Skip to main content
Springer logoLink to Springer
. 2016 Jan 5;76:5. doi: 10.1140/epjc/s10052-015-3823-9

Searches for scalar leptoquarks in pp collisions at s = 8 TeV with the ATLAS detector

ATLAS Collaboration229, G Aad 111, B Abbott 141, J Abdallah 198, O Abdinov 13, R Aben 135, M Abolins 116, O S AbouZeid 205, H Abramowicz 200, H Abreu 199, R Abreu 144, Y Abulaiti 192,193, B S Acharya 212,213, L Adamczyk 56, D L Adams 33, J Adelman 136, S Adomeit 127, T Adye 167, A A Affolder 100, T Agatonovic-Jovin 13, J Agricola 75, J A Aguilar-Saavedra 156,161, S P Ahlen 27, F Ahmadov 90, G Aielli 170,171, H Akerstedt 192,193, T P A Åkesson 107, A V Akimov 123, G L Alberghi 24,25, J Albert 219, S Albrand 76, M J Alconada Verzini 96, M Aleksa 41, I N Aleksandrov 90, C Alexa 34, G Alexander 200, T Alexopoulos 12, M Alhroob 141, G Alimonti 117, L Alio 111, J Alison 42, S P Alkire 52, B M M Allbrooke 196, P P Allport 100, A Aloisio 131,132, A Alonso 53, F Alonso 96, C Alpigiani 102, A Altheimer 52, B Alvarez Gonzalez 41, D Álvarez Piqueras 217, M G Alviggi 131,132, B T Amadio 17, K Amako 91, Y Amaral Coutinho 29, C Amelung 28, D Amidei 115, S P Amor Dos Santos 156,158, A Amorim 156,157, S Amoroso 67, N Amram 200, G Amundsen 28, C Anastopoulos 182, L S Ancu 68, N Andari 136, T Andeen 52, C F Anders 80, G Anders 41, J K Anders 100, K J Anderson 42, A Andreazza 117,118, V Andrei 79, S Angelidakis 11, I Angelozzi 135, P Anger 63, A Angerami 52, F Anghinolfi 41, A V Anisenkov 137, N Anjos 14, A Annovi 153,154, M Antonelli 66, A Antonov 125, J Antos 188, F Anulli 168, M Aoki 91, L Aperio Bella 20, G Arabidze 116, Y Arai 91, J P Araque 156, A T H Arce 64, F A Arduh 96, J-F Arguin 122, S Argyropoulos 88, M Arik 21, A J Armbruster 41, O Arnaez 41, V Arnal 108, H Arnold 67, M Arratia 39, O Arslan 26, A Artamonov 124, G Artoni 28, S Asai 202, N Asbah 61, A Ashkenazi 200, B Åsman 192,193, L Asquith 196, K Assamagan 33, R Astalos 187, M Atkinson 215, N B Atlay 184, K Augsten 164, M Aurousseau 190, G Avolio 41, B Axen 17, M K Ayoub 145, G Azuelos 122, M A Baak 41, A E Baas 79, M J Baca 20, C Bacci 172,173, H Bachacou 179, K Bachas 201, M Backes 41, M Backhaus 41, P Bagiacchi 168,169, P Bagnaia 168,169, Y Bai 45, T Bain 52, J T Baines 167, O K Baker 226, E M Baldin 137, P Balek 165, T Balestri 195, F Balli 110, E Banas 58, Sw Banerjee 223, A A E Bannoura 225, H S Bansil 20, L Barak 41, E L Barberio 114, D Barberis 69,70, M Barbero 111, T Barillari 128, M Barisonzi 212,213, T Barklow 186, N Barlow 39, S L Barnes 110, B M Barnett 167, R M Barnett 17, Z Barnovska 7, A Baroncelli 172, G Barone 28, A J Barr 148, F Barreiro 108, J Barreiro Guimarães da Costa 78, R Bartoldus 186, A E Barton 97, P Bartos 187, A Basalaev 152, A Bassalat 145, A Basye 215, R L Bates 74, S J Batista 205, J R Batley 39, M Battaglia 180, M Bauce 168,169, F Bauer 179, H S Bawa 186, J B Beacham 139, M D Beattie 97, T Beau 106, P H Beauchemin 209, R Beccherle 153,154, P Bechtle 26, H P Beck 19, K Becker 148, M Becker 109, M Beckingham 220, C Becot 145, A J Beddall 22, A Beddall 22, V A Bednyakov 90, C P Bee 195, L J Beemster 135, T A Beermann 41, M Begel 33, J K Behr 148, C Belanger-Champagne 113, W H Bell 68, G Bella 200, L Bellagamba 24, A Bellerive 40, M Bellomo 112, K Belotskiy 125, O Beltramello 41, O Benary 200, D Benchekroun 174, M Bender 127, K Bendtz 192,193, N Benekos 12, Y Benhammou 200, E Benhar Noccioli 68, J A Benitez Garcia 207, D P Benjamin 64, J R Bensinger 28, S Bentvelsen 135, L Beresford 148, M Beretta 66, D Berge 135, E Bergeaas Kuutmann 216, N Berger 7, F Berghaus 219, J Beringer 17, C Bernard 27, N R Bernard 112, C Bernius 138, F U Bernlochner 26, T Berry 103, P Berta 165, C Bertella 109, G Bertoli 192,193, F Bertolucci 153,154, C Bertsche 141, D Bertsche 141, M I Besana 117, G J Besjes 53, O Bessidskaia Bylund 192,193, M Bessner 61, N Besson 179, C Betancourt 67, S Bethke 128, A J Bevan 102, W Bhimji 17, R M Bianchi 155, L Bianchini 28, M Bianco 41, O Biebel 127, D Biedermann 18, S P Bieniek 104, M Biglietti 172, J Bilbao De Mendizabal 68, H Bilokon 66, M Bindi 75, S Binet 145, A Bingul 22, C Bini 168,169, S Biondi 24,25, D M Bjergaard 64, C W Black 197, J E Black 186, K M Black 27, D Blackburn 181, R E Blair 8, J-B Blanchard 179, J E Blanco 103, T Blazek 187, I Bloch 61, C Blocker 28, W Blum 109, U Blumenschein 75, G J Bobbink 135, V S Bobrovnikov 137, S S Bocchetta 107, A Bocci 64, C Bock 127, M Boehler 67, J A Bogaerts 41, D Bogavac 13, A G Bogdanchikov 137, C Bohm 192, V Boisvert 103, T Bold 56, V Boldea 34, A S Boldyrev 126, M Bomben 106, M Bona 102, M Boonekamp 179, A Borisov 166, G Borissov 97, S Borroni 61, J Bortfeldt 127, V Bortolotto 83,84,85, K Bos 135, D Boscherini 24, M Bosman 14, J Boudreau 155, J Bouffard 2, E V Bouhova-Thacker 97, D Boumediene 51, C Bourdarios 145, N Bousson 142, S K Boutle 74, A Boveia 41, J Boyd 41, I R Boyko 90, I Bozic 13, J Bracinik 20, A Brandt 10, G Brandt 75, O Brandt 79, U Bratzler 203, B Brau 112, J E Brau 144, H M Braun 225, S F Brazzale 212,214, W D Breaden Madden 74, K Brendlinger 151, A J Brennan 114, L Brenner 135, R Brenner 216, S Bressler 222, K Bristow 191, T M Bristow 65, D Britton 74, D Britzger 61, F M Brochu 39, I Brock 26, R Brock 116, J Bronner 128, G Brooijmans 52, T Brooks 103, W K Brooks 44, J Brosamer 17, E Brost 144, J Brown 76, P A Bruckman de Renstrom 58, D Bruncko 188, R Bruneliere 67, A Bruni 24, G Bruni 24, M Bruschi 24, N Bruscino 26, L Bryngemark 107, T Buanes 16, Q Buat 185, P Buchholz 184, A G Buckley 74, S I Buda 34, I A Budagov 90, F Buehrer 67, L Bugge 147, M K Bugge 147, O Bulekov 125, D Bullock 10, H Burckhart 41, S Burdin 100, C D Burgard 67, B Burghgrave 136, S Burke 167, I Burmeister 62, E Busato 51, D Büscher 67, V Büscher 109, P Bussey 74, J M Butler 27, A I Butt 3, C M Buttar 74, J M Butterworth 104, P Butti 135, W Buttinger 33, A Buzatu 74, A R Buzykaev 137, S CabreraUrbán 217, D Caforio 164, V M Cairo 54,55, O Cakir 4, N Calace 68, P Calafiura 17, A Calandri 179, G Calderini 106, P Calfayan 127, L P Caloba 29, D Calvet 51, S Calvet 51, R Camacho Toro 42, S Camarda 61, P Camarri 170,171, D Cameron 147, R Caminal Armadans 215, S Campana 41, M Campanelli 104, A Campoverde 195, V Canale 131,132, A Canepa 206, M Cano Bret 49, J Cantero 108, R Cantrill 156, T Cao 59, M D M Capeans Garrido 41, I Caprini 34, M Caprini 34, M Capua 54,55, R Caputo 109, R Cardarelli 170, F Cardillo 67, T Carli 41, G Carlino 131, L Carminati 117,118, S Caron 134, E Carquin 43, G D Carrillo-Montoya 41, J R Carter 39, J Carvalho 156,158, D Casadei 104, M P Casado 14, M Casolino 14, E Castaneda-Miranda 189, A Castelli 135, V Castillo Gimenez 217, N F Castro 156, P Catastini 78, A Catinaccio 41, J R Catmore 147, A Cattai 41, J Caudron 109, V Cavaliere 215, D Cavalli 117, M Cavalli-Sforza 14, V Cavasinni 153,154, F Ceradini 172,173, B C Cerio 64, K Cerny 165, A S Cerqueira 30, A Cerri 196, L Cerrito 102, F Cerutti 17, M Cerv 41, A Cervelli 19, S A Cetin 23, A Chafaq 174, D Chakraborty 136, I Chalupkova 165, P Chang 215, J D Chapman 39, D G Charlton 20, C C Chau 205, C A Chavez Barajas 196, S Cheatham 199, A Chegwidden 116, S Chekanov 8, S V Chekulaev 206, G A Chelkov 90, M A Chelstowska 115, C Chen 89, H Chen 33, K Chen 195, L Chen 48, S Chen 47, S Chen 202, X Chen 50, Y Chen 92, H C Cheng 115, Y Cheng 42, A Cheplakov 90, E Cheremushkina 166, R Cherkaoui El Moursli 178, V Chernyatin 33, E Cheu 9, L Chevalier 179, V Chiarella 66, G Chiarelli 153,154, G Chiodini 98, A S Chisholm 20, R T Chislett 104, A Chitan 34, M V Chizhov 90, K Choi 86, S Chouridou 11, B K B Chow 127, V Christodoulou 104, D Chromek-Burckhart 41, J Chudoba 163, A J Chuinard 113, J J Chwastowski 58, L Chytka 143, G Ciapetti 168,169, A K Ciftci 4, D Cinca 74, V Cindro 101, I A Cioara 26, A Ciocio 17, F Cirotto 131,132, Z H Citron 222, M Ciubancan 34, A Clark 68, B L Clark 78, P J Clark 65, R N Clarke 17, W Cleland 155, C Clement 192,193, Y Coadou 111, M Cobal 212,214, A Coccaro 68, J Cochran 89, L Coffey 28, J G Cogan 186, L Colasurdo 134, B Cole 52, S Cole 136, A P Colijn 135, J Collot 76, T Colombo 81, G Compostella 128, P Conde Muiño 156,157, E Coniavitis 67, S H Connell 190, I A Connelly 103, V Consorti 67, S Constantinescu 34, C Conta 149,150, G Conti 41, F Conventi 131, M Cooke 17, B D Cooper 104, A M Cooper-Sarkar 148, T Cornelissen 225, M Corradi 24, F Corriveau 113, A Corso-Radu 211, A Cortes-Gonzalez 14, G Cortiana 128, G Costa 117, M J Costa 217, D Costanzo 182, D Côté 10, G Cottin 39, G Cowan 103, B E Cox 110, K Cranmer 138, G Cree 40, S Crépé-Renaudin 76, F Crescioli 106, W A Cribbs 192,193, M Crispin Ortuzar 148, M Cristinziani 26, V Croft 134, G Crosetti 54,55, T Cuhadar Donszelmann 182, J Cummings 226, M Curatolo 66, J Cúth 109, C Cuthbert 197, H Czirr 184, P Czodrowski 3, S D’Auria 74, M D’Onofrio 100, M J Da Cunha Sargedas De Sousa 156,157, C DaVia 110, W Dabrowski 56, A Dafinca 148, T Dai 115, O Dale 16, F Dallaire 122, C Dallapiccola 112, M Dam 53, J R Dandoy 42, N P Dang 67, A C Daniells 20, M Danninger 218, M Dano Hoffmann 179, V Dao 67, G Darbo 69, S Darmora 10, J Dassoulas 3, A Dattagupta 86, W Davey 26, C David 219, T Davidek 165, E Davies 148, M Davies 200, P Davison 104, Y Davygora 79, E Dawe 114, I Dawson 182, R K Daya-Ishmukhametova 112, K De 10, R de Asmundis 131, A De Benedetti 141, S De Castro 24,25, S De Cecco 106, N De Groot 134, P de Jong 135, H De la Torre 108, F De Lorenzi 89, D De Pedis 168, A De Salvo 168, U De Sanctis 196, A De Santo 196, J B De Vivie De Regie 145, W J Dearnaley 97, R Debbe 33, C Debenedetti 180, D V Dedovich 90, I Deigaard 135, J Del Peso 108, T Del Prete 153,154, D Delgove 145, F Deliot 179, C M Delitzsch 68, M Deliyergiyev 101, A Dell’Acqua 41, L Dell’Asta 27, M Dell’Orso 153,154, M Della Pietra 131, D della Volpe 68, M Delmastro 7, P A Delsart 76, C Deluca 135, D A DeMarco 205, S Demers 226, M Demichev 90, A Demilly 106, S P Denisov 166, D Derendarz 58, J E Derkaoui 177, F Derue 106, P Dervan 100, K Desch 26, C Deterre 61, P O Deviveiros 41, A Dewhurst 167, S Dhaliwal 28, A Di Ciaccio 170,171, L Di Ciaccio 7, A Di Domenico 168,169, C Di Donato 131,132, A Di Girolamo 41, B Di Girolamo 41, A Di Mattia 199, B Di Micco 172,173, R Di Nardo 66, A Di Simone 67, R Di Sipio 205, D Di Valentino 40, C Diaconu 111, M Diamond 205, F A Dias 65, M A Diaz 43, E B Diehl 115, J Dietrich 18, S Diglio 111, A Dimitrievska 13, J Dingfelder 26, P Dita 34, S Dita 34, F Dittus 41, F Djama 111, T Djobava 72, J I Djuvsland 79, M A B do Vale 31, D Dobos 41, M Dobre 34, C Doglioni 107, T Dohmae 202, J Dolejsi 165, Z Dolezal 165, B A Dolgoshein 125, M Donadelli 32, S Donati 153,154, P Dondero 149,150, J Donini 51, J Dopke 167, A Doria 131, M T Dova 96, A T Doyle 74, E Drechsler 75, M Dris 12, E Dubreuil 51, E Duchovni 222, G Duckeck 127, O A Ducu 34,111, D Duda 135, A Dudarev 41, L Duflot 145, L Duguid 103, M Dührssen 41, M Dunford 79, H Duran Yildiz 4, M Düren 73, A Durglishvili 72, D Duschinger 63, M Dyndal 56, C Eckardt 61, K M Ecker 128, R C Edgar 115, W Edson 2, N C Edwards 65, W Ehrenfeld 26, T Eifert 41, G Eigen 16, K Einsweiler 17, T Ekelof 216, M El