation diagram (see Fig. 1). The latter, in contrast to decays of other B mesons, is not Cabibbo-suppressed and can contribute significantly to the decay amplitudes. The decay properties are addressed in various theoretical calculations [39] and can also be compared to the analogous properties in the lighter B meson systems such as Bd0D-Ds()+ or B+D¯0Ds()+. The decays Bc+J/ψDs+ and Bc+J/ψDs+, which have been observed recently by the LHCb experiment [10], provide a means to test these theoretical predictions.

Fig. 1.

Fig. 1

Feynman diagrams for Bc+J/ψDs()+ decays: a colour-favoured spectator, b colour-suppressed spectator, and c annihilation topology

This paper presents a measurement of the branching fractions of Bc+J/ψDs+ and Bc+J/ψDs+ decays, normalised to that of Bc+J/ψπ+ decay, and polarisation in Bc+J/ψDs+ decay performed with the ATLAS detector [11]. The Ds+ meson is reconstructed via the Ds+ϕπ+ decay with the ϕ meson decaying into a pair of charged kaons. The Ds+ meson decays into a Ds+ meson and a soft photon or π0. Detecting such soft neutral particles is very challenging, thus no attempt to reconstruct them is made in the analysis. The J/ψ meson is reconstructed via its decay into a muon pair.

The measurement presented in this paper allows an independent verification of the results of Ref. [10] with comparable statistical and systematic uncertainties. The following ratios are measured: RDs+/π+=BBc+J/ψDs+/BBc+J/ψπ+, RDs+/π+=BBc+J/ψDs+/BBc+J/ψπ+, and RDs+/Ds+=BBc+J/ψDs+/BBc+J/ψDs+, where BBc+X denotes the branching fraction of the Bc+X decay. The decay Bc+J/ψDs+ is a transition of a pseudoscalar meson into a pair of vector states and is thus described by the three helicity amplitudes, A++, A--, and A00, where the subscripts correspond to the helicities of J/ψ and Ds+ mesons. The contribution of the A++ and A-- amplitudes, referred to as the A±± component, corresponds to the J/ψ and Ds+ transverse polarisation. The fraction of transverse polarisation, Γ±±/Γ=Γ±±(Bc+J/ψDs+)/Γ(Bc+J/ψDs+), is also measured. From a naive prediction by spin counting, one would expect this fraction to be 2 / 3, while calculations [8, 9] predict values of 0.41–0.48.

This analysis is based on a combined sample of pp collision data collected by the ATLAS experiment at the LHC at centre-of-mass energies s=7 TeV and 8 TeV corresponding to integrated luminosities of 4.9 and 20.6 fb-1, respectively.

The ATLAS detector, trigger selection and Monte Carlo samples

ATLAS is a general-purpose detector consisting of several subsystems including the inner detector (ID), calorimeters and the muon spectrometer (MS). Muon reconstruction makes use of both the ID and the MS. The ID comprises three types of detectors: a silicon pixel detector, a silicon microstrip semiconductor tracker (SCT) and a transition radiation tracker. The ID provides a pseudorapidity2 coverage up to |η|=2.5. Muons pass through the calorimeters and reach the MS if their transverse momentum, pT, is above approximately 3 GeV.3 Muon candidates are formed either from a stand-alone MS track matched to an ID track or, in case the MS stand-alone track is not reconstructed, from an ID track extrapolated to the MS and matched to track segments in the MS. Candidates of the latter type are referred to as segment-tagged muons while the former are called combined muons. Muon track parameters are taken from the ID measurement alone in this analysis, since the precision of the measured track parameters for muons in the pT range of interest is dominated by the ID track reconstruction.

The ATLAS trigger system consists of a hardware-based Level-1 trigger and a two-stage high level trigger (HLT). At Level-1, the muon trigger uses dedicated MS chambers to search for patterns of hits satisfying different pT thresholds. The region-of-interest around these hit patterns then serves as a seed for the HLT muon reconstruction, in which dedicated algorithms are used to incorporate information from both the MS and the ID, achieving a position and momentum resolution close to that provided by the offline muon reconstruction. Muons are efficiently triggered in the pseudorapidity range |η|<2.4.

Triggers based on single-muon, dimuon, and three-muon signatures are used to select J/ψμ+μ- decays for the analysis. The third muon can be produced in the Bc+ signal events in semileptonic decays of the two other heavy-flavour hadrons. The majority of events are collected by dimuon triggers requiring a vertex of two oppositely charged muons with an invariant mass between 2.5 and 4.3 GeV. During the data taking, the pT threshold for muons in these triggers was either 4 or 6 GeV. Single-muon triggers additionally increase the acceptance for asymmetric J/ψ decays where one muon has pT<4 GeV. Finally, three-muon triggers had a pT threshold of 4 GeV, thus enhancing the acceptance during the periods of high luminosity when the pT threshold for at least one muon in the dimuon triggers was 6 GeV.