Kacimi 176, M Ellert 216, S Elles 7, F Ellinghaus 225, A A Elliot 219, N Ellis 41, J Elmsheuser 127, M Elsing 41, D Emeliyanov 167, Y Enari 202, O C Endner 109, M Endo 146, J Erdmann 62, A Ereditato 19, G Ernis 225, J Ernst 2, M Ernst 33, S Errede 215, E Ertel 109, M Escalier 145, H Esch 62, C Escobar 155, B Esposito 66, A I Etienvre 179, E Etzion 200, H Evans 86, A Ezhilov 152, L Fabbri 24,25, G Facini 42, R M Fakhrutdinov 166, S Falciano 168, R J Falla 104, J Faltova 165, Y Fang 45, M Fanti 117,118, A Farbin 10, A Farilla 172, T Farooque 14, S Farrell 17, S M Farrington 220, P Farthouat 41, F Fassi 178, P Fassnacht 41, D Fassouliotis 11, M Faucci Giannelli 103, A Favareto 69,70, L Fayard 145, P Federic 187, O L Fedin 152, W Fedorko 218, S Feigl 41, L Feligioni 111, C Feng 48, E J Feng 8, H Feng 115, A B Fenyuk 166, L Feremenga 10, P FernandezMartinez 217, S Fernandez Perez 41, J Ferrando 74, A Ferrari 216, P Ferrari 135, R Ferrari 149, D E Ferreira de Lima 74, A Ferrer 217, D Ferrere 68, C Ferretti 115, A FerrettoParodi 69,70, M Fiascaris 42, F Fiedler 109, A Filipčič 101, M Filipuzzi 61, F Filthaut 134, M Fincke-Keeler 219, K D Finelli 197, M C N Fiolhais 156,158, L Fiorini 217, A Firan 59, A Fischer 2, C Fischer 14, J Fischer 225, W C Fisher 116, E A Fitzgerald 28, N Flaschel 61, I Fleck 184, P Fleischmann 115, S Fleischmann 225, G T Fletcher 182, G Fletcher 102, R R M Fletcher 151, T Flick 225, A Floderus 107, L R Flores Castillo 83, M J Flowerdew 128, A Formica 179, A Forti 110, D Fournier 145, H Fox 97, S Fracchia 14, P Francavilla 106, M Franchini 24,25, D Francis 41, L Franconi 147, M Franklin 78, M Frate 211, M Fraternali 149,150, D Freeborn 104, S T French 39, F Friedrich 63, D Froidevaux 41, J A Frost 148, C Fukunaga 203, E Fullana Torregrosa 109, B G Fulsom 186, T Fusayasu 129, J Fuster 217, C Gabaldon 76, O Gabizon 225, A Gabrielli 24,25, A Gabrielli 17, G P Gach 56, S Gadatsch 41, S Gadomski 68, G Gagliardi 69,70, P Gagnon 86, C Galea 134, B Galhardo 156,158, E J Gallas 148, B J Gallop 167, P Gallus 164, G Galster 53, K K Gan 139, J Gao 46,111, Y Gao 65, Y S Gao 186, F M GarayWalls 65, F Garberson 226, C García 217, J E García Navarro 217, M Garcia-Sciveres 17, R W Gardner 42, N Garelli 186, V Garonne 147, C Gatti 66, A Gaudiello 69,70, G Gaudio 149, B Gaur 184, L Gauthier 122, P Gauzzi 168,169, I L Gavrilenko 123, C Gay 218, G Gaycken 26, E N Gazis 12, P Ge 48, Z Gecse 218, C N P Gee 167, Ch Geich-Gimbel 26, M P Geisler 79, C Gemme 69, M H Genest 76, S Gentile 168,169, M George 75, S George 103, D Gerbaudo 211, A Gershon 200, S Ghasemi 184, H Ghazlane 175, B Giacobbe 24, S Giagu 168,169, V Giangiobbe 14, P Giannetti 153,154, B Gibbard 33, S M Gibson 103, M Gilchriese 17, T P S Gillam 39, D Gillberg 41, G Gilles 51, D M Gingrich 3, N Giokaris 11, M P Giordani 212,214, F M Giorgi 24, F M Giorgi 18, P F Giraud 179, P Giromini 66, D Giugni 117, C Giuliani 67, M Giulini 80, B K Gjelsten 147, S Gkaitatzis 201, I Gkialas 201, E L Gkougkousis 145, L K Gladilin 126, C Glasman 108, J Glatzer 41, P C F Glaysher 65, A Glazov 61, M Goblirsch-Kolb 128, J R Goddard 102, J Godlewski 58, S Goldfarb 115, T Golling 68, D Golubkov 166, A Gomes 156,157,159, R Gonçalo 156, J Goncalves Pinto Firmino Da Costa 179, L Gonella 26, S González de la Hoz 217, G Gonzalez Parra 14, S Gonzalez-Sevilla 68, L Goossens 41, P A Gorbounov 124, H A Gordon 33, I Gorelov 133, B Gorini 41, E Gorini 98,99, A Gorišek 101, E Gornicki 58, A T Goshaw 64, C Gössling 62, M I Gostkin 90, D Goujdami 176, A G Goussiou 181, N Govender 190, E Gozani 199, H M X Grabas 180, L Graber 75, I Grabowska-Bold 56, P O J Gradin 216, P Grafström 24,25, K-J Grahn 61, J Gramling 68, E Gramstad 147, S Grancagnolo 18, V Gratchev 152, H M Gray 41, E Graziani 172, Z D Greenwood 105, C Grefe 26, K Gregersen 104, I M Gregor 61, P Grenier 186, J Griffiths 10, A A Grillo 180, K Grimm 97, S Grinstein 14, Ph Gris 51, J-F Grivaz 145, J P Grohs 63, A Grohsjean 61, E Gross 222, J Grosse-Knetter 75, G C Grossi 105, Z J Grout 196, L Guan 115, J Guenther 164, F Guescini 68, D Guest 226, O Gueta 200, E Guido 69,70, T Guillemin 145, S Guindon 2, U Gul 74, C Gumpert 63, J Guo 49, Y Guo 46, S Gupta 148, G Gustavino 168,169, P Gutierrez 141, N G Gutierrez Ortiz 104, C Gutschow 63, C Guyot 179, C Gwenlan 148, C B Gwilliam 100, A Haas 138, C Haber 17, H K Hadavand 10, N Haddad 178, P Haefner 26, S Hageböck 26, Z Hajduk 58, H Hakobyan 227, M Haleem 61, J Haley 142, D Hall 148, G Halladjian 116, G D Hallewell 111, K Hamacher 225, P Hamal 143, K Hamano 219, A Hamilton 189, G N Hamity 182, P G Hamnett 61, L Han 46, K Hanagaki 91, K Hanawa 202, M Hance 17, B Haney 151, P Hanke 79, R Hanna 179, J B Hansen 53, J D Hansen 53, M C Hansen 26, P H Hansen 53, K Hara 208, A S Hard 223, T Harenberg 225, F Hariri 145, S Harkusha 119, R D Harrington 65, P F Harrison 220, F Hartjes 135, M Hasegawa 92, Y Hasegawa 183, A Hasib 141, S Hassani 179, S Haug 19, R Hauser 116, L Hauswald 63, M Havranek 163, C M Hawkes 20, R J Hawkings 41, A D Hawkins 107, T Hayashi 208, D Hayden 116, C P Hays 148, J M Hays 102, H S Hayward 100, S J Haywood 167, S J Head 20, T Heck 109, V Hedberg 107, L Heelan 10, S Heim 151, T Heim 225, B Heinemann 17, L Heinrich 138, J Hejbal 163, L Helary 27, S Hellman 192,193, D Hellmich 26, C Helsens 14, J Henderson 148, R C W Henderson 97, Y Heng 223, C Hengler 61, S Henkelmann 218, A Henrichs 226, A M Henriques Correia 41, S Henrot-Versille 145, G H Herbert 18, Y Hernández Jiménez 217, R Herrberg-Schubert 18, G Herten 67, R Hertenberger 127, L Hervas 41, G G Hesketh 104, N P Hessey 135, J W Hetherly 59, R Hickling 102, E Higón-Rodriguez 217, E Hill 219, J C Hill 39, K H Hiller 61, S J Hillier 20, I Hinchliffe 17, E Hines 151, R R Hinman 17, M Hirose 204, D Hirschbuehl 225, J Hobbs 195, N Hod 135, M C Hodgkinson 182, P Hodgson 182, A Hoecker 41, M R Hoeferkamp 133, F Hoenig 127, M Hohlfeld 109, D Hohn 26, T R Holmes 17, M Homann 62, T M Hong 155, L Hooft van Huysduynen 138, W H Hopkins 144, Y Horii 130, A J Horton 185, J-Y Hostachy 76, S Hou 198, A Hoummada 174, J Howard 148, J Howarth 61, M Hrabovsky 143, I Hristova 18, J Hrivnac 145, T Hryn’ova 7, A Hrynevich 120, C Hsu 191, P J Hsu 198, S-C Hsu 181, D Hu 52, Q Hu 46, X Hu 115, Y Huang 61, Z Hubacek 164, F Hubaut 111, F Huegging 26, T B Huffman 148, E W Hughes 52, G Hughes 97, M Huhtinen 41, T A Hülsing 109, N Huseynov 90, J Huston 116, J Huth 78, G Iacobucci 68, G Iakovidis 33, I Ibragimov 184, L Iconomidou-Fayard 145, E Ideal 226, Z Idrissi 178, P Iengo 41, O Igonkina 135, T Iizawa 221, Y Ikegami 91, K Ikematsu 184, M Ikeno 91, Y Ilchenko 42, D Iliadis 201, N Ilic 186, T Ince 128, G Introzzi 149,150, P Ioannou 11, M Iodice 172, K Iordanidou 52, V Ippolito 78, A Irles Quiles 217, C Isaksson 216, M Ishino 93, M Ishitsuka 204, R Ishmukhametov 139, C Issever 148, S Istin 21, J M Iturbe Ponce 110, R Iuppa 170,171, J Ivarsson 107, W Iwanski 58, H Iwasaki 91, J M Izen 60, V Izzo 131, S Jabbar 3, B Jackson 151, M Jackson 100, P Jackson 1, M R Jaekel 41, V Jain 2, K Jakobs 67, S Jakobsen 41, T Jakoubek 163, J Jakubek 164, D O Jamin 142, D K Jana 105, E Jansen 104, R Jansky 87, J Janssen 26, M Janus 75, G Jarlskog 107, N Javadov 90, T Javůrek 67, L Jeanty 17, J Jejelava 71, G-Y Jeng 197, D Jennens 114, P Jenni 67, J Jentzsch 62, C Jeske 220, S Jézéquel 7, H Ji 223, J Jia 195, Y Jiang 46, S Jiggins 104, J Jimenez Pena 217, S Jin 45, A Jinaru 34, O Jinnouchi 204, M D Joergensen 53, P Johansson 182, K A Johns 9, K Jon-And 192,193, G Jones 220, R W L Jones 97, T J Jones 100, J Jongmanns 79, P M Jorge 156,157, K D Joshi 110, J Jovicevic 206, X Ju 223, C A Jung 62, P Jussel 87, A Juste Rozas 14, M Kaci 217, A Kaczmarska 58, M Kado 145, H Kagan 139, M Kagan 186, S J Kahn 111, E Kajomovitz 64, C W Kalderon 148, S Kama 59, A Kamenshchikov 166, N Kanaya 202, S Kaneti 39, V A Kantserov 125, J Kanzaki 91, B Kaplan 138, L S Kaplan 223, A Kapliy 42, D Kar 191, K Karakostas 12, A Karamaoun 3, N Karastathis 12,135, M J Kareem 75, E Karentzos 12, M Karnevskiy 109, S N Karpov 90, Z M Karpova 90, K Karthik 138, V Kartvelishvili 97, A N Karyukhin 166, K Kasahara 208, L Kashif 223, R D Kass 139, A Kastanas 16, Y Kataoka 202, C Kato 202, A Katre 68, J Katzy 61, K Kawagoe 95, T Kawamoto 202, G Kawamura 75, S Kazama 202, V F Kazanin 137, R Keeler 219, R Kehoe 59, J S Keller 61, J J Kempster 103, H Keoshkerian 110, O Kepka 163, B P Kerševan 101, S Kersten 225, R A Keyes 113, F Khalil-zada 13, H Khandanyan 192,193, A Khanov 142, A G Kharlamov 137, T J Khoo 39, V Khovanskiy 124, E Khramov 90, J Khubua 72, S Kido 92, H Y Kim 10, S H Kim 208, Y K Kim 42, N Kimura 201, O M Kind 18, B T King 100, M King 217, S B King 218, J Kirk 167, A E Kiryunin 128, T Kishimoto 92, D Kisielewska 56, F Kiss 67, K Kiuchi 208, O Kivernyk 179, E Kladiva 188, M H Klein 52, M Klein 100, U Klein 100, K Kleinknecht 109, P Klimek 192,193, A Klimentov 33, R Klingenberg 62, J A Klinger 182, T Klioutchnikova 41, E-E Kluge 79, P Kluit 135, S Kluth 128, J Knapik 58, E Kneringer 87, E B F G Knoops 111, A Knue 74, A Kobayashi 202, D Kobayashi 204, T Kobayashi 202, M Kobel 63, M Kocian 186, P Kodys 165, T Koffas 40, E Koffeman 135, L A Kogan 148, S Kohlmann 225, Z Kohout 164, T Kohriki 91, T Koi 186, H Kolanoski 18, I Koletsou 7, A A Komar 123, Y Komori 202, T Kondo 91, N Kondrashova 61, K Köneke 67, A C König 134, T Kono 91, R Konoplich 138, N Konstantinidis 104, R Kopeliansky 199, S Koperny 56, L Köpke 109, A K Kopp 67, K Korcyl 58, K Kordas 201, A Korn 104, A A Korol 137, I Korolkov 14, E V Korolkova 182, O Kortner 128, S Kortner 128, T Kosek 165, V V Kostyukhin 26, V M Kotov 90, A Kotwal 64, A Kourkoumeli-Charalampidi 201, C Kourkoumelis 11, V Kouskoura 33, A Koutsman 206, R Kowalewski 219, T Z Kowalski 56, W Kozanecki 179, A S Kozhin 166, V A Kramarenko 126, G Kramberger 101, D Krasnopevtsev 125, M W Krasny 106, A Krasznahorkay 41, J K Kraus 26, A Kravchenko 33, S Kreiss 138, M Kretz 81, J Kretzschmar 100, K Kreutzfeldt 73, P Krieger 205, K Krizka 42, K Kroeninger 62, H Kroha 128, J Kroll 151, J Kroseberg 26, J Krstic 13, U Kruchonak 90, H Krüger 26, N Krumnack 89, A Kruse 223, M C Kruse 64, M Kruskal 27, T Kubota 114, H Kucuk 104, S Kuday 5, S Kuehn 67, A Kugel 81, F Kuger 224, A Kuhl 180, T Kuhl 61, V Kukhtin 90, R Kukla 179, Y Kulchitsky 119, S Kuleshov 44, M Kuna 168,169, T Kunigo 93, A Kupco 163, H Kurashige 92, Y A Kurochkin 119, V Kus 163, E S Kuwertz 219, M Kuze 204, J Kvita 143, T Kwan 219, D Kyriazopoulos 182, A LaRosa 180, J L La RosaNavarro 32, L La Rotonda 54,55, C Lacasta 217, F Lacava 168,169, J Lacey 40, H Lacker 18, D Lacour 106, V R Lacuesta 217, E Ladygin 90, R Lafaye 7, B Laforge 106, T Lagouri 226, S Lai 75, L Lambourne 104, S Lammers 86, C L Lampen 9, W Lampl 9, E Lançon 179, U Landgraf 67, M P J Landon 102, V S Lang 79, J C Lange 14, A J Lankford 211, F Lanni 33, K Lantzsch 26, A Lanza 149, S Laplace 106, C Lapoire 41, J F Laporte 179, T Lari 117, F Lasagni Manghi 24,25, M Lassnig 41, P Laurelli 66, W Lavrijsen 17, A T Law 180, P Laycock 100, T Lazovich 78, O Le Dortz 106, E Le Guirriec 111, E Le Menedeu 14, M LeBlanc 219, T Le