Monte Carlo (MC) simulation is used for the event selection criteria optimisation and the calculation of the acceptance for the considered Bc+ decay modes. The MC samples of the Bc+ decays were generated with Pythia 6.4 [12] along with a dedicated extension for the Bc+ production based on calculations from Refs. [1316]. The decays of Bc+ are then simulated with EvtGen [17]. The generated events were passed through a full simulation of the detector using the ATLAS simulation framework [18] based on Geant 4 [19, 20] and processed with the same reconstruction algorithms as were used for the data.

Reconstruction and event selection

The J/ψ candidates are reconstructed from pairs of oppositely charged muons. At least one of the two muons is required to be a combined muon. Each pair is fitted to a common vertex [21]. The quality of the vertex fit must satisfy χ2/ndf<15, where the ndf stands for the number of degrees of freedom. The candidates in the invariant mass window 2800MeV<m(μ+μ-)<3400 MeV are retained.

For the Ds+ϕ(K+K-)π+ reconstruction, tracks of particles with opposite charges are assigned kaon mass hypotheses and combined in pairs to form ϕ candidates. An additional track is assigned a pion mass and combined with the ϕ candidate to form a Ds+ candidate. To ensure good momentum resolution, all three tracks are required to have at least two hits in the silicon pixel detector and at least six hits in the SCT. Only three-track combinations successfully fitted to a common vertex with χ2/ndf<8 are kept. The ϕ candidate invariant mass, m(K+K-), and the Ds+ candidate invariant mass, m(K+K-π+), are calculated using the track momenta refitted to the common vertex. Only candidates with m(K+K-) within ±7 MeV around the ϕ mass, mϕ=1019.461 MeV [22], and with 1930MeV<m(K+K-π+)<2010 MeV are retained.

The Bc+J/ψDs+ candidates are built by combining the five tracks of the J/ψ and Ds+ candidates. The J/ψ meson decays instantly at the same point as the Bc+ does (secondary vertex) while the Ds+ lives long enough to form a displaced tertiary vertex. Therefore the five-track combinations are refitted assuming this cascade topology [21]. The invariant mass of the muon pair is constrained to the J/ψ mass, mJ/ψ=3096.916 MeV [22]. The three Ds+ daughter tracks are constrained to a tertiary vertex and their invariant mass is fixed to the mass of Ds+, mDs+=1968.30 MeV [22]. The combined momentum of the refitted Ds+ decay tracks is constrained to point to the dimuon vertex. The quality of the cascade fit must satisfy χ2/ndf<3.

The Bc+ meson is reconstructed within the kinematic range pT(Bc+)>15 GeV and |η(Bc+)|<2.0, where the detector acceptance is high and depends weakly on pT(Bc+) and η(Bc+).

The refitted tracks of the Ds+ daughter hadrons are required to have |η|<2.5 and pT>1 GeV, while the muons must have |η|<2.3 and pT>3 GeV. To further discriminate the sample of Ds+ candidates from a large combinatorial background, the following requirements are applied:

  • cosθ(π)<0.8, where θ(π) is the angle between the pion momentum in the K+K-π+ rest frame and the K+K-π+ combined momentum in the laboratory frame;

  • |cos3θ(K)|>0.15, where θ(K) is the angle between one of the kaons and the pion in the K+K- rest frame. The decay of the pseudoscalar Ds+ meson to the ϕ (vector) plus π (pseudoscalar) final state results in an alignment of the spin of the ϕ meson perpendicularly to the direction of motion of the ϕ relative to Ds+. Consequently, the distribution of cosθ(K) follows a cos2θ(K) shape, implying a uniform distribution for cos3θ(K). In contrast, the cosθ(K) distribution of the combinatorial background is uniform and its cos3θ(K) distribution peaks at zero. The cut suppresses the background significantly while reducing the signal by 15 %.

The Bc+ candidate is required to point back to a primary vertex such that d0PV(Bc+)<0.1 mm and z0PV(Bc+)sinθ(Bc+)<0.5 mm, where d0PV and z0PV are respectively the transverse and longitudinal impact parameters with respect to the primary vertex. All primary vertices in the event are considered. If there is more than one primary vertex satisfying these requirements (0.5 % events both in data and MC simulation), the one with the largest sum of squared transverse momenta of the tracks originating from it is chosen.

The transverse decay length4 of the Bc+ candidate is required to satisfy Lxy(Bc+)>0.1 mm. The transverse decay length of the Ds+ measured from the Bc+ vertex must be Lxy(Ds+)>0.15 mm. In order to remove fake candidates, both Lxy(Bc+) and Lxy(Ds+) are required not to exceed 10 mm.

Taking into account the characteristic hard fragmentation of b-quarks, a requirement pT(Bc+)/pT(trk)>0.1 is applied, where the sum in the denominator is taken over all tracks originating from the primary vertex (tracks of the Bc+ candidate are included in the sum if they are associated with the primary vertex). The requirement reduces a sizeable fraction of combinatorial background while having almost no effect on the signal.

The following angular selection requirements are introduced to further suppress the combinatorial background:

  • cosθ(Ds+)>-0.8, where θ(Ds+) is the angle between the Ds+ candidate momentum in the rest frame of the Bc+ candidate, and the Bc+ candidate line of flight in the laboratory frame. The distribution of cosθ(Ds+) is uniform for the decays of pseudoscalar Bc+ meson before any kinematic selection while it tends to increase for negative values of cosθ(Ds+) for the background.

  • cosθ(π)>-0.8, where θ(π) is the angle between the J/ψ candidate momentum and the pion momentum in the K+K-π+ rest frame. Its distribution is nearly uniform for the signal processes but peaks towards -1 for the background.

Distributions of these two variables after applying all other selection requirements described in this section are shown in Fig. 2. They are shown for the simulated signal samples, as well as for sidebands of the mass spectrum in data, defined as the regions 5640MeV<m(J/ψDs+)<5900 MeV (left sideband) and 6360MeV<m(J/ψDs+)<6760 MeV (right sideband). A dip in the cosθ(π) distribution for the Bc+J/ψDs+ signal is caused by rejection of Bs0J/ψϕ candidates discussed below.

Fig. 2.

Fig. 2

Distributions of a cosθ(Ds+) and b cosθ(π), where θ(Ds+) and θ(π) are two angular variables defined in Sect. 3. The distributions are shown for data sidebands (black dots) and MC simulation of Bc+J/ψDs+ signal (red solid line) and A00 (green dotted line) and A±± (blue dashed line) components of Bc+J/ψDs+ signal. The distributions are obtained after applying all selection criteria except the ones on the plotted variable. The MC distributions are normalised to data

Various possible contributions of partially reconstructed BJ/ψX decays were studied. The only significant one was found from the Bs0J/ψϕ decay process. This contribution arises when the combination of the tracks from a true Bs0J/ψ(μ+μ-)ϕ(K+K-) decay with a fifth random track results in a fake Bc+J/ψ(μ+μ-)Ds+(K+K-π+) candidate. For each reconstructed Bc+ candidate, an additional vertex fit is performed. The two muon tracks and the two kaon tracks are fitted to a common vertex, where the kaon tracks are assumed to be from ϕK+K- and the muon pair is constrained to have the nominal J/ψ mass. The mass of the Bs0 candidate, m(μ+μ-K+K-), is then calculated from the refitted track parameters. Candidates with 5340MeV<m(μ+μ-K+K-)<5400 MeV are rejected. This requirement suppresses the bulk of the Bs0 events while rejecting only 4 % of the signal.

After applying the selection requirements described above, 1547 J/ψDs+ candidates are selected in the mass range 5640–6760 MeV.

Bc+J/ψDs()+ candidate fit

The mass distribution of the selected Bc+J/ψDs()+ candidates is shown in Fig. 3. The peak near the Bc+ mass, mBc+=6275.6 MeV [22], is attributed to the signal of Bc+J/ψDs+ decay while a wider structure between 5900 and 6200 MeV corresponds to Bc+J/ψDs+ with subsequent Ds+Ds+γ or Ds+Ds+π0 decays where the neutral particle is not reconstructed.

Fig. 3.

Fig. 3

The mass distribution for the selected J/ψDs+ candidates. The red solid line represents the projection of the fit to the model described in the text. The contribution of the Bc+J/ψDs+ decay is shown with the magenta long-dashed line; the brown dash-dot and green dotted lines show the Bc+J/ψDs+ A00 and A±± component contributions, respectively; the blue dashed line shows the background model. The uncertainties of the listed fit result values are statistical only

Mass distributions of the J/ψ and Ds+ candidates corresponding to the J/ψDs+ mass region of the observed Bc+J/ψDs()+ signals are shown in Fig. 4. To obtain these plots, the Bc+ candidates are built without the mass constraints in the cascade fit, with the mass of the candidate calculated as m(J/ψDs+)=m(μ+μ-K+K-π+)-m(μ+μ-)+mJ/ψ-m(K+K-π+)+mDs+, where mJ/ψ and mDs+ are the nominal masses of the respective particles. The mass of the Bc+ candidate is required to be 5900MeV<m(J/ψDs+)<6400 MeV while the mass windows for the corresponding intermediate resonances are widened to the plotting ranges. The J/ψ and Ds+ mass distributions are fitted with a sum of an exponential function describing the background and a modified Gaussian function [23, 24] describing the corresponding signal peak. The modified Gaussian function is defined as

Gaussmodexp-x1+11+x/22, 1

where x=|m0-m|/σ with the mean mass m0 and width σ being free parameters. The fitted masses of J/ψ (3095.1±2.4 MeV) and Ds (1969.0±4.1 MeV) agree with their nominal masses, the widths are consistent with those in the simulated samples, and the signal yields are found to be NJ/ψ=568±28 and NDs±=175±36.

Fig. 4.