Compte 8, F Ledroit-Guillon 76, C A Lee 190, S C Lee 198, L Lee 1, G Lefebvre 106, M Lefebvre 219, F Legger 127, C Leggett 17, A Lehan 100, G Lehmann Miotto 41, X Lei 9, W A Leight 40, A Leisos 201, A G Leister 226, M A L Leite 32, R Leitner 165, D Lellouch 222, B Lemmer 75, K J C Leney 104, T Lenz 26, B Lenzi 41, R Leone 9, S Leone 153,154, C Leonidopoulos 65, S Leontsinis 12, C Leroy 122, C G Lester 39, M Levchenko 152, J Levêque 7, D Levin 115, L J Levinson 222, M Levy 20, A Lewis 148, A M Leyko 26, M Leyton 60, B Li 46, H Li 195, H L Li 42, L Li 64, L Li 49, S Li 64, X Li 110, Y Li 47, Z Liang 180, H Liao 51, B Liberti 170, A Liblong 205, P Lichard 41, K Lie 215, J Liebal 26, W Liebig 16, C Limbach 26, A Limosani 197, S C Lin 198, T H Lin 109, F Linde 135, B E Lindquist 195, J T Linnemann 116, E Lipeles 151, A Lipniacka 16, M Lisovyi 80, T M Liss 215, D Lissauer 33, A Lister 218, A M Litke 180, B Liu 198, D Liu 198, H Liu 115, J Liu 111, J B Liu 46, K Liu 111, L Liu 215, M Liu 64, M Liu 46, Y Liu 46, M Livan 149,150, A Lleres 76, J Llorente Merino 108, S L Lloyd 102, F Lo Sterzo 198, E Lobodzinska 61, P Loch 9, W S Lockman 180, F K Loebinger 110, A E Loevschall-Jensen 53, K M Loew 28, A Loginov 226, T Lohse 18, K Lohwasser 61, M Lokajicek 163, B A Long 27, J D Long 115, R E Long 97, K A Looper 139, L Lopes 156, D Lopez Mateos 78, B Lopez Paredes 182, I Lopez Paz 14, J Lorenz 127, N Lorenzo Martinez 86, M Losada 210, P J Lösel 127, X Lou 45, A Lounis 145, J Love 8, P A Love 97, N Lu 115, H J Lubatti 181, C Luci 168,169, A Lucotte 76, F Luehring 86, W Lukas 87, L Luminari 168, O Lundberg 192,193, B Lund-Jensen 194, D Lynn 33, R Lysak 163, E Lytken 107, H Ma 33, L L Ma 48, G Maccarrone 66, A Macchiolo 128, C M Macdonald 182, B Maček 101, J Machado Miguens 151,157, D Macina 41, D Madaffari 111, R Madar 51, H J Maddocks 97, W F Mader 63, A Madsen 216, J Maeda 92, S Maeland 16, T Maeno 33, A Maevskiy 126, E Magradze 75, K Mahboubi 67, J Mahlstedt 135, C Maiani 179, C Maidantchik 29, A A Maier 128, T Maier 127, A Maio 156,157,159, S Majewski 144, Y Makida 91, N Makovec 145, B Malaescu 106, Pa Malecki 58, V P Maleev 152, F Malek 76, U Mallik 88, D Malon 8, C Malone 186, S Maltezos 12, V M Malyshev 137, S Malyukov 41, J Mamuzic 61, G Mancini 66, B Mandelli 41, L Mandelli 117, I Mandić 101, R Mandrysch 88, J Maneira 156,157, A Manfredini 128, L Manhaes de AndradeFilho 30, J Manjarres Ramos 207, A Mann 127, A Manousakis-Katsikakis 11, B Mansoulie 179, R Mantifel 113, M Mantoani 75, L Mapelli 41, L March 191, G Marchiori 106, M Marcisovsky 163, C P Marino 219, M Marjanovic 13, D E Marley 115, F Marroquim 29, S P Marsden 110, Z Marshall 17, L F Marti 19, S Marti-Garcia 217, B Martin 116, T A Martin 220, V J Martin 65, B Martin dit Latour 16, M Martinez 14, S Martin-Haugh 167, V S Martoiu 34, A C Martyniuk 104, M Marx 181, F Marzano 168, A Marzin 41, L Masetti 109, T Mashimo 202, R Mashinistov 123, J Masik 110, A L Maslennikov 137, I Massa 24,25, L Massa 24,25, P Mastrandrea 195, A Mastroberardino 54,55, T Masubuchi 202, P Mättig 225, J Mattmann 109, J Maurer 34, S J Maxfield 100, D A Maximov 137, R Mazini 198, S M Mazza 117,118, L Mazzaferro 170,171, G McGoldrick 205, S P Mc Kee 115, A McCarn 115, R L McCarthy 195, T G McCarthy 40, N A McCubbin 167, K W McFarlane 77, J A Mcfayden 104, G Mchedlidze 75, S J McMahon 167, R A McPherson 219, M Medinnis 61, S Meehan 189, S Mehlhase 127, A Mehta 100, K Meier 79, C Meineck 127, B Meirose 60, B R Mellado Garcia 191, F Meloni 19, A Mengarelli 24,25, S Menke 128, E Meoni 209, K M Mercurio 78, S Mergelmeyer 26, P Mermod 68, L Merola 131,132, C Meroni 117, F S Merritt 42, A Messina 168,169, J Metcalfe 33, A S Mete 211, C Meyer 109, C Meyer 151, J-P Meyer 179, J Meyer 135, H Meyer Zu Theenhausen 79, R P Middleton 167, S Miglioranzi 212,214, L Mijović 26, G Mikenberg 222, M Mikestikova 163, M Mikuž 101, M Milesi 114, A Milic 41, D W Miller 42, C Mills 65, A Milov 222, D A Milstead 192,193, A A Minaenko 166, Y Minami 202, I A Minashvili 90, A I Mincer 138, B Mindur 56, M Mineev 90, Y Ming 223, L M Mir 14, K P Mistry 151, T Mitani 221, J Mitrevski 127, V A Mitsou 217, A Miucci 68, P S Miyagawa 182, J U Mjörnmark 107, T Moa 192,193, K Mochizuki 111, S Mohapatra 52, W Mohr 67, S Molander 192,193, R Moles-Valls 26, R Monden 93, K Mönig 61, C Monini 76, J Monk 53, E Monnier 111, J MontejoBerlingen 14, F Monticelli 96, S Monzani 168,169, R W Moore 3, N Morange 145, D Moreno 210, M MorenoLlácer 75, P Morettini 69, D Mori 185, T Mori 202, M Morii 78, M Morinaga 202, V Morisbak 147, S Moritz 109, A K Morley 197, G Mornacchi 41, J D Morris 102, S S Mortensen 53, A Morton 74, L Morvaj 130, M Mosidze 72, J Moss 186, K Motohashi 204, R Mount 186, E Mountricha 33, S V Mouraviev 123, E J W Moyse 112, S Muanza 111, R D Mudd 20, F Mueller 128, J Mueller 155, R S P Mueller 127, T Mueller 39, D Muenstermann 68, P Mullen 74, G A Mullier 19, J A Murillo Quijada 20, W J Murray 167,220, H Musheghyan 75, E Musto 199, A G Myagkov 166, M Myska 164, B P Nachman 186, O Nackenhorst 75, J Nadal 75, K Nagai 148, R Nagai 204, Y Nagai 111, K Nagano 91, A Nagarkar 139, Y Nagasaka 82, K Nagata 208, M Nagel 128, E Nagy 111, A M Nairz 41, Y Nakahama 41, K Nakamura 91, T Nakamura 202, I Nakano 140, H Namasivayam 60, R F Naranjo Garcia 61, R Narayan 42, D I Narrias Villar 79, T Naumann 61, G Navarro 210, R Nayyar 9, H A Neal 115, P Yu Nechaeva 123, T J Neep 110, P D Nef 186, A Negri 149,150, M Negrini 24, S Nektarijevic 134, C Nellist 145, A Nelson 211, S Nemecek 163, P Nemethy 138, A A Nepomuceno 29, M Nessi 41, M S Neubauer 215, M Neumann 225, R M Neves 138, P Nevski 33, P R Newman 20, D H Nguyen 8, R B Nickerson 148, R Nicolaidou 179, B Nicquevert 41, J Nielsen 180, N Nikiforou 52, A Nikiforov 18, V Nikolaenko 166, I Nikolic-Audit 106, K Nikolopoulos 20, J K Nilsen 147, P Nilsson 33, Y Ninomiya 202, A Nisati 168, R Nisius 128, T Nobe 202, M Nomachi 146, I Nomidis 40, T Nooney 102, S Norberg 141, M Nordberg 41, O Novgorodova 63, S Nowak 128, M Nozaki 91, L Nozka 143, K Ntekas 12, G Nunes Hanninger 114, T Nunnemann 127, E Nurse 104, F Nuti 114, B J O’Brien 65, F O’grady 9, D C O’Neil 185, V O’Shea 74, F G Oakham 40, H Oberlack 128, T Obermann 26, J Ocariz 106, A Ochi 92, I Ochoa 104, J P Ochoa-Ricoux 43, S Oda 95, S Odaka 91, H Ogren 86, A Oh 110, S H Oh 64, C C Ohm 17, H Ohman 216, H Oide 41, W Okamura 146, H Okawa 208, Y Okumura 42, T Okuyama 91, A Olariu 34, S A Olivares Pino 65, D Oliveira Damazio 33, E Oliver Garcia 217, A Olszewski 58, J Olszowska 58, A Onofre 156,160, K Onogi 130, P U E Onyisi 42, C J Oram 206, M J Oreglia 42, Y Oren 200, D Orestano 172,173, N Orlando 201, C Oropeza Barrera 74, R S Orr 205, B Osculati 69,70, R Ospanov 110, G Otero y Garzon 38, H Otono 95, M Ouchrif 177, F Ould-Saada 147, A Ouraou 179, K P Oussoren 135, Q Ouyang 45, A Ovcharova 17, M Owen 74, R E Owen 20, V E Ozcan 21, N Ozturk 10, K Pachal 185, A PachecoPages 14, C Padilla Aranda 14, M Pagáčová 67, S Pagan Griso 17, E Paganis 182, F Paige 33, P Pais 112, K Pajchel 147, G Palacino 207, S Palestini 41, M Palka 57, D Pallin 51, A Palma 156,157, Y B Pan 223, E Panagiotopoulou 12, C E Pandini 106, J G Panduro Vazquez 103, P Pani 192,193, S Panitkin 33, D Pantea 34, L Paolozzi 68, Th D Papadopoulou 12, K Papageorgiou 201, A Paramonov 8, D Paredes Hernandez 201, M A Parker 39, K A Parker 182, F Parodi 69,70, J A Parsons 52, U Parzefall 67, E Pasqualucci 168, S Passaggio 69, F Pastore 172,173, Fr Pastore 103, G Pásztor 40, S Pataraia 225, N D Patel 197, J R Pater 110, T Pauly 41, J Pearce 219, B Pearson 141, L E Pedersen 53, M Pedersen 147, S Pedraza Lopez 217, R Pedro 156,157, S V Peleganchuk 137, D Pelikan 216, O Penc 163, C Peng 45, H Peng 46, B Penning 42, J Penwell 86, D V Perepelitsa 33, E Perez Codina 206, M T PérezGarcía-Estañ 217, L Perini 117,118, H Pernegger 41, S Perrella 131,132, R Peschke 61, V D Peshekhonov 90, K Peters 41, R F Y Peters 110, B A Petersen 41, T C Petersen 53, E Petit 61, A Petridis 1, C Petridou 201, P Petroff 145, E Petrolo 168, F Petrucci 172,173, N E Pettersson 204, R Pezoa 44, P W Phillips 167, G Piacquadio 186, E Pianori 220, A Picazio 68, E Piccaro 102, M Piccinini 24,25, M A Pickering 148, R Piegaia 38, D T Pignotti 139, J E Pilcher 42, A D Pilkington 110, J Pina 156,157,159, M Pinamonti 212,214, J L Pinfold 3, A Pingel 53, S Pires 106, H Pirumov 61, M Pitt 222, C Pizio 117,118, L Plazak 187, M-A Pleier 33, V Pleskot 165, E Plotnikova 90, P Plucinski 192,193, D Pluth 89, R Poettgen 192,193, L Poggioli 145, D Pohl 26, G Polesello 149, A Poley 61, A Policicchio 54,55, R Polifka 205, A Polini 24, C S Pollard 74, V Polychronakos 33, K Pommès 41, L Pontecorvo 168, B G Pope 116, G A Popeneciu 35, D S Popovic 13, A Poppleton 41, S Pospisil 164, K Potamianos 17, I N Potrap 90, C J Potter 196, C T Potter 144, G Poulard 41, J Poveda 41, V Pozdnyakov 90, P Pralavorio 111, A Pranko 17, S Prasad 41, S Prell 89, D Price 110, L E Price 8, M Primavera 98, S Prince 113, M Proissl 65, K Prokofiev 85, F Prokoshin 44, E Protopapadaki 179, S Protopopescu 33, J Proudfoot 8, M Przybycien 56, E Ptacek 144, D Puddu 172,173, E Pueschel 112, D Puldon 195, M Purohit 33, P Puzo 145, J Qian 115, G Qin 74, Y Qin 110, A Quadt 75, D R Quarrie 17, W B Quayle 212,213, M Queitsch-Maitland 110, D Quilty 74, S Raddum 147, V Radeka 33, V Radescu 61, S K Radhakrishnan 195, P Radloff 144, P Rados 114, F Ragusa 117,118, G Rahal 228, S Rajagopalan 33, M Rammensee 41, C Rangel-Smith 216, F Rauscher 127, S Rave 109, T Ravenscroft 74, M Raymond 41, A L Read 147, N P Readioff 100, D M Rebuzzi 149,150, A Redelbach 224, G Redlinger 33, R Reece 180, K Reeves 60, L Rehnisch 18, J Reichert 151, H Reisin 38, M Relich 211, C Rembser 41, H Ren 45, A Renaud 145, M Rescigno 168, S Resconi 117, O L Rezanova 137, P Reznicek 165, R Rezvani 122, R Richter 128, S Richter 104, E Richter-Was 57, O Ricken 26, M Ridel 106, P Rieck 18, C J Riegel 225, J Rieger 75, O Rifki 141, M Rijssenbeek 195, A Rimoldi 149,150, L Rinaldi 24, B Ristić 68, E Ritsch 41, I Riu 14, F Rizatdinova 142, E Rizvi 102, S H Robertson 113, A Robichaud-Veronneau 113, D Robinson 39, J E M Robinson 61, A Robson 74, C Roda 153,154, S Roe 41, O Røhne 147, S Rolli 209, A Romaniouk 125, M Romano 24,25, S M Romano Saez 51, E Romero Adam 217, N Rompotis 181, M Ronzani 67, L Roos 106, E Ros 217, S Rosati 168, K Rosbach 67, P Rose 180, P L Rosendahl 16, O Rosenthal 184, V Rossetti 192,193, E Rossi 131,132, L P Rossi 69, J H N Rosten 39, R Rosten 181, M Rotaru 34, I Roth 222, J Rothberg 181, D Rousseau 145, C R Royon 179, A Rozanov 111, Y Rozen 199, X Ruan 191, F Rubbo 186, I Rubinskiy 61, V I Rud 126, C Rudolph 63, M S Rudolph 205, F Rühr 67, A Ruiz-Martinez 41, Z Rurikova 67, N A Rusakovich 90, A Ruschke 127, H L Russell 181, J P Rutherfoord 9, N Ruthmann 67, Y F Ryabov 152, M Rybar 215, G Rybkin 145, N C Ryder 148, A F Saavedra 197, G Sabato 135, S Sacerdoti 38, A Saddique 3, H F-W Sadrozinski 180, R Sadykov 90, F Safai Tehrani 168, M Sahinsoy 79, M Saimpert 179, T Saito 202, H Sakamoto 202, Y Sakurai 221, G Salamanna 172,173, A Salamon 170, J E SalazarLoyola 44, M Saleem 141, D Salek 135, P H Sales DeBruin 181, D Salihagic 128, A Salnikov 186, J Salt 217, D Salvatore 54,55, F Salvatore 196, A Salvucci 83, A Salzburger 41, D Sammel 67, D Sampsonidis 201, A Sanchez 131,132, J Sánchez 217, V SanchezMartinez 217, H Sandaker 147, R L Sandbach 102, H G Sander 109, M P Sanders 127, M Sandhoff 225, C Sandoval 210, R Sandstroem 128, D P C Sankey 167, M Sannino 69,70, A Sansoni 66, C Santoni 51, R Santonico 170,171, H Santos 156, I SantoyoCastillo 196, K Sapp 155, A Sapronov 90, J G Saraiva 156,159, B Sarrazin 26, O Sasaki 91, Y Sasaki 202, K Sato 208, G Sauvage 7, E Sauvan 7, G Savage 103, P Savard 205, C Sawyer 167, L Sawyer 105, J Saxon 42, C Sbarra 24, A Sbrizzi 24,25, T Scanlon 104, D A Scannicchio 211, M Scarcella 197, V Scarfone 54,55, J Schaarschmidt 222, P Schacht 128, D Schaefer 41, R Schaefer 61, J Schaeffer 109, S Schaepe 26, S Schaetzel 80, U Schäfer 109, A C Schaffer 145, D Schaile 127, R D Schamberger 195, V Scharf 79, V A Schegelsky 152, D Scheirich 165, M Schernau 211, C Schiavi 69,70, C Schillo 67, M Schioppa 54,55, S Schlenker 41, K Schmieden 41, C Schmitt 109, S Schmitt 80, S Schmitt 61, B Schneider 206, Y J Schnellbach 100, U Schnoor 63, L Schoeffel 179, A Schoening 80, B D Schoenrock 116, E Schopf 26, A L S Schorlemmer 75, M Schott 109, D Schouten 206, J Schovancova 10, S Schramm 68, M Schreyer 224, C Schroeder 109, N Schuh 109, M J Schultens 26, H-C Schultz-Coulon 79, H Schulz 18, M Schumacher 67, B A Schumm 180, Ph Schune 179, C Schwanenberger 110, A Schwartzman 186, T A Schwarz 115, Ph Schwegler 128, H Schweiger 110, Ph Schwemling 179, R Schwienhorst 116, J Schwindling 179, T Schwindt 26, F G Sciacca 19, E Scifo 145, G Sciolla 28, F Scuri 153,154, F Scutti 26, J Searcy 115, G Sedov 61, E Sedykh 152, P Seema 26, S C Seidel 133, A Seiden 180, F Seifert 164, J M Seixas 29, G Sekhniaidze 131, K Sekhon 115, S J Sekula 59, D M Seliverstov 152, N Semprini-Cesari 24,25, C Serfon 41, L Serin 145, L Serkin 212,213, T Serre 111, M Sessa 172,173, R Seuster 206, H Severini 141, T Sfiligoj 101, F Sforza 41, A Sfyrla 41, E Shabalina 75, M Shamim 144, L Y Shan 45, R Shang 215, J T Shank 27, M Shapiro 17, P B Shatalov 124, K Shaw 212,213, S M Shaw 110, A Shcherbakova 192,193, C Y Shehu 196, P Sherwood 104, L Shi 198, S Shimizu 92, C O Shimmin 211, M Shimojima 129, M Shiyakova 90, A Shmeleva 123, D Shoaleh Saadi 122, M J Shochet 42, S Shojaii 117,118, S Shrestha 139, E Shulga 125, M A Shupe 9, S Shushkevich 61, P Sicho 163, P E Sidebo 194, O Sidiropoulou 224, D Sidorov 142, A Sidoti 24,25, F Siegert 63, Dj Sijacki 13, J Silva 156,159, Y Silver 200, S B Silverstein 192, V Simak 164, O Simard 7, Lj Simic 13, S Simion 145, E Simioni 109, B Simmons 104, D Simon 51, P Sinervo 205, N B Sinev 144, M Sioli 24,25, G Siragusa 224, A N Sisakyan 90, S Yu Sivoklokov 126, J Sjölin 192,193, T B Sjursen 16, M B Skinner 97, H P Skottowe 78, P Skubic 141, M Slater 20, T Slavicek 164, M Slawinska 135, K Sliwa 209, V Smakhtin 222, B H Smart 65, L Smestad 16, S Yu Smirnov 125, Y Smirnov 125, L N Smirnova 126, O Smirnova 107, M N K Smith 52, R W Smith 52, M Smizanska 97, K Smolek 164, A A Snesarev 123, G Snidero 102, S Snyder 33, R Sobie 219, F Socher 63, A Soffer 200, D A Soh 198, G Sokhrannyi 101, C A Solans 41, M Solar 164, J Solc 164, E Yu Soldatov 125, U Soldevila 217, A A Solodkov 166, A Soloshenko 90, O V Solovyanov 166, V Solovyev 152, P Sommer 67, H Y Song 46, N Soni 1, A Sood 17, A Sopczak 164, B Sopko 164, V Sopko 164, V Sorin 14, D Sosa 80, M Sosebee 10, C L Sotiropoulou 153,154, R Soualah 212,214, A M Soukharev 137, D South 61, B C Sowden 103, S Spagnolo 98,99, M Spalla 153,154, M Spangenberg 220, F Spanò 103, W R Spearman 78, D Sperlich 18, F Spettel 128, R Spighi 24, G Spigo 41, L A Spiller 114, M Spousta 165, T Spreitzer 205, R D St Denis 74, A Stabile 117, S Staerz 63, J Stahlman 151, R Stamen 79, S Stamm 18, E Stanecka 58, C Stanescu 172, M Stanescu-Bellu 61, M M Stanitzki 61, S Stapnes 147, E A Starchenko 166, J Stark 76, P Staroba 163, P Starovoitov 79, R Staszewski 58, P Steinberg 33, B Stelzer 185, H J Stelzer 41, O Stelzer-Chilton 206, H Stenzel 73, G A Stewart 74, J A Stillings 26, M C Stockton 113, M Stoebe 113, G Stoicea 34, P Stolte 75, S Stonjek 128, A R Stradling 10, A Straessner 63, M E Stramaglia 19, J Strandberg 194, S Strandberg 192,193, A Strandlie 147, E Strauss 186, M Strauss 141, P Strizenec 188, R Ströhmer 224, D M Strom 144, R Stroynowski 59, A Strubig 134, S A Stucci 19, B Stugu 16, N A Styles 61, D Su 186, J Su 155, R Subramaniam 105, A Succurro 14, Y Sugaya 146, M Suk 164, V V Sulin 123, S Sultansoy 6, T Sumida 93, S Sun 78, X Sun 45, J E Sundermann 67, K Suruliz 196, G Susinno 54,55, M R Sutton 196, S Suzuki 91, M Svatos 163, M Swiatlowski 186, I Sykora 187, T Sykora 165, D Ta 67, C Taccini 172,173, K Tackmann 61, J Taenzer 205, A Taffard 211, R Tafirout 206, N Taiblum 200, H Takai 33, R Takashima 94, H Takeda 92, T Takeshita 183, Y Takubo 91, M Talby 111, A A Talyshev 137, J Y C Tam 224, K G Tan 114, J Tanaka 202, R Tanaka 145, S Tanaka 91, B B Tannenwald 139, N Tannoury 26, S Tapprogge 109, S Tarem 199, F Tarrade 40, G F Tartarelli 117, P Tas 165, M Tasevsky 163, T Tashiro 93, E Tassi 54,55, A Tavares Delgado 156,157, Y Tayalati 177, F E Taylor 121, G N Taylor 114, P T E Taylor 114, W Taylor 207, F A Teischinger 41, M Teixeira Dias Castanheira 102, P Teixeira-Dias 103, K K Temming 67, D Temple 185, H Ten Kate 41, P K Teng 198, J J Teoh 146, F Tepel 225, S Terada 91, K Terashi 202, J Terron 108, S Terzo 128, M Testa 66, R J Teuscher 205, T Theveneaux-Pelzer 51, J P Thomas 20, J Thomas-Wilsker 103, E N Thompson 52, P D Thompson 20, R J Thompson 110, A S Thompson 74, L A Thomsen 226, E Thomson 151, M Thomson 39, R P Thun 115, M J Tibbetts 17, R E TicseTorres 111, V O Tikhomirov 123, Yu A Tikhonov 137, S Timoshenko 125, E Tiouchichine 111, P Tipton 226, S Tisserant 111, K Todome 204, T Todorov 7, S Todorova-Nova 165, J Tojo 95, S Tokár 187, K Tokushuku 91, K Tollefson 116, E Tolley 78, L Tomlinson 110, M Tomoto 130, L Tompkins 186, K Toms 133, E Torrence 144, H Torres 185, E Torró Pastor 181, J Toth 111, F Touchard 111, D R Tovey 182, T Trefzger 224, L Tremblet 41, A Tricoli 41, I M Trigger 206, S Trincaz-Duvoid 106, M F Tripiana 14, W Trischuk 205, B Trocmé 76, C Troncon 117, M Trottier-McDonald 17, M Trovatelli 219, L Truong 212,214, M Trzebinski 58, A Trzupek 58, C Tsarouchas 41, J C-L Tseng 148, P V Tsiareshka 119, D Tsionou 201, G Tsipolitis 12, N Tsirintanis 11, S Tsiskaridze 14, V Tsiskaridze 67, E G Tskhadadze 71, I I Tsukerman 124, V Tsulaia 17, S Tsuno 91, D Tsybychev 195, A Tudorache 34, V Tudorache 34, A N Tuna 78, S A Tupputi 24,25, S Turchikhin 126, D Turecek 164, R Turra 117,118, A J Turvey 59, P M Tuts 52, A Tykhonov 68, M Tylmad 192,193, M Tyndel 167, I Ueda 202, R Ueno 40, M Ughetto 192,193, M Ugland 16, F Ukegawa 208, G Unal 41, A Undrus 33, G Unel 211, F C Ungaro 67, Y Unno 91, C Unverdorben 127, J Urban 188, P Urquijo 114, P Urrejola 109, G Usai 10, A Usanova 87, L Vacavant 111, V Vacek 164, B Vachon 113, C Valderanis 109, N Valencic 135, S Valentinetti 24,25, A Valero 217, L Valery 14, S Valkar 165, E Valladolid Gallego 217, S Vallecorsa 68, J A Valls Ferrer 217, W Van Den Wollenberg 135, P C Van Der Deijl 135, R van der Geer 135, H van der Graaf 135, N van Eldik 199, P van Gemmeren 8, J Van Nieuwkoop 185, I van Vulpen 135, M C van Woerden 41, M Vanadia 168,169, W Vandelli 41, R Vanguri 151, A Vaniachine 8, F Vannucci 106, G Vardanyan 227, R Vari 168, E W Varnes 9, T Varol 59, D Varouchas 106, A Vartapetian 10, K E Varvell 197, F Vazeille 51, T Vazquez Schroeder 113, J Veatch 9, L M Veloce 205, F Veloso 156,158, T Velz 26, S Veneziano 168, A Ventura 98,99, D Ventura 112, M Venturi 219, N Venturi 205, A Venturini 28, V Vercesi 149, M Verducci 168,169, W Verkerke 135, J C Vermeulen 135, A Vest 63, M C Vetterli 185, O Viazlo 107, I Vichou 215, T Vickey 182, O E VickeyBoeriu 182, G H A Viehhauser 148, S Viel 17, R Vigne 87, M Villa 24,25, M Villaplana Perez 117,118, E Vilucchi 66, M G Vincter 40, V B Vinogradov 90, I Vivarelli 196, F Vives Vaque 3, S Vlachos 12, D Vladoiu 127, M Vlasak 164, M Vogel 43, P Vokac 164, G Volpi 153,154, M Volpi 114, H von der Schmitt 128, H von Radziewski 67, E von Toerne 26, V Vorobel 165, K Vorobev 125, M Vos 217, R Voss 41, J H Vossebeld 100, N Vranjes 13, M Vranjes Milosavljevic 13, V Vrba 163, M Vreeswijk 135, R Vuillermet 41, I Vukotic 42, Z Vykydal 164, P Wagner 26, W Wagner 225, H Wahlberg 96, S Wahrmund 63, J Wakabayashi 130, J Walder 97, R Walker 127, W Walkowiak 184, C Wang 198, F Wang 223, H Wang 17, H Wang 59, J Wang 61, J Wang 197, K Wang 113, R Wang 8, S M Wang 198, T Wang 26, T Wang 52, X Wang 226, C Wanotayaroj 144, A Warburton 113, C P Ward 39, D R Wardrope 104, A Washbrook 65, C Wasicki 61, P M Watkins 20, A T Watson 20, I J Watson 197, M F Watson 20, G Watts 181, S Watts 110, B M Waugh 104, S Webb 110, M S Weber 19, S W Weber 224, J S Webster 42, A R Weidberg 148, B Weinert 86, J Weingarten 75, C Weiser 67, H Weits 135, P S Wells 41, T Wenaus 33, T Wengler 41, S Wenig 41, N Wermes 26, M Werner 67, P Werner 41, M Wessels 79, J Wetter 209, K Whalen 144, A M Wharton 97, A White 10, M J White 1, R White 44, S White 153,154, D Whiteson 211, F J Wickens 167, W Wiedenmann 223, M Wielers 167, P Wienemann 26, C Wiglesworth 53, L A M Wiik-Fuchs 26, A Wildauer 128, H G Wilkens 41, H H Williams 151, S Williams 135, C Willis 116, S Willocq 112, A Wilson 115, J A Wilson 20, I Wingerter-Seez 7, F Winklmeier 144, B T Winter 26, M Wittgen 186, J Wittkowski 127, S J Wollstadt 109, M W Wolter 58, H Wolters 156,158, B K Wosiek 58, J Wotschack 41, M J Woudstra 110, K W Wozniak 58, M Wu 76, M Wu 42, S L Wu 223, X Wu 68, Y Wu 115, T R Wyatt 110, B M Wynne 65, S Xella 53, D Xu 45, L Xu 33, B Yabsley 197, S Yacoob 189, R Yakabe 92, M Yamada 91, D Yamaguchi 204, Y Yamaguchi 146, A Yamamoto 91, S Yamamoto 202, T Yamanaka 202, K Yamauchi 130, Y Yamazaki 92, Z Yan 27, H Yang 49, H Yang 223, Y Yang 198, W-M Yao 17, Y Yasu 91, E Yatsenko 7, K H Yau Wong 26, J Ye 59, S Ye 33, I Yeletskikh 90, A L Yen 78, E Yildirim 61, K Yorita 221, R Yoshida 8, K Yoshihara 151, C Young 186, C J S Young 41, S Youssef 27, D R Yu 17, J Yu 10, J M Yu 115, J Yu 142, L Yuan 92, S P Y Yuen 26, A Yurkewicz 136, I Yusuff 39, B Zabinski 58, R Zaidan 88, A M Zaitsev 166, J Zalieckas 16, A Zaman 195, S Zambito 78, L Zanello 168,169, D Zanzi 114, C Zeitnitz 225, M Zeman 164, A Zemla 56, Q Zeng 186, K Zengel 28, O Zenin 166, T Ženiš 187, D Zerwas 145, D Zhang 115, F Zhang 223, H Zhang 47, J Zhang 8, L Zhang 67, R Zhang 46, X Zhang 48, Z Zhang 145, X Zhao 59, Y Zhao 48,145, Z Zhao 46, A Zhemchugov 90, J Zhong 148, B Zhou 115, C Zhou 64, L Zhou 52, L Zhou 59, M Zhou 195, N Zhou 50, C G Zhu 48, H Zhu 45, J Zhu 115, Y Zhu 46, X Zhuang 45, K Zhukov 123, A Zibell 224, D Zieminska 86, N I Zimine 90, C Zimmermann 109, S Zimmermann 67, Z Zinonos 75, M Zinser 109, M Ziolkowski 184, L Živković 13, G Zobernig 223, A Zoccoli 24,25, M zur Nedden 18, G Zurzolo 131,132, L Zwalinski 41
PMCID: PMC4710100  PMID: 26770067