Fig. 4

Mass distribution of the a J/ψ and b Ds+ candidates after the full Bc+J/ψDs()+ selection (without mass constraints in the cascade fit) in the mass window of the Bc+ candidate 5900MeV<m(J/ψDs+)<6400 MeV. The spectra are fitted with a sum of an exponential and a modified Gaussian function. The uncertainties of the shown J/ψ and Ds+ yields are statistical only

The information about the helicity in Bc+J/ψDs+ decay is encoded both in the mass distribution of the J/ψDs+ system and in the distribution of the helicity angle, θ(μ+), which is defined in the rest frame of the muon pair as the angle between the μ+ and the Ds+ candidate momenta. Thus, a two-dimensional extended unbinned maximum-likelihood fit of the m(J/ψDs+) and |cosθ(μ+)| distributions is performed. The A++ and A-- helicity amplitude contributions are described by the same mass and angular shapes because of the parity symmetry of the J/ψ and Ds+ decays. This is confirmed by the MC simulation. Thus these components are treated together as the A±± component, while the shape of the A00 component is different and is therefore treated separately. A simultaneous fit to the mass and angular distributions significantly improves the sensitivity to the contributions of the helicity amplitudes in Bc+J/ψDs+ decay with respect to a one-dimensional mass fit.

Four two-dimensional probability density functions (PDFs) are defined to describe the Bc+J/ψDs+ signal, the A±± and A00 components of the Bc+J/ψDs+ signal, and the background. The signal PDFs are factorised into mass and angular components. The effect of correlations between their mass and angular shapes is found to be small and is accounted for as a systematic uncertainty.

The mass distribution of the Bc+J/ψDs+ signal is described by a modified Gaussian function. For the Bc+J/ψDs+ signal components, the mass shape templates obtained from the simulation with the kernel estimation technique [25] are used. The branching fractions of Ds+Ds+π0 and Ds+Ds+γ decays for the simulation are set to the world average values [22]. The position of the templates along the mass axis is varied in the fit simultaneously with the position of the Bc+J/ψDs+ signal peak. The background mass shape is described with a two-parameter exponential function, expa·m(J/ψDs+)+b·m(J/ψDs+)2.

To describe the |cosθ(μ+)| shapes, templates from the kernel estimation are used. The templates for the signal angular PDFs are extracted from the simulated samples. Although their shapes are calculable analytically, using the templates allows the fit to account for detector effects. The background angular description is based on the |cosθ(μ+)| shape of the candidates in the sidebands of J/ψDs+ mass spectra. Two templates are produced from the angular distributions of the candidates in the left and right mass sidebands as defined in Sect. 3. The angular PDF for the background is defined as a conditional PDF of |cosθ(μ+)| given the per-candidate m(J/ψDs+). For the candidates in the lower half of the left sideband (5640–5770 MeV), the template from the left sideband is used. Similarly, the template from the right sideband is used for the upper half of the right sideband (6560–6760 MeV). For the candidates in the middle part of the mass spectrum (5770–6560 MeV), a linear interpolation between the two templates is used.

The fit has seven free parameters: the mass of the Bc+ meson, mBc+J/ψDs+; the relative contribution of the A±± component to the total Bc+J/ψDs+ decay rate in the selected sample, f±±; the two parameters of the exponential background; the yields of the two signal modes, NBc+J/ψDs+ and NBc+J/ψDs+, and the background yield. The width of the modified Gaussian function, σBc+J/ψDs+, is fixed to the value obtained from the fit to the simulated signal, σBc+J/ψDs+=9.95 MeV. Leaving this parameter free in the data fit results in the value 7.9±3.0 MeV, consistent with the simulation in the range of statistical uncertainty.

It was checked that the fit procedure provides unbiased values and correct statistical uncertainties for the extracted parameters using pseudo-experiments. The values of the relevant parameters obtained from the fit are given in Table 1. The fitted Bc+ mass agrees with the world average value [22]. The mass and angular projections of the fit on the selected J/ψDs+ candidate dataset are also shown in Figs. 3 and 5a, respectively. In order to illustrate the effect of the angular part of the fit in separating the helicity amplitudes, the |cosθ(μ+)| projection for the subset of candidates with the masses 5950MeV<m(J/ψDs+)<6250 MeV corresponding to the region of the observed Bc+J/ψDs+ signal is shown in Fig. 5b.

Table 1.

Parameters of the Bc+J/ψDs()+ signals obtained with the unbinned extended maximum-likelihood fit. The width parameter of the modified Gaussian function is fixed to the MC value. Only statistical uncertainties are shown. No acceptance corrections are applied to the signal yields

Parameter Value
mBc+J/ψDs+ (MeV) 6279.9±3.5
NBc+J/ψDs+ 36±10
NBc+J/ψDs+ 95±27
f±± 0.37±0.22

Fig. 5.

Fig. 5

The projection of the likelihood fit on the variable |cosθ(μ+)|, where the helicity angle θ(μ+) is the angle between the μ+ and Ds+ candidate momenta in the rest frame of the muon pair from J/ψ decay, for a the full selected J/ψDs+ candidate dataset and b a subset of the candidates in a mass range 5950MeV<m(J/ψDs+)<6250 MeV corresponding to the observed signal of Bc+J/ψDs+ decay. The red solid line represents the full fit projection. The contribution of the Bc+J/ψDs+ decay is shown with the magenta long-dashed line (it is not drawn in b because this contribution vanishes in that mass range); the brown dash-dot and green dotted lines show the Bc+J/ψDs+ A00 and A±± component contributions, respectively; the blue dashed line shows the background model

The statistical significance for the observed Bc+ signal estimated from toy MC studies is 4.9 standard deviations.

Bc+J/ψπ+ candidate reconstruction and fit

Bc+J/ψπ+ candidates are reconstructed by fitting a common vertex of a pion candidate track and the two muons from a J/ψ candidate, selected as described in Sect. 3. For the pion candidate, tracks identified as muons are vetoed in order to suppress the substantial background from Bc+J/ψμ+νμX decays. The invariant mass of the two muons in the vertex fit is constrained to the J/ψ nominal mass. The quality of the fit must satisfy χ2/ndf<3. The following selection requirements applied to the Bc+J/ψπ+ candidates are analogous to those for Bc+J/ψDs+ candidates described in Sect. 3: the candidates must be within the kinematic range pT(Bc+)>15 GeV, |η(Bc+)|<2.0; the refitted values of the transverse momenta and pseudorapidities of the muons are required to satisfy pT(μ±)>3 GeV, |η(μ±)|<2.3; the same requirements on pointing to the primary vertex and the ratio pT(Bc+)/pT(trk) are applied. The refitted pion track kinematics must satisfy pT(π+)>5 GeV and |η(π+)|<2.5. The transverse decay length is required to be Lxy(Bc+)>0.2 mm, and not to exceed 10 mm.

To further suppress combinatorial background, the following selection is applied:

  • cosθ(π)>-0.8, where θ(π) is the angle between the pion momentum in the μ+μ-π+ rest frame and the Bc+ candidate line of flight in laboratory frame. This angular variable behaviour for the signal and the background is the same as that of cosθ(Ds+) used for J/ψDs+ candidates selection.

  • |cosθ(μ+)|<0.8, where θ(μ+) is the angle between the μ+ and π+ momenta in the muon pair rest frame. The signal distribution follows a sin2θ(μ+) shape, while the background is flat.

After applying the above-mentioned requirements, 38542 J/ψπ+ candidates are selected in the mass range 5640–6760 MeV. Figure 6 shows the mass distribution of the selected candidates. An extended unbinned maximum-likelihood fit of the mass spectrum is performed to evaluate the Bc+J/ψπ+ signal yield. The signal contribution is described with the modified Gaussian function while an exponential function is used for the background. The Bc+ mass, mBc+J/ψπ+, the width of the modified Gaussian function, σBc+J/ψπ+, the yields of the signal, NBc+J/ψπ+, and the background, and the slope of the exponential background are free parameters of the fit. The fit results are summarised in Table 2, and the fit projection is also shown in Fig. 6. The extracted Bc+ mass value is consistent with the world average [22], and the signal peak width agrees with the simulation (37.4 MeV).

Fig. 6.

Fig. 6

The mass distribution for the selected Bc+J/ψπ+ candidates. The red solid line represents the result of the fit to the model described in the text. The brown dotted and blue dashed lines show the signal and background component projections, respectively. The uncertainty of the shown signal yield is statistical only

Table 2.

Signal parameters of the J/ψπ+ mass distribution obtained with the unbinned extended maximum-likelihood fit. Only statistical uncertainties are shown. No acceptance corrections are applied to the signal yields

Parameter Value
mBc+J/ψπ+ (MeV) 6279.9±3.9
σBc+J/ψπ+ (MeV) 33.9±4.2
NBc+J/ψπ+ 1140±120

Branching fractions and polarisation measurement

The ratios of the branching fractions RDs+/π+ and RDs+/π+ are calculated as

RDs()+/π+=BBc+J/ψDs()+BBc+J/ψπ+=1BDs+ϕ(K+K-)π+×ABc+J/ψπ+ABc+J/ψDs()+×NBc+J/ψDs()+NBc+J/ψπ+, 2

where ABc+X and NBc+X are the total acceptance and the yield of the corresponding mode. For BDs+ϕ(K+K-)π+, the CLEO measurement [26] of the partial Ds+K+K-π+ branching fractions, with a kaon-pair mass within various intervals around the nominal ϕ meson mass, is used. An interpolation between the partial branching fractions, measured for ±5 and ±10 MeV intervals, using a relativistic Breit–Wigner shape of the resonance yields the value (1.85±0.11)% for the ±7 MeV interval which is used in the analysis. The effect of admixture of other Ds+ decay modes with (K+K-π+) final state which are not present in the MC simulation is studied separately and accounted for as a systematic uncertainty.

The acceptance for the Bc+J/ψDs+ decay mode is different for the A±± and A00 components, thus the full acceptance for the mode is

ABc+J/ψDs+=f±±ABc+J/ψDs+,A±±+1-f±±ABc+J/ψDs+,A00-1, 3

where the subscripts indicate the helicity state and f±± is the value extracted from the fit (Table 1). The acceptances are determined from the simulation and shown in Table 3.

Table 3.

The acceptance ABc+X for all decay modes studied. Only uncertainties due to MC statistics are shown

Mode ABc+X (%)
Bc+J/ψπ+ 4.106±0.056
Bc+J/ψDs+ 1.849±0.034
Bc+J/ψDs+, A00 1.829±0.053
Bc+J/ψDs+, A±± 1.712±0.035

The ratio RDs+/Ds+ is calculated as

RDs+/Ds+=BBc+J/ψDs+BBc+J/ψDs+=NBc+J/ψDs+NBc+J/ψDs+×ABc+J/ψDs+ABc+J/ψDs+, 4

where the ratio of the yields NBc+J/ψDs+/NBc+J/ψDs+ and its uncertainty is extracted from the fit as a parameter in order to account for correlations between the yields.