Abstract

Searches for pair-produced scalar leptoquarks are performed using 20 fb-1 of proton–proton collision data provided by the LHC and recorded by the ATLAS detector at s=8 TeV. Events with two electrons (muons) and two or more jets in the final state are used to search for first (second)-generation leptoquarks. The results from two previously published ATLAS analyses are interpreted in terms of third-generation leptoquarks decaying to bντb¯ντ¯ and tντt¯ντ¯ final states. No statistically significant excess above the Standard Model expectation is observed in any channel and scalar leptoquarks are excluded at 95 % CL with masses up to mLQ1< 1050 GeV for first-generation leptoquarks, mLQ2< 1000 GeV for second-generation leptoquarks, mLQ3< 625 GeV for third-generation leptoquarks in the bντb¯ντ¯ channel, and 200 <mLQ3< 640 GeV in the tντt¯ντ¯ channel.

Introduction

Leptoquarks (LQ) are predicted by many extensions of the Standard Model (SM) [17] and may provide an explanation for the many observed similarities between the quark and lepton sectors of the SM. LQs are colour-triplet bosons with fractional electric charge. They carry non-zero values of both baryon and lepton number [8]. They can be either scalar or vector bosons and are expected to decay directly to lepton–quark pairs (where the lepton can be either charged or neutral).

The coupling strength between scalar LQs and the lepton-quark pairs depends on a single Yukawa coupling, termed λLQq. The additional magnetic moment and electric quadrupole moment interactions of vector LQs are governed by two coupling constants [9]. The coupling constants for both the scalar and vector LQs, and the branching fraction of the LQ decay into a quark and a charged lepton, β, are model dependent. The production cross-section and couplings of vector LQs are enhanced relative to the contribution of scalar LQs, although the acceptance is expected to be similar in both cases. This analysis considers the simpler scenario of scalar LQ pair-production, for which the form of the interaction is known and which provides more conservative limits on LQ pair-production than for vector LQ pair-production.

In proton–proton collisions, LQs can be produced singly and in pairs. The production of single LQs, which happens at hadron colliders in association with a lepton, depends directly on the unknown Yukawa coupling λLQq. However, LQ pair-production is not sensitive to the value of the coupling. In pp collisions with a centre-of-mass energy s = 8 TeV, the dominant pair-production mechanism for LQ masses below 1 TeV is gluon fusion, while the qq-annihilation production process becomes increasingly important with increasing LQ mass.

The minimal Buchmüller–Rückl–Wyler model (mBRW) [10] is used as a benchmark model for scalar LQ production. It postulates additional constraints on the LQ properties, namely that the couplings have to be purely chiral, and makes the assumption that LQs are grouped into three families (first, second and third-generation) that couple only to leptons and quarks within the same generation. The latter requirement excludes the possibility of flavour-changing neutral currents (FCNC) [11], which have not been observed to date.

Previous searches for pair-produced LQs have been performed by the ATLAS Collaboration with 1.03 fb-1 of data collected at s = 7 TeV, excluding at 95 % confidence level (CL) the existence of scalar LQs with masses below 660 (607) GeV for first-generation LQs at β=1 (0.5) [12] and 685 (594) GeV for second-generation LQs at β=1 (0.5) [13]. The CMS Collaboration excluded at 95 % CL the existence of scalar LQs with masses below 830 (640) GeV for first-generation LQs at β=1 (0.5) and 840 (650) GeV for second-generation LQs at β=1 (0.5) with 5.0 fb-1 of data collected at s = 7 TeV [14].

Pair-produced third-generation scalar LQs decaying to bντb¯ντ¯ have been excluded by the CMS Collaboration for masses below 700 GeV at β=0, and for masses below 560 GeV  over the full β range using 19.7 fb-1 of data collected at s = 8 TeV [15]. Third-generation scalar LQs have been excluded in the bτ+b¯τ- channel at β=1 for masses up to 740 GeV by the CMS Collaboration using 19.7 fb-1 of data collected at s = 8 TeV [16], and by the ATLAS Collaboration at β=1 for masses up to 534 GeV using 4.7 fb-1 of data collected at s = 7 TeV [17]. The CMS Collaboration also excluded third-generation scalar LQs in the tτ-t¯τ+ channel at β=1 for masses up to 685 GeV  using 19.7 fb-1 of data collected at s = 8 TeV [15].

In this paper, searches for pair-produced first- and second-generation scalar LQs (LQ1 and LQ2, respectively) are performed by selecting events with two electrons or muons plus two jets in the final state (denoted by eejj  and μμjj, respectively). In addition, limits are placed on pair-produced third-generation scalar LQs (LQ3) by reinterpreting ATLAS searches for supersymmetry (SUSY) in two different channels [18, 19]. LQ production and decay mechanisms can be similar to those of stop quarks (t~) and sbottom quarks (b~). For example, t~t~ttχ~0χ~0 gives the same event topology as LQ3LQ3¯ tντt¯ντ¯ in the limit where the neutralino (χ~0) is massless. Two ATLAS analyses optimised for these SUSY processes are therefore used to set limits on the equivalent LQ decay processes: LQ3LQ3¯ bντb¯ντ¯ and LQ3LQ3¯ tντt¯ντ¯.

The results for each LQ3 channel cannot be combined since the parent LQs have different electric charges in the two cases (-13e for the LQ3LQ3¯ bντb¯ντ¯ channel and 23e for the LQ3LQ3¯ tντt¯ντ¯ channel, where e is the elementary electric charge). The branching fractions of LQ3 decays to bντ and tντ are assumed to be equal to 100 % in each case. Although complementary decays of a charge -13e (23e) LQ into a tτ-t¯τ+ (bτ+b¯τ-) final state are also allowed, kinematic suppression factors which favour LQ decays to b-quarks over t-quarks and the relative strengths of the Yukawa couplings would have to be considered. Since these suppression factors are model dependent, limits are not provided as a function of β for the LQ3 channels.

The ATLAS detector

The ATLAS experiment [20] is a multi-purpose detector with a forward–backward symmetric cylindrical geometry and nearly 4π coverage in solid angle. The three major sub-components of ATLAS are the tracking detector, the calorimeter and the muon spectrometer. Charged-particle tracks and vertices are reconstructed by the inner detector (ID) tracking system, comprising silicon pixel and microstrip detectors covering the pseudorapidity1 range |η| < 2.5, and a straw tube tracker that covers |η| < 2.0. The ID is immersed in a homogeneous 2 T magnetic field provided by a solenoid. Electron, photon, jet and tau energies are measured with sampling calorimeters. The ATLAS calorimeter system covers a pseudorapidity range of |η| < 4.9. Within the region |η| < 3.2, electromagnetic calorimetry is provided by barrel and endcap high-granularity lead/liquid argon (LAr) calorimeters, with an additional thin LAr presampler covering |η| < 1.8, to correct for energy loss in material upstream of the calorimeters. Hadronic calorimetry is provided by a steel/scintillator-tile calorimeter, segmented into three barrel structures within |η| < 1.7, and two copper/LAr hadronic endcap calorimeters. The forward region (3.1 < |η| < 4.9) is instrumented by a LAr calorimeter with copper (electromagnetic) and tungsten (hadronic) absorbers. Surrounding the calorimeters is a muon spectrometer (MS) with air-core toroids, a system of precision tracking chambers providing coverage over |η| < 2.7, and detectors with triggering capabilities over |η| < 2.4 to provide precise muon identification and momentum measurements.

Data and Monte Carlo samples

The results presented here are based on proton–proton collision data at a centre-of-mass energy of s = 8 TeV, collected by the ATLAS detector at the LHC during 2012. Data samples corresponding to an integrated luminosity of 20.3fb-1 are used by all channels except for the LQ3LQ3¯bντb¯ντ¯ analysis which uses 20.1 fb-1 because of requirements made by the trigger used in the analysis.

Simulated signal events of pair-produced scalar LQs decaying to e+e-qq¯, μ+μ-qq¯, tντt¯ντ¯, and bντb¯ντ¯ final states are produced using the Pythia 8.160 [21] event generator with CTEQ6L1 [22] parton distribution functions (PDFs). The coupling λLQq which determines the LQ lifetime and width [23] is set to 0.01×4πα, where α is the fine-structure constant. This value gives the LQ a full width of less than 100 MeV, which is much smaller than the detector resolution. For LQ masses in the ranges considered here (200 GeV  mLQ  1300 GeV, in steps of 50 GeV), the value of the coupling used is such that the LQs can be considered to decay promptly. The production cross-section of pair-produced LQs is assumed to be independent of the coupling strength. The signal process is normalised to the expected next-to-leading-order (NLO) cross-sections for scalar LQ pair-production [24]. The signal production cross-section is 23.5 fb for a LQ mass of 600 GeV, and 0.40 fb for a 1 TeV LQ and is the same for each generation.

Monte Carlo for background predictions

The Monte Carlo (MC) samples used to estimate the contributions from SM backgrounds to the LQ1 and LQ2 searches are discussed here. Details about the MC models used for estimating backgrounds in the LQ3 searches are available in Refs. [18] (for the bντb¯ντ¯ channel) and [19] (for the tντt¯ντ¯ channel).

The MC samples used to model the Z/γ+jets background with a dilepton invariant mass (m) less than 120 GeV and high-mass Drell–Yan backgrounds (m  120 GeV) are generated with SHERPA 1.4.1 [25]. The high-mass Drell–Yan samples are generated assuming massive c- and b-quarks instead of the conventional massless treatment.

Samples of tt¯ events are produced with POWHEG box [26, 27] interfaced with PYTHIA 6. MC samples representing the WW, WZ, and ZZ diboson decays are generated with HERWIG 6.52 [28] and use the AUET2 [29] values for the tunable parameters (the ‘AUET2 MC tune’). Samples of single-top-quark events in the Wt and s-channel are generated with MC@NLO 4.01 [30, 31] and the AUET2 MC tune, while the t-channel samples are generated with AcerMC 3.8 [32] interfaced with PYTHIA 8 and use the AUET2B [33] MC tune. The hadronisation and parton showering of the samples produced with MC@NLO are done using HERWIG 6.52 coupled to JIMMY 4.31 [34]. The W+jets samples are produced with ALPGEN 2.14 interfaced with JIMMY 4.31, also with the AUET2 MC tune applied. The choice of PDFs used to produce the MC simulated samples is generator dependent: AcerMC, PYTHIA, HERWIG and ALPGEN use CTEQ6L1, while MC@NLO uses CT10 [35]. For all samples, the detector response is modelled [36] using GEANT4 [37], except for the Drell–Yan background samples, which use a fast detector simulation where the calorimeter response is parameterised. The differences between fast and full simulation in terms of kinematic spectra and modelling of relevant objects are evaluated to be negligible.

The cross-sections of background processes used in the analysis are taken from theoretical predictions. Single-top production cross-sections in the s-channel [38], t-channel [39], and in associated production with a W boson [40], are calculated to NLO+NNLL accuracy. W+jets and Zττ cross-sections with NNLO accuracy are used [41]. The cross-sections for WW, WZ, and ZZ processes are calculated at NLO [42, 43]. The theoretical cross-section for WW production is scaled by a factor 1.2 and the uncertainty is increased by an extra 20 %, in order to take into account the ATLAS [44] and CMS measurements [45], which showed an excess in data at the level of 20 % (see Refs. [46, 47] for more discussion about possible causes of the excess).