The fraction of the A±± component contribution in Bc+J/ψDs+ decay is calculated from the f±± value quoted in Table 1 by applying a correction to account for the different acceptances for the two component contributions:

Γ±±/Γ=f±±×ABc+J/ψDs+ABc+J/ψDs+,A±±. 5

Systematic uncertainties

The systematic uncertainties of the measured values are determined by varying the analysis procedure and repeating all calculations. Although some sources can have rather large effects on the individual decay rate measurements, they largely cancel in the ratios of the branching fractions due to correlation between the effects on the different decay modes. The following groups of systematic uncertainties are considered.

The first group of sources of systematic uncertainty relates to possible differences between the data and simulation affecting the acceptances for the decay modes. Thus, an effect of the Bc+ production model is evaluated by varying the simulated pT and |η| spectra while preserving agreement with the data distributions obtained using the abundant Bc+J/ψπ+ channel. These variations have very similar effects on the acceptances for the different decay modes, thus giving rather moderate estimates of the uncertainties, not exceeding 3 % in total, on the ratios of branching fractions. The effect of presence of other Ds+ decay modes with (K+K-π+) final state on the calculated acceptances is studied with a separate MC simulation. Its conservative estimate yields 0.4 % which is assigned as RDs+/π+ and RDs+/π+ uncertainties. An uncertainty on the tracking efficiency is dominated by the uncertainty of the detector material description in the MC simulation. Samples generated with distorted geometries and with increased material are used to estimate the effect on track reconstruction efficiencies. When propagated to the ratios of branching fractions, these estimates give 0.5 % uncertainty for RDs+/π+ and RDs+/π+ due to the two extra tracks in Bc+J/ψDs()+ modes. Limited knowledge of the Bc+ and Ds+ lifetimes leads to an additional systematic uncertainty. The simulated proper decay times are varied within one standard deviation from the world average values [22] resulting in uncertainties of 1 % assigned to RDs+/π+ and RDs+/π+ due to the Bc+ lifetime, and 0.3 % due to the Ds+ lifetime. Removing the requirement on pT(Bc+)/pT(trk) is found to produce no noticeable effect on the measured values.

The next group of uncertainties originates from the signal extraction procedure. These uncertainties are evaluated separately for J/ψDs+ and J/ψπ+ candidate fits. For the former, the following variations of the fit model are applied and the difference is treated as a systematic uncertainty:

  • different background mass shape parametrisations (three-parameter exponential, second- and third-order polynomials), different fitted mass range (reduced by up to 40 MeV from each side independently);

  • a double Gaussian or double-sided Crystal Ball function [2729] for Bc+J/ψDs+ signal description; variation of the modified Gaussian width within 10 % of the MC simulation value;

  • variation of the smoothness of the Bc+J/ψDs+ signal mass templates, which is controlled by a parameter of the kernel estimation procedure [25];

  • similar variation of the smoothness of the Bc+J/ψDs()+ signal angular templates;

  • variation of the smoothness of the sideband templates used for the background angular PDF construction; different ranges of the sidebands; different sideband interpolation procedure;

  • modelling of the correlation between the mass and angular parts of the signal PDFs. This correlation takes place only at the detector level and manifests itself in degradation of the mass resolution for higher values of |cosθ(μ+)|. A dedicated fit model accounting for this effect is used for the data fit. The impact on the result is found to be negligible compared to the total uncertainty.

The first two items give the dominant contributions to the uncertainties of the ratios of branching fractions while the transverse polarisation fraction measurement is mostly affected by the background angular modelling variations. For the normalisation channel fit model, the similar variations of the background and signal mass shape parametrisation are applied. The deviations produced by the variations of the fits reach values as high as 10–15 % thus making them the dominant sources of systematic uncertainty.

The branching fractions of Ds+ [22] are varied in simulation within their uncertainties to estimate their effect on the measured quantities. Very small uncertainties are obtained for the RDs+/π+ and RDs+/Ds+, while for Γ±±/Γ, the estimate is 1 %.

The statistical uncertainties on the acceptance values due to the MC sample sizes are also treated as a separate source of systematic uncertainty and estimated to be 2–3 %.

In order to check for a possible bias from using three-muon triggers, vetoing the Ds+ meson daughter tracks identified as muons is tested and found not to affect the measurement.

Finally, since BDs+ϕ(K+K-)π+ enters Eq. (2), its uncertainty, evaluated from Ref. [26] as 5.9 %, is propagated to the final values of the relative branching fractions.

The systematic uncertainties on the measured quantities are summarised in Table 4.

Table 4.