For the Z/γ+jets and tt¯ backgrounds, LO and NLO cross-sections, respectively are used. These backgrounds are constrained using two control regions (CRs), as described in Sect. 4.5.

Searches for first- and second-generation LQs

The first- and second-generation analyses exploit similarities in the final states and use common search strategies to select dilepton plus dijet final states. Control regions are used to constrain estimates of the dominant backgrounds to the data. A set of discriminating variables is used to define signal regions (SRs) that are used for a counting analysis.

Trigger and data collection

Selected data events are required to have all relevant components of the ATLAS detector in good working condition. For the LQ1 (eejj) analysis, the trigger requires at least two electromagnetic calorimeter clusters, defined as energy deposits in the cells of the electromagnetic calorimeter. The leading cluster is required to have transverse momentum pT > 35 GeV and the sub-leading one pT > 25 GeV. This trigger selects electrons without imposing any requirement on the isolation and this allows a data-driven estimate of the background contribution from jets in the final state that pass the electron selection, as described in detail in Ref. [48]. The trigger is 98 % efficient with respect to the offline selection, which requires pT above 40 (30) GeV for the leading (sub-leading) electron.

For the LQ2 (μμjj) analysis, events are selected from data using a trigger which requires the presence of at least one muon candidate in the event with pT above 36 GeV. This trigger is fully efficient relative to the offline selection for muons with pT above 40 GeV [49].

Object selection

Electrons are selected and identified by imposing requirements on the shape of the cluster of energy deposits in the calorimeter, as well as on the quality of the track, and on the track-to-cluster matching. The identification efficiency is on average 85 % [50]. Electron candidates must have transverse energy ET>30 GeV and |η|<2.47. Electron candidates associated with clusters in the transition region between the barrel and endcap calorimeters (1.37 < |η| < 1.52) are excluded. All electrons are required to be reconstructed with cluster-based or combined cluster- and track-based algorithms and to satisfy calorimeter quality criteria. Requirements are made on the transverse (|d0|) and longitudinal (|z0|) impact parameters of the electron relative to the primary vertex and must satisfy |d0|<1 mm and |z0|<5 mm. In addition, electrons are required to be isolated by imposing requirements on the ETΔR<0.2 measured in the calorimeter within a cone of size ΔR=(Δη)2+(Δϕ)2=0.2 around the electron cluster excluding the electron cluster energy, and corrected to account for leakage (i.e. energy deposited by the electron outside of the cluster) and the average number of proton–proton interactions per bunch-crossing. The isolation requirements are optimised for high-pT electrons following the strategy in Ref. [48]. The leading electron is required to have ETΔR<0.2<0.007×ET+5 GeV, and the sub-leading electron is required to have ETΔR<0.2<0.022×ET+6 GeV.

Muon tracks are reconstructed independently in the ID and the MS. Tracks are required to have a minimum number of hits in each system, and must be compatible in terms of geometrical and momentum matching. In particular, in order to prevent mis-measurements at high pT, muons are required to have hits in all three MS stations, as described in Ref. [48]. In order to increase the muon identification efficiency, when one muon in the event satisfies the three-stations requirement, the criteria for the second muon in the event are relaxed to require hits in only two MS stations. Information from both the ID and MS is used in a combined fit to refine the measurement of the momentum of each muon [51]. Muon candidates are required to have pT>40 GeV, |η| < 2.4, |d0|<0.2 mm and |z0|<1.0 mm. Muons must also pass a relative-isolation requirement pTΔR<0.2/pT<0.2, where pTΔR<0.2 is the sum of the transverse momenta of all the tracks with pT above 1 GeV (except for the muon track) within a cone of ΔR < 0.2 around the muon track, and pT is the transverse momentum of the muon.

Jets are reconstructed from clusters of energy deposits detected in the calorimeter using the anti-kt algorithm [52] with a radius parameter R=0.4 [53]. They are calibrated using energy- and η-dependent correction factors derived from simulation and with residual corrections from in-situ measurements. The jets used in the analysis must satisfy pT > 30 GeV and |η| < 2.8. Jets reconstructed within a cone of ΔR=0.4 around a selected electron or muon are removed. Additional jet quality criteria are also applied to remove fake jets caused by detector effects. A detailed description of the jet energy scale measurement and its systematic uncertainties is given in Ref. [54].

Event pre-selection

Multiple pp interactions during bunch-crossings (pile-up) can give rise to multiple reconstructed vertices in events. The primary vertex of the event, from which the leptons are required to originate, is defined as the one with the largest sum of squared transverse momenta of its associated tracks. Events are selected if they contain a primary vertex with at least three associated tracks satisfying pT,track> 0.4 GeV.

MC events are corrected to better describe the data by applying a per-event weight to match the distribution of the average number of primary vertices observed in data. A weighting factor is also applied in order to improve the modelling of the vertex position in z. Scale factors are applied to account for differences in lepton identification and selection efficiency between data and MC simulation. The scale factors depend on the lepton kinematics and are described in detail in Ref. [51] for muons, and in Ref. [55] for electrons. The energy and momentum of the selected physics objects are corrected to account for the resolution and scale measured in data, as described in Ref. [51] for muons, in Ref. [55] for electrons and in Ref. [54] for jets.

Events are selected in the eejj  channel if they contain exactly two electrons with pT > 40 (30) GeV for the leading (sub-leading) electron and at least two jets with pT > 30 GeV. For the μμjj  channel, events are selected if they contain exactly two muons with pT > 40 GeV and opposite-sign charge, and at least two jets with pT > 30 GeV. No requirements are placed on the charges of the electron candidates due to inefficiencies in determining the charge of high-pT tracks associated with electrons. These sets of requirements form the basic event ‘pre-selection’ for the analyses, which is used to build the control and signal regions discussed in the following sections.

Signal regions

After applying the event pre-selection requirements, a set of signal regions is defined using additional kinematic variables in order to discriminate LQ signals from SM background processes and to enhance the signal-to-background ratio. The variables used are:

  • m: The dilepton invariant mass.

  • ST: The scalar sum of the transverse momenta of the two leading leptons and the two leading jets.

  • mLQmin: The lowest reconstructed LQ mass in the event. The reconstructed masses of the two LQ candidates in the event (mLQmin and mLQmax) are defined as the invariant masses of the two lepton–jet pairs with the smallest difference (and mLQmin<mLQmax).

Signal regions are determined by optimising the statistical significance as defined in Ref. [56]. The optimisation procedure is performed in a three-dimensional space constructed by m, ST and mLQmin  for each of the signal mass points. Several adjacent mass points may be grouped into a single SR. The signal acceptance of the selection requirements is estimated to be 50 % in the μμjj  channel and between 65 and 80 % in the eejj  channel (assuming β=1.0). The difference is due to tighter quality selection requirements in the μμjj  channel used to prevent muon mis-measurements in MS regions with poor alignment or missing chambers. The optimised signal regions are presented in Table 1 together with the mass of the corresponding LQ hypothesis. Each LQ mass hypothesis is tested in only one signal region, where limits on σ×β are extracted.

Table 1.

The minimum values of m, ST, and mLQmin used to define each of the signal regions targeting different LQ masses in the eejj and μμ jj channels. Each signal region is valid for one or more mass hypotheses, as shown in the second column

LQ masses (GeV) m (GeV) ST (GeV) mLQmin (GeV)
SR1 300 130 460 210
SR2 350 160 550 250
SR3 400 160 590 280
SR4 450 160 670 370
SR5 500–550 180 760 410
SR6 600–650 180 850 490
SR7 700–750 180 950 580
SR8 800–1300 180 1190 610

Background estimation

The main SM background processes to the LQ1 and LQ2 searches are the production of Z/γ+jets events, tt¯ events where both top quarks decay leptonically, and diboson events. Additional small contributions are expected from Zττ and single-top processes. Multi-jets, W+jets, tt¯ (where one or more top quarks decays hadronically), and single-top events with mis-identified or non-prompt leptons arising from hadron decays or photon conversions can also contribute. These fake lepton backgrounds are estimated separately in the eejj  and μμjj  channels using the same data-driven techniques as described in Ref. [48] and are found to be negligible for the μμjj  channel. Normalisation factors, derived using background-enriched control regions, are applied to the MC predictions for Z/γ+jets and tt¯ backgrounds to predict as accurately as possible the background in the signal regions. These control regions are constructed to be mutually exclusive to the signal region and the assumption is made that normalisation factors and their associated uncertainties in the signal region are the same as in the background-enriched control regions.

Fig. 1.

Fig. 1

Distributions of the dilepton invariant mass (m) in the eejj  (left) and μμ jj  (right) channels after applying the pre-selection cuts. The signal model assumes β=1.0. The last bin includes overflows. The ratio of the number of data events to the number of background events (and its statistical uncertainty) is also shown. The hashed bands represent all sources of statistical and systematic uncertainty on the background prediction

Control regions for Z/γ+jets and tt¯ backgrounds

Two control regions with negligible signal contributions are defined to validate the modelling accuracy of the MC simulated background events and to derive normalisation scale factors. The Z/γ+jets control region is defined by the pre-selection requirements with an additional requirement of 60 < mee < 120 GeV in the eejj  channel and 70 < mμμ < 110 GeV in the μμjj  channel. These control regions define a pure sample of Z/γ+jets events. The tt¯ control region is defined in both channels by applying the pre-selection requirements, but demanding exactly one muon and one electron (both with pT above 40 GeV) in the offline selection instead of two same-flavour leptons. In the case of the tt¯ control region for the eejj channel, the trigger requirement is modified by requiring a single isolated electron with pT above 24 GeV, which is fully efficient relative to the offline selection for electrons with pT above 30 GeV. In both cases, the same selection criteria are applied to data and MC events.

Normalisation factors are applied to the MC predictions for the Z/γ+jets and tt¯ background processes. They are obtained by performing a combined maximum likelihood fit to the observed yields in the control regions and signal region under consideration. Systematic uncertainties on the predicted MC yields related to the uncertainty on the cross-sections are taken into account by the fit through the use of dedicated nuisance parameters. The fit procedure is performed using the HistFitter package [57], which is a tool based on the RooStats framework [58]. The normalisation scale factor obtained from a background-only fit for the Z/γ+jets background in the eejj  (μμjj) channel is 1.1±0.2 (0.97±0.15), while the normalisation scale factor for tt¯ is 1.10±0.05 (1.01±0.05). The fitted background scale factors have little sensitivity to the inclusion of signal regions and the eventual presence of a signal.

Kinematic distributions

The distributions of the kinematic variables after performing the background-only fits in the control regions, and applying the event pre-selection requirements are shown in Figs. , and for the data, background estimates, and for three LQ masses of 300, 600 and 1000 GeV (with β=1.0).

Fig. 2.

Fig. 2

Distributions of the total scalar energy (ST) in the eejj  (left) and μμ jj  (right) channels after applying the pre-selection cuts. The signal model assumes β=1.0. The last bin includes overflows. The ratio of the number of data events to the number of background events (and its statistical uncertainty) is also shown. The hashed bands represent all sources of statistical and systematic uncertainty on the background prediction

Fig. 3.

Fig. 3

Distributions of the lowest reconstructed LQ mass (mLQmin) in the eejj  (left) and μμ jj  (right) channels after applying the pre-selection cuts. The signal model assumes β=1.0. The last bin includes overflows. The ratio of the number of data events to the number of background events (and its statistical uncertainty) is also shown. The hashed bands represent all sources of statistical and systematic uncertainty on the background prediction

Systematic uncertainties

The theoretical uncertainty on the NLO cross-section is taken into account for diboson, single-top, W+jets, and Zττ processes. For the two dominant backgrounds (tt¯ and Z/γ+jets) the modelling uncertainties are estimated using the symmetrised deviation from unity of the ratio of data to MC events in the tt¯ and Z/γ+jets control regions, which is fitted with a linear function for ST>400 GeV. The modelling systematic uncertainty is then applied as a function of ST, in the form of a weighting factor. The choice of ST for such a purpose is motivated by its sensitivity to mis-modelling of the kinematics of jets and leptons. It varies in the eejj (μμjj) channel between 8 % (10 %) and 25 % (30 %) for the Z/γ+jets background and between 6 % (10 %) and 24 % (40 %) for the tt¯ background. It increases for signal regions targeting higher mLQ.

The jet energy scale (JES) uncertainty depends on pT and η and contains additional factors, which are used to correct for pile-up effects. They are derived as a function of the number of primary vertices in the event to take into account additional pp collisions in a recorded event (in-time pile-up), or as a function of the expected number of interactions per bunch-crossing to constrain past and future collisions affecting the measurement of energies in the current bunch-crossing (out-of-time pile-up). An additional uncertainty on the jet energy resolution (JER) is taken into account. The relative impact on the background event yields from the JES (JER) uncertainty is between 8 % (1 %) in SR1 and 26 % (1 %) in SR8. The signal selection efficiency change due to the JES uncertainties ranges between 3 % in SR1 and 1 % in SR8, while the effect of the JER is negligible.

The electron energy scale and resolution are corrected to provide better agreement between MC predictions and data. The uncertainties on these corrections are propagated through the analysis as sources of systematic uncertainty. Uncertainties are taken into account for the electron trigger (0.1 %), identification (1 %) and reconstruction (1 %) efficiencies, and for uncertainties associated with the isolation requirements (0.1 %).

Scaling and smearing corrections are applied to the pT of the muons in order to minimise the differences in resolution between data and MC simulated events. The uncertainty on these corrections is below 1 %. Differences in the identification efficiency and in the efficiency of the trigger selection are taken into account and are less than 1 %.

QCD renormalisation and factorisation scales are varied by a factor of two to estimate the impact of higher orders on the signal production cross-section. The variation is found to be approximately 14 % for all mass points. The uncertainty on the signal cross-section related to the choice of PDF set is evaluated as the envelope of the prediction of 40 different CTEQ6.6 NLO error sets [24]. The uncertainty ranges from 18 % at mLQ=300 GeV to 56 % at mLQ=1300 GeV. These uncertainties are the same for all LQ generations. The effect on the choice of PDF set on the signal acceptance times reconstruction efficiency is estimated using the Hessian method [59]. The final PDF uncertainties on the signal samples are approximately 1 % for most mass points, rising to 4 % for some higher LQ masses. The impact of the choice of PDF set on the acceptance times reconstruction efficiency for each background process is estimated using the Hessian method (using the same method as for signals). The uncertainties range from 4 % in the low-mass signal regions to 17 % in the high-mass signal regions.

Results

The observed and expected yields in three representative signal regions for the eejj and the μμjj channels after the combined maximum likelihood fits are shown in Tables 2 and 3, respectively. The fit maximizes the likelihood constructed using the two CRs and the SR under study. When contructing the likelihood, the signal stregth and the background scale factors are treated as free parameters, the systematic uncertainties are treated as nuisance parameters.

Table 2.

Background and signal yields in three representative signal regions for LQs with masses mLQ= 300, 600 and 1000 GeV for the eejj channel (assuming β = 1.0). The observed number of events is also shown. Statistical and systematic uncertainties are given

Yields eejj channel
SR1 SR6 SR8
Observed 627 8 1
Total SM (6.4±0.4)×102 11±2 1.5±0.4
Z/γ (3.2±0.4)×102 7±2 1.3±0.4
Zττ 2.1±0.3 <0.01 <0.01
tt¯ (2.4±0.2)×102 2.3±0.5 0.12±0.04
Single top 19±3 <0.01 <0.01
Diboson 22±3 0.8±0.3 <0.01
Fake leptons (including W +jets) 34±6 0.410±0.010 0.033±0.006
mLQ = 300 GeV (17.6±0.9)×103
mLQ = 600 GeV 231±13
mLQ = 1000 GeV 5.2±0.3

Table 3.

Background and signal yields in three representative signal regions for LQs with masses mLQ= 300, 600 and 1000 GeV for the μμ jj channel (assuming β=1.0). The observed number of events is also shown. Statistical and systematic uncertainties are given

Yields μμ jj channel
SR1 SR6 SR8
Observed 426 5 1
Total SM (4.1±0.3)×102 7.0±1.2 1.3±0.4
Z/γ 209±18 4.6±1.0 0.9±0.3
Zττ 0.9±0.1 <0.01 <0.01
tt¯ 172±18 1.7±0.6 0.18±0.11
Single top 14±5 0.3±0.4 <0.01
Diboson 14±2 0.5±0.2 0.19±0.05
Fake leptons (including W +jets) <0.01 <0.01 <0.01
mLQ = 300 GeV (12.0±0.6)×103
mLQ = 600 GeV 152±18
mLQ = 1000 GeV 3.4±1.3

No significant excess above the SM expectation is observed in any of the signal regions and a modified frequentist CLs method [60] is used to set limits on the strength of the LQ signal, by constructing a profile likelihood ratio. Pseudo-experiments are used to determine the limits.

The cross-section limits on scalar LQ pair-production are presented as a function of β for both channels in Fig. . Also shown are the results of the ATLAS searches for first- and second-generation LQs using 1.03 fb-1 data at s= 7 TeV which also included searches in the eνjj and μνjj decay channels and therefore provide better sensitivity at low values of β. First (second)-generation scalar LQs are excluded for β=1 at 95 % CL for mLQ1< 1050 GeV (mLQ2< 1000 GeV). The expected exclusion ranges are the same as the observed ones. First (second)-generation scalar LQs are excluded for mLQ1<650 GeV (mLQ2<650 GeV) at β=0.2 and mLQ1<900 GeV (mLQ2<850 GeV) at β=0.5.

Fig. 4.

Fig. 4

The cross-section limits on scalar LQ pair-production times the square of the branching ratio as a function of mass (left) and the excluded branching ratio as a function of the LQ mass (right) to eq for the eejj channel (top) and to μq for the μμ jj channel (bottom). The ±1(2)σ uncertainty bands on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section (β=1.0) for scalar LQ pair-production and its corresponding theoretical uncertainty due to the choice of PDF set and renormalisation/factorisation scale are also included. The exclusion limits on LQ1 [12] and LQ2 [13] set by ATLAS in the eejj + e ν jj and μμ jj + μν jj search channels using 1.03 fb-1 of data collected at s=7 TeV are also shown

Search for third-generation LQs in the bντb¯ντ¯ channel

The ATLAS search for pair-production of third-generation supersymmetric partners of bottom quarks (sbottom, b~) [18] is reinterpreted in terms of the LQ model, in the case where each LQ decays to a b-quark and a ντ neutrino. In the original analysis, the b~ is assumed to decay via b~bχ~0, and t~ via t~bχ~± in the case where mχ~±-mχ~0 is small and the χ~± decay products are undetectable. The search is performed for final states with large missing transverse momentum (pTmiss, with magnitude ETmiss) and two jets identified as originating from b-quarks. The full analysis strategy is covered in Ref. [18]. A complete description of the analysis, including treatment of systematic uncertainties on background processes can be found there, but the event selection and background estimation methods used are summarised here for clarity.

Object and event selection

Events are required to have exactly two b-tagged [61] jets with pT > 20 GeV and |η| < 2.5, and ETmiss> 150 GeV. Additional jets in the event are accepted if they have pT> 20 GeV and |η| < 4.9. Events with one or more electrons (muons) with pT > 7 (6) GeV are vetoed. Candidate signal events are selected from data using a ETmiss trigger which is 99 % efficient for events passing the offline selection. Several variables are defined and used to optimise the event selection:

  • Δϕmin: The minimum azimuthal distance (Δϕ) between any of the leading three jets and the pTmiss.

  • meff: The scalar sum of the pT of the leading two or three jets (depending on the signal region) and the ETmiss.

  • HT,3: The scalar sum of the pT of all but the leading three jets.

  • mbb: The invariant mass of the two b-tagged jets in the event.

  • mCT: The contransverse mass [62], used to measure the masses of pair-produced heavy particles that decay semi-invisibly (i.e. decays where one of the decay products can be detected, but the other cannot).

In the original analysis, different signal regions were optimised according to the masses of the third-generation squark and the lightest supersymmetric particle (LSP). In the case of the LQ model reinterpretation the signal regions corresponding to the case where the mass of the LSP is approximately zero have best sensitivity, but all the signal regions are retained for coherence with the original analysis. The different signal region definitions are given in Table 4. Signal region A (SRA) has five different mCT thresholds. Signal region B (SRB) is optimised towards the region where the squark and LSP masses are approximately equal. The signal region with the best expected limit is used for each point in the exclusion plots.

Table 4.

Summary of the event selection in each signal region for the bντb¯ντ¯ channel [18]

graphic file with name 10052_2015_3823_Tab4_HTML.jpg

Background estimation

The dominant background process is the production of Z bosons in association with heavy-flavour jets where the Z boson subsequently decays to two neutrinos [Z(νν)+bb¯]. Its contribution is estimated from data in an opposite-sign dilepton control region. Top quark pair-production (tt¯) and W bosons produced in association with heavy flavour quarks also contribute significantly and are normalised in dedicated control regions before being extrapolated to the signal regions using MC simulation. Different control regions are defined for each signal region, requiring one or two leptons plus additional requirements similar to the corresponding signal region. The contributions from Z+jets, W+jets, and top quark production are estimated simultaneously with a profile likelihood fit to the three control regions. Contributions from diboson and tt¯+W / Z processes are estimated from MC simulation in all regions. The contribution from multi-jet events is estimated from data by taking well-measured multi-jet events from data and smearing the jets with jet response functions taken from MC simulation and validated in data. This procedure is described in detail in Ref. [63]. The contribution from multi-jet events in signal regions is found to be negligible.

Results

The number of data events observed in each signal region is reported in Table 5, together with the SM background expectation after the background-only fit, and the expected number of signal events for different LQ masses. The signal acceptance efficiency is around 2 % for all but the lowest LQ masses targeted (dropping to 0.27 % efficiency for mLQ = 200 GeV). All sources of systematic and statistical uncertainty are taken into account. The dominant systematic uncertainties on the background prediction are the jet energy scale (JES 1–5 %) and resolution (JER 1–8 %), and the b-tagging uncertainty (2–10 %). Detector-related systematic uncertainties on the signal prediction are dominated by uncertainties on the b-tagging efficiency (30 %). The second-largest source of uncertainty is due to the JES and is around 3 %.

Table 5.

For each signal region in the bντb¯ντ¯ channel, the observed event yield is compared with the background prediction obtained from the fit. Signal yields for different values of mLQ (assuming β=0.0) are given for comparison. The category ‘Others’ includes the diboson and tt¯+W / Z processes. Statistical, detector-related and theoretical systematic uncertainties are included, taking into account correlations [18]

SRA, mCT > SRB
150 GeV 200 GeV 250 GeV 300 GeV 350 GeV
Observed 102 48 14 7 3 65
Total SM 94±13 39±6 16±3 5.9±1.1 2.5±0.6 64±10
Top quark 11.1±1.8 2.4±1.4 0.4±0.3 <0.01 <0.01 41±7
Z production 66±11 28±5 11±2 4.7±0.9 1.9±0.4 13±4
W production 13±6 5±3 2.1±1.1 1.0±0.5 0.5±0.3 8±5
Others 4.3±1.5 3.4±1.3 1.8±0.6 0.12±0.11 0.10-0.10+0.12 2.0±1.0
Multi-jet 0.2±0.2 0.06±0.06 0.02±0.02 <0.01 <0.01 0.16±0.16
mLQ=300 GeV (8.5±0.2)×102 435±17 96±8 7±2 0.6±0.6 68±7
mLQ=600 GeV 21.9±0.4 19.0±0.4 15.6±0.4 12.0±0.3 8.7±0.3 1.8±0.1

The uncertainties on the signal production cross-section are estimated using the methods described in Sect. 4.6. These uncertainties are the same for all LQ genertions but the uncertainty due to the choice of PDF set varies with mLQ. Since the third-generation analyses consider a different mass range to the first- and second-generation analyses, in this case the uncertainty due to the choice of PDF set ranges from 7.1 % at mLQ=200 GeV to 30 % at mLQ=800 GeV. Effects on the acceptance due to the choice of PDF set are negligible.

No significant excess above the SM expectation is observed in any of the signal regions. Figure  shows the observed and expected exclusion limits for the scalar LQ3 pair-production scenario obtained by taking, for each signal mass configuration, the signal region with the best expected limit. These limits are obtained using the methods described in Sect. 4.7. These methods compare the observed numbers of events in the signal regions with the fitted background expectation and accounting for signal contamination in the corresponding CRs for a given model. Pair-produced third-generation scalar LQs decaying to bντb¯ντ¯ are excluded at 95 % CL for mLQ3 < 625 GeV. The expected excluded range is mLQ3 < 640 GeV.

Fig. 5.

Fig. 5

The expected (dashed) and observed (solid) 95 % CL upper limits on third-generation scalar LQ pair-production cross-section times the square of the branching ratio to bντ as a function of LQ mass, for the bντb¯ντ¯ channel. The ±1(2)σ uncertainty bands on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section (β=0.0) for scalar LQ pair-production and its corresponding theoretical uncertainty due to the choice of PDF set and renormalisation/factorisation scale are also included

Search for third-generation LQs in the tντt¯ντ¯ channel

The ATLAS search for pair-production of the supersymmetric partner of the top quark (stop quark, t~) [19] is reinterpreted in terms of the LQ model, in the case where each LQ decays to a top quark and a ντ neutrino. The original analysis has dedicated signal regions targeting t~ decays into tχ~0 and the subsequent semileptonic decay of the tt¯ pair. Events compatible with tt¯ plus extra ETmiss are selected with final states containing one isolated lepton, jets, and ETmiss. A complete description of the analysis strategy, including the treatment of systematic uncertainties on background processes can be found in Ref. [19]. The event selection and the background estimation methods are summarised here for clarity.

Object and event selection

Events are required to contain exactly one electron with pT > 25 GeV and |η| < 2.47, or muon with pT > 25 GeV and |η| < 2.4. Events containing more than one electron or muon with looser identification and pT requirements (10 GeV for both) are vetoed. In some signal regions, events are vetoed if they are consistent with containing a hadronically decaying τ lepton. Events are required to have a minimum of four jets with pT > 20 GeV and |η| < 2.5, with at least one of these passing b-tagging requirements [61]. In addition, selected events must have ETmiss > 100 GeV. Several variables are used to further select signal events and reject background processes:

  • mT: The transverse mass of the electron or muon and the ETmiss.

  • amT and mT,2τ: These are two variants on the stransverse mass (mT,2) [6466] which is a generalisation of the transverse mass when applied to signatures with two invisible particles in the final state. The asymmetric stransverse mass amT, aims to reject dileptonic tt¯ events where one of the leptons is not reconstructed or is outside the acceptance (and therefore adds to the ETmiss of the event). The second implementation of this variable, the τ stransverse mass mT,2τ, targets tt¯ events where one top decays leptonically and the other top decays into a τ that subsequently decays hadronically.

  • topness: This variable is designed to reject dileptonic tt¯ events where one lepton is assumed to be lost, as detailed in Ref. [67]. The topness variable is based on the minimisation of a χ2-type function.

  • mhad-top: This quantity is used to reject dileptonic tt¯ events but retain signal events that contain a hadronically decaying on-shell top quark, as in the LQt+ντ and t~1tχ~10 scenarios.

  • Δϕ(jet1,2,pTmiss): The azimuthal opening angle between the leading or sub-leading jet and pTmiss used to suppress multi-jet events where pTmiss is aligned with one of the leading two jets.

  • MetSig: An approximation of the ETmiss significance, where HT is defined as the scalar pT sum of the leading four jets.

  • HT,sigmiss: An object-based missing transverse momentum, divided by the per-event resolution of the jets, and shifted to the scale of the background [68].

Table 7.

The number of observed events in the three cut-and-count signal regions, together with the expected number of background events and signal events for different LQ masses (assuming β=0.0) in the tντt¯ντ¯ channel [19]

tN_med tN_high tN_boost
Observed 12 5 5
Total SM 13 ± 2 5.0 ± 0.9 3.3 ± 0.7
tt¯ 6.5 ± 1.7 2.0 ± 0.6 1.1 ± 0.4
W +jets 2.1 ± 0.5 0.9 ± 0.3 0.28 ± 0.14
Single top 1.1 ± 0.5 0.54 ± 0.19 0.39 ± 0.15
Diboson 1.4 ± 0.6 0.9 ± 0.3 0.7 ± 0.3
Z +jets 0.009 ± 0.005 0.003 ± 0.002 0.004 ± 0.002
tt¯ V 2.0 ± 0.6 0.8 ± 0.3 0.9 ± 0.3
mLQ=300 GeV 20 ± 3 3.4 ± 1.1 3.8 ± 1.2
mLQ=600 GeV 10.7 ± 0.3 7.9 ± 0.3 8.9 ± 0.3

Table 8.

The number of observed events in the shape-fit signal region, together with the expected number of background events and signal events for different LQ masses (assuming β=0.0) in the tντt¯ντ¯ channel [19]

tN_diag
 125<ETmiss<150 GeV  125<ETmiss<150 GeV  ETmiss>150 GeV  ETmiss>150 GeV
 120<mT<140 GeV  mT>140 GeV  120<mT<140 GeV  mT>140 GeV
Observed 117 163 101 217
Total SM (1.4±0.2)×102 (1.5±0.2)×102 98 ± 13 (2.4±0.3)×102
tt¯ (1.2±0.2)×102 (1.4±0.2)×102 85 ± 12 (2.0±0.3)×102
W +jets 7 ± 3 6 ± 3 4.6 ± 1.5 10 ± 4
Single top 5 ± 2 6 ± 2 6± 2 9 ± 4
Diboson 0.29 ± 0.18 0.8 ± 0.5 0.3 ± 0.3 0.30 ± 0.15
Z +jets 0.17 ± 0.08 0.24 ± 0.12 0.30 ± 0.15 0.5 ± 0.3
tt¯ V 1.5 ± 0.5 2.9 ± 0.9 2.5 ± 0.8 11 ± 3
mLQ=300 GeV 28 ± 3 77 ± 6 64 ± 5 269 ± 10
mLQ=600 GeV 0.15 ± 0.04 0.62 ± 0.08 0.83 ± 0.09 18.8 ± 0.4

The variables listed above are used to define three cut-and-count SRs and one shape-fit SR. Table 6 details the event selections for these signal regions. The SR labelled tN_boost targets LQ/stop masses of 700 GeV and takes advantage of the ‘boosted’ topology of such a heavy parent particle. The selection assumes that either all decay products of the hadronically decaying top quark, or at least the decay products of the hadronically decaying W boson, collimate into a jet reconstructed with a radius parameter R=1.0 [69, 70].

Table 6.

Selection criteria for the four SRs (tN_diag, tN_med, tN_high, and tN_boost) employed to search for LQ3LQ3¯tντt¯ντ¯ events [19]. The details of the limit-setting procedure for the exclusion setup can be found in Sect. 6.3

graphic file with name 10052_2015_3823_Tab6_HTML.jpg

Background estimation

The dominant sources of background are the production of tt¯ events and W+jets where the W boson decays leptonically. Other background processes considered are single top, dibosons, Z+jets, tt¯ produced in association with a vector boson (tt¯V), and multi-jets.

The predicted numbers of tt¯ and W+jets background events in the SRs are estimated from data using a fit to the number of observed events in dedicated control regions. Each SR has an associated CR for each of the tt¯ and W+jets backgrounds. The CRs are designed to select events as similar as possible to those selected by the corresponding SR while keeping the contamination from other backgrounds and potential signal low. This is achieved by e.g. requiring that 60 < mT< 90 GeV and in the case of the W+jets CR, inverting the b-jet requirement so that it becomes a b-jet veto. The simulation is used to extrapolate the background predictions into the signal region. The background fit predictions are validated using dedicated event samples, referred to as validation regions (VRs), and one or more VR is defined for each of these. Most VRs are defined by changing the mT windows to 90 < mT< 120 GeV. The VRs are designed to be kinematically close to the associated SRs to test the background estimates in regions of phase space as similar as possible to the SRs.

The multi-jet background is estimated from data using a matrix method described in Refs. [71, 72]. The contribution is found to be negligible. All other (small) backgrounds are determined entirely from simulation and normalised to the most accurate theoretical cross-sections available.

Results

The number of events observed in each signal region is reported in Tables 7 and 8, together with the SM background expectation and the expected number of signal events for different LQ masses. The signal acceptance is between 1.5 and 3 % depending on the LQ mass. All sources of systematic uncertainty and statistical uncertainty are taken into account. The dominant sources of uncertainty on the background prediction come from uncertainties related to the JES, JER, tt¯ background modelling, the b-tagging efficiency, and statistical uncertainties.

Fig. 6.

Fig. 6

The expected (dashed) and observed (solid) 95 % CL upper limits on the third-generation scalar LQ pair-production cross-section times the square of the branching ratio to tντ as a function of LQ mass, for the tντt¯ντ¯ channel. The ±1(2)σ uncertainty bands on the expected limit represent all sources of systematic and statistical uncertainty. The expected NLO production cross-section (β=0.0) for third-generation scalar LQ pair-production and its corresponding theoretical uncertainty due to the choice of PDF set and renormalisation/factorisation scale are also included

Detector-related systematic effects are evaluated for signal using the same methods used for the backgrounds (see Ref. [19] for details). The dominant detector-related systematic effects are the uncertainties on the JES (4 %) and the b-tagging efficiency (3 %).

The uncertainties on the signal production cross-section are estimated using the methods described in Sect. 4.6. The effect on the choice of PDF set on the signal acceptance is less than 1 % for most mass points, but increases to 1.7 % for mLQ=800 GeV.

Similar methods as described in Sect. 4.7 are used to assess the compatibility of the SM background-only hypothesis with the observations in the signal regions. The observed number of events is found to agree well with the expected number of background events in all signal regions. No significant excess over the expected background from SM processes is observed and the data are used to derive one-sided limits at 95 % CL. The results are obtained from a profile likelihood-ratio test following the CLs prescription [60]. The likelihood of the simultaneous fit is configured to include all CRs and one SR or shape-fit bin. The ‘exclusion setup’ event selection is applied (see Table 6), and all uncertainties except the theoretical signal uncertainty are included in the fit.

Exclusion limits are obtained by selecting a priori the signal region with the lowest expected CLs value for each signal grid point. The expected and observed limits on the LQ3LQ3¯ tντt¯ντ¯ process are shown in Fig. . Third-generation scalar LQs decaying to tντt¯ντ¯ are excluded at 95 % CL in the mass range 210 < mLQ3 < 640 GeV. The expected exclusion range is 200 < mLQ3 < 685 GeV. The limits for stop production in the case where the neutralino is massless are slightly stronger than the limits set on LQ3 production since the nominal stop limits consider a mostly right-handed stop. This leads to the top quarks being polarised in such a way that the acceptance increases. The limit worsens at low mass, due to the effect of greater contamination from top backgrounds.

Summary and conclusions

Searches for pair-production of first-, second- and third-generation scalar leptoquarks have been performed with the ATLAS detector at the LHC using an integrated luminosity of 20 fb-1 of data from pp collisions at s=8 TeV. No significant excess above the SM background expectation is observed in any channel. The results are summarised in Table 9.

Table 9.

Expected and observed exclusion ranges at 95 % CL for each of the four LQ decay channels considered

Decay channel Excluded range (95 % CL)
Expected Observed
eejj (β=1.0) mLQ1<1050 GeV mLQ1<1050 GeV
μμ jj (β=1.0) mLQ2<1000 GeV mLQ2<1000 GeV
bντb¯ντ¯(β=0.0) mLQ3<640 GeV mLQ3<625 GeV
tντt¯ντ¯(β=0.0) 200<mLQ3<685 GeV 210<mLQ3<640 GeV

The results presented here significantly extend the sensitivity in mass compared to previous searches. Low-mass regions are also considered and limits on the cross-sections are provided for the different final states analysed. Since β is not constrained by the theory, searches in the low mass regions are also important in order to extract limits for low-β values for the LQ1 and LQ2 analyses.

Acknowledgments

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, UK; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, FP7, Horizon 2020 and Marie Skłodowska-Curie Actions, European Union; Investissements d’Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; the Royal Society and Leverhulme Trust, UK. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Footnotes

1

ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the z-axis along the beam pipe. The x-axis points from the IP to the centre of the LHC ring, and the y-axis points upward. Cylindrical coordinates (r,ϕ) are used in the transverse plane, ϕ being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle θ as η=-lntan(θ/2).

References

  • 1.Dimopoulos SK, Susskind L. Nucl. Phys. B. 1979;155(1):237–252. doi: 10.1016/0550-3213(79)90364-X. [DOI] [Google Scholar]
  • 2.Dimopoulos S. Nucl. Phys. B. 1980;168:69–92. doi: 10.1016/0550-3213(80)90277-1. [DOI] [Google Scholar]
  • 3.E.J. Eichten, K. Lane, Phys. Lett. B 90(1, 2), 125–130 (1980)
  • 4.Angelopoulos VD, Ellis JR, Kowalski H, et al. Nucl. Phys. B. 1986;292:59–92. doi: 10.1016/0550-3213(87)90637-7. [DOI] [Google Scholar]
  • 5.Buchmüller W, Wyler D. Phys. Lett. B. 1986;177:377–382. doi: 10.1016/0370-2693(86)90771-9. [DOI] [Google Scholar]
  • 6.J.C. Pati, A. Salam, Phys. Rev. D 10, 275–289 (1974). [Erratum ibid. D 11, 703 (1975)]
  • 7.Georgi H, Glashow S. Phys. Rev. Lett. 1974;32:438–441. doi: 10.1103/PhysRevLett.32.438. [DOI] [Google Scholar]
  • 8.Schrempp B, Schrempp F. Phys. Lett. B. 1985;153:101. doi: 10.1016/0370-2693(85)91450-9. [DOI] [Google Scholar]
  • 9.J.L. Hewett, T.G. Rizzo, Phys. Rev. D 56, 5709–5724 (1997). arXiv:hep-ph/9703337
  • 10.W. Buchmüller, R. Rückl, D. Wyler, Phys. Lett. B 191, 442–448 (1987). [Erratum ibid. B 448, 320 (1999)]
  • 11.V.A. Mitsou, N.C. Benekos, I. Panagoulias, T. Papadopoulou, Czechoslov. J. Phys. 55, B659–B666 (2005). arXiv:hep-ph/0411189
  • 12.ATLAS Collaboration, Phys. Lett. B 709, 158–176 (2012). arXiv:1112.4828 [hep-ex]. [Erratum ibid. B 711, 442–455 (2012)]
  • 13.ATLAS Collaboration, Eur. Phys. J. C 72, 2151 (2012). arXiv:1203.3172 [hep-ex]
  • 14.CMS Collaboration, Phys. Rev. D 86, 052013 (2012). arXiv:1207.5406 [hep-ex]. Accessed 14 Dec 2015
  • 15.CMS Collaboration, JHEP 07, 042 (2015). arXiv:1503.09049 [hep-ex]
  • 16.CMS Collaboration, Phys. Lett. B 739, 229 (2014). arXiv:1408.0806 [hep-ex]
  • 17.ATLAS Collaboration, JHEP 1306, 033 (2013). arXiv:1303.0526 [hep-ex]
  • 18.ATLAS Collaboration, JHEP 1310, 189 (2013). arXiv:1308.2631 [hep-ex]
  • 19.ATLAS Collaboration, JHEP 1411, 118 (2014). arXiv:1407.0583 [hep-ex]
  • 20.ATLAS Collaboration, JINST 3, S08003 (2008)
  • 21.Sjöstrand T, Mrenna S, Skands PZ. Comput. Phys. Commun. 2008;178:852–867. doi: 10.1016/j.cpc.2008.01.036. [DOI] [Google Scholar]
  • 22.J. Pumplin et al., JHEP 0207, 012 (2002). arXiv:hep-ph/0201195
  • 23.A. Belyaev, C. Leroy, R. Mehdiyev, A. Pukhov, JHEP 0509, 005 (2005). arXiv:hep-ph/0502067
  • 24.M. Kramer, T. Plehn, M. Spira, P. Zerwas, Phys. Rev. D 71, 057503 (2005). arXiv:hep-ph/0411038
  • 25.Gleisberg T, et al. JHEP. 2009;0902:007. doi: 10.1088/1126-6708/2009/02/007. [DOI] [Google Scholar]
  • 26.P. Nason, JHEP 0411, 040 (2004). arXiv:hep-ph/0409146
  • 27.Frixione S, Nason P, Oleari C. JHEP. 2007;0711:070. doi: 10.1088/1126-6708/2007/11/070. [DOI] [Google Scholar]
  • 28.G. Corcella et al., JHEP 0101, 010 (2001). arXiv:hep-ph/0011363
  • 29.ATLAS Collaboration, Tech. Rep. ATL-PHYS-PUB-2011-008 (2011). https://cdsweb.cern.ch/record/1345343. Accessed 14 Dec 2015
  • 30.S. Frixione, E. Laenen, P. Motylinski, B.R. Webber, JHEP 0603, 092 (2006). arXiv:hep-ph/0512250
  • 31.Frixione S, Laenen E, Motylinski P, Webber BR, White CD. JHEP. 2008;0807:029. doi: 10.1088/1126-6708/2008/07/029. [DOI] [Google Scholar]
  • 32.B.P. Kersevan, E. Richter-Was, Comput. Phys. Commun. 184, 919–985 (2013). arXiv:hep-ph/0405247
  • 33.ATLAS Collaboration, Tech. Rep. ATL-PHYS-PUB-2011-014 (2011). https://cds.cern.ch/record/1400677. Accessed 14 Dec 2015
  • 34.J. Butterworth, J.R. Forshaw, M. Seymour, Z. Phys. C 72, 637–646 (1996). arXiv:hep-ph/9601371
  • 35.Lai H-L, et al. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. [DOI] [Google Scholar]
  • 36.ATLAS Collaboration, Eur. Phys. J. C 70, 823–874 (2010). arXiv:1005.4568 [physics.ins-det]
  • 37.Agostinelli S, et al. Nucl. Instrum. Methods. 2003;A506:250–303. doi: 10.1016/S0168-9002(03)01368-8. [DOI] [Google Scholar]
  • 38.Kidonakis N. Phys. Rev. D. 2010;81:054028. doi: 10.1103/PhysRevD.81.054028. [DOI] [Google Scholar]
  • 39.Kidonakis N. Phys. Rev. D. 2011;83:091503. doi: 10.1103/PhysRevD.83.091503. [DOI] [Google Scholar]
  • 40.Kidonakis N. Phys. Rev. D. 2010;82:054018. doi: 10.1103/PhysRevD.82.054018. [DOI] [Google Scholar]
  • 41.Catani S, Cieri L, Ferrera G, de Florian D, Grazzini M. Phys. Rev. Lett. 2009;103:082001. doi: 10.1103/PhysRevLett.103.082001. [DOI] [PubMed] [Google Scholar]
  • 42.Campbell JM, Ellis RK, Williams C. JHEP. 2011;1107:018. doi: 10.1007/JHEP07(2011)018. [DOI] [Google Scholar]
  • 43.J.M. Campbell, R.K. Ellis, Phys. Rev. D 60, 113006 (1999). arXiv:hep-ph/9905386
  • 44.ATLAS Collaboration, Phys. Rev. D 87(11), 112001 (2013). arXiv:1210.2979 [hep-ex]
  • 45.CMS Collaboration, Eur. Phys. J. C 73(2), 2283 (2013). arXiv:1210.7544 [hep-ex]
  • 46.Gehrmann T, et al. Phys. Rev. Lett. 2014;113(21):212001. doi: 10.1103/PhysRevLett.113.212001. [DOI] [PubMed] [Google Scholar]
  • 47.Jaiswal P, Okui T. Phys. Rev. D. 2014;90(7):073009. doi: 10.1103/PhysRevD.90.073009. [DOI] [Google Scholar]
  • 48.ATLAS Collaboration, Phys. Rev. D 90, 052005 (2014). arXiv:1405.4123 [hep-ex]
  • 49.ATLAS Collaboration, Eur. Phys. J. C 75(3), 120 (2015). arXiv:1408.3179 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 50.ATLAS Collaboration, Eur. Phys. J. C 74(7), 2941 (2014). arXiv:1404.2240 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 51.ATLAS Collaboration, Eur. Phys. J. C 74(11), 3130 (2014). arXiv:1407.3935 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 52.Cacciari M, Salam GP, Soyez G. JHEP. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. [DOI] [Google Scholar]
  • 53.M. Lampl et al., Tech. Rep. ATL-LARG-PUB-2008-002 (2008). https://cds.cern.