Relative systematic uncertainties on the measured ratios of branching fractions RDs+/π+, RDs+/π+, RDs+/Ds+ and on the transverse polarisation fraction Γ±±/Γ

Source Uncertainty (%)
RDs+/π+ RDs+/π+ RDs+/Ds+ Γ±±/Γ
Simulated pT(Bc+) spectrum 0.4 0.9 0.5 0.4
Simulated |η(Bc+)| spectrum 1.9 2.4 0.6 0.2
Other Ds+ decay modes contribution 0.4 0.4
Tracking efficiency 0.5 0.5 <0.1 <0.1
Bc+ lifetime 1.2 1.3 <0.1 <0.1
Ds+ lifetime 0.3 0.3 <0.1 <0.1
Bc+J/ψDs()+ signal extraction 4.4 10.5 10.7 17.4
Bc+J/ψπ+ signal extraction 8.5 8.5
Ds+ branching fractions <0.1 <0.1 <0.1 1.1
MC sample sizes 2.3 2.4 2.7 2.2
Total 10.1 14.0 11.0 17.6
BDs+ϕ(K+K-)π+ 5.9 5.9

Results

The following ratios of the branching fractions are measured:

RDs+/π+=BBc+J/ψDs+BBc+J/ψπ+=3.8±1.1(stat.)±0.4(syst.)±0.2(BF),RDs+/π+=BBc+J/ψDs+BBc+J/ψπ+=10.4±3.1(stat.)±1.5(syst.)±0.6(BF),RDs+/Ds+=BBc+J/ψDs+BBc+J/ψDs+=2.8-0.8+1.2(stat.)±0.3(syst.), 6

where the BF uncertainty corresponds to the knowledge of BDs+ϕ(K+K-)π+. The relative contribution of the A±± component in Bc+J/ψDs+ decay is measured to be

Γ±±/Γ=0.38±0.23(stat.)±0.07(syst.) 7

These results are compared with those of the LHCb measurement [10] and to the expectations from various theoretical calculations in Table 5 and Fig. 7. The measurement agrees with the LHCb result. All ratios are well described by the recent perturbative QCD predictions [8]. The expectations from models in Refs. [3, 5, 7] as well as the sum-rules prediction [4] for the ratio RDs+/Ds+ are consistent with the measurement. The QCD relativistic potential model predictions [3] are consistent with the measured RDs+/π+ ratio while the expectations from the sum rules [4] and models in Refs. [57] are somewhat smaller than the measured value. The predictions in Refs. [35, 7] are also generally smaller than the measured ratio RDs+/π+; however, the discrepancies do not exceed two standard deviations when taking into account only the experimental uncertainty.

Table 5.

Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5], BSW relativistic quark model (with fixed average transverse quark momentum ω=0.40 GeV) [6], light-front quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9]. The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers. Statistical and systematic uncertainties added in quadrature are shown for the results of ATLAS and LHCb

RDs+/π+ RDs+/π+ RDs+/Ds+ Γ±±/Γ Ref.
3.8±1.2 10.4±3.5 2.8-0.9+1.2 0.38±0.24 ATLAS
2.90±0.62 2.37±0.57 0.52±0.20 LHCb [10]
2.6 4.5 1.7 QCD potential model [3]
1.3 5.2 3.9 QCD sum rules [4]
2.0 5.7 2.9 RCQM [5]
2.2 BSW [6]
2.06±0.86 3.01±1.23 LFQM [7]
3.45-0.17+0.49 2.54-0.21+0.07 0.48±0.04 pQCD [8]
0.410 RIQM [9]

Fig. 7.

Fig. 7

Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5], BSW relativistic quark model (with fixed average transverse quark momentum ω=0.40 GeV) [6], light-front quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9]. The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers. Statistical and systematic uncertainties added in quadrature are quoted for the results of ATLAS and LHCb.

The measured fraction of the A±± component agrees well with the prediction of the relativistic independent quark model [9] and perturbative QCD [8].

Conclusion

A study of Bc+J/ψDs+ and Bc+J/ψDs+ decays has been performed. The ratios of the branching fractions BBc+J/ψDs+/BBc+J/ψπ+, BBc+J/ψDs+/BBc+J/ψπ+, BBc+J/ψDs+/BBc+J/ψDs+ and the transverse polarisation fraction of Bc+J/ψDs+ decay have been measured by the ATLAS experiment at the LHC using pp collision data corresponding to an integrated luminosity of 4.9 fb-1 at 7 TeV centre-of-mass energy and 20.6 fb-1 at 8 TeV. The polarisation is found to be well described by the available theoretical approaches. The measured ratios of the branching fraction are generally described by perturbative QCD, sum rules, and relativistic quark models. There is an indication of underestimation of the decay rates for the Bc+J/ψDs()+ decays by some models, although the discrepancies do not exceed two standard deviations when taking into account only the experimental uncertainty. The measurement results agree with those published by the LHCb experiment.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Footnotes

1

Charge conjugate states are implied throughout the paper unless otherwise stated.

2

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2).

3

Using a system of units with c=1 is implied throughout the paper.

4

The transverse decay length of a particle is defined as the transverse distance between the production (primary) vertex and the particle decay (secondary) vertex projected along its transverse momentum.

References

  • 1.CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 2432–2437 (1998). arXiv:hep-ex/9805034. doi:10.1103/PhysRevLett.81.2432
  • 2.ATLAS Collaboration, Phys. Rev. Lett. 113, 212004 (2014). arXiv:1407.1032 [hep-ex]. doi:10.1103/PhysRevLett.113.212004
  • 3.Colangelo P, De Fazio F. Phys. Rev. D. 2000;61:034012. doi: 10.1103/PhysRevD.61.034012. [DOI] [Google Scholar]
  • 4.V. Kiselev, Exclusive decays and lifetime of Bc meson in QCD sum rules (2002). arXiv:hep-ph/0211021 [hep-ph]
  • 5.Ivanov M, Korner J, Santorelli P. Phys. Rev. D. 2006;73:054024. doi: 10.1103/PhysRevD.73.054024. [DOI] [Google Scholar]
  • 6.Dhir R, Verma R. Phys. Rev. D. 2009;79:034004. doi: 10.1103/PhysRevD.79.034004. [DOI] [Google Scholar]
  • 7.Ke H-W, Liu T, Li X-Q. Phys. Rev. D. 2014;89:017501. doi: 10.1103/PhysRevD.89.017501. [DOI] [Google Scholar]
  • 8.Rui Z, Zou Z-T. Phys. Rev. D. 2014;90:114030. doi: 10.1103/PhysRevD.90.114030. [DOI] [Google Scholar]
  • 9.Kar S, et al. Phys. Rev. D. 2013;88:094014. doi: 10.1103/PhysRevD.88.094014. [DOI] [Google Scholar]
  • 10.LHCb Collaboration, R. Aaij et al., Phys. Rev. D 87, 112012 (2013). arXiv:1304.4530 [hep-ex]. doi:10.1103/PhysRevD.87.112012
  • 11.ATLAS Collaboration, JINST 3, S08003 (2008). doi:10.1088/1748-0221/3/08/S08003
  • 12.T. Sjostrand, S. Mrenna, P. Skands, JHEP 0605, 026 (2006). arXiv:hep-ph/0603175. doi:10.1088/1126-6708/2006/05/026
  • 13.A. Berezhnoy, A. Likhoded and O. Yushchenko, Phys. Atom. Nucl. 59 (1996) 709–713, arXiv:hep-ph/9504302 [hep-ph]
  • 14.A. Berezhnoy, V. Kiselev, A. Likhoded, Z. Phys. A 356, 79–87 (1996). arXiv:hep-ph/9602347. doi:10.1007/s002180050151
  • 15.A. Berezhnoy et al., Phys. Atom. Nucl. 60 (1997) 1729–1740, arXiv:hep-ph/9703341 [hep-ph]
  • 16.A. Berezhnoy, Phys. Atom. Nucl. 68, 1866–1872 (2005). arXiv:hep-ph/0407315. doi:10.1134/1.2131116
  • 17.Lange D. Nucl. Instrum. Meth. A. 2001;462:152–155. doi: 10.1016/S0168-9002(01)00089-4. [DOI] [Google Scholar]
  • 18.ATLAS Collaboration, Eur. Phys. J. C 70, 823–874 (2010). arXiv:1005.4568 [physics.ins-det]. doi:10.1140/epjc/s10052-010-1429-9
  • 19.GEANT4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Meth. A 506, 250–303 (2003). doi:10.1016/S0168-9002(03)01368-8
  • 20.Allison J, et al. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. [DOI] [Google Scholar]
  • 21.V. Kostyukhin, VKalVrt - package for vertex reconstruction in ATLAS, ATL-PHYS-2003-031 (2003). http://cds.cern.ch/record/685551
  • 22.K. A. Olive et al., Particle Data Group, Chin. Phys. C 38, 090001. (2014)doi:10.1088/1674-1137/38/9/090001
  • 23.ZEUS Collaboration, S. Chekanov et al., Eur. Phys. J. C 44, 13–25 (2005). arXiv:hep-ex/0505008. doi:10.1140/epjc/s2005-02346-2
  • 24.G. Aad et al., Nucl. Phys. B 864, 341–381 (2012). arXiv:1206.3122 [hep-ex]. doi:10.1016/j.nuclphysb.2012.07.009
  • 25.K. Cranmer, Comput. Phys. Commun. 136, 198–207 (2001). arXiv:hep-ex/0011057 [hep-ex]. doi:10.1016/S0010-4655(00)00243-5
  • 26.CLEO Collaboration, J. Alexander et al., Phys. Rev. Lett. 100, 161804 (2008). doi:10.1103/PhysRevLett.100.161804. arXiv:0801.0680 [hep-ex]
  • 27.M. Oreglia, A Study of the Reactions ψγγψ, PhD thesis, Stanford University, SLAC-R-236 (1980). http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html
  • 28.J. Gaiser, Charmonium Spectroscopy From Radiative Decays of the J/ψ and ψ, PhD thesis, Stanford University, SLAC-R-255 (1982). http://www.slac.stanford.edu/pubs/slacreports/slac-r-255.html
  • 29.T. Skwarnicki, A study of the radiative cascade transitions between the Υ and Υ resonances, PhD thesis, Institute of Nuclear Physics, Krakow, DESY-F31-86-02 (1986). http://inspirehep.net/record/230779/

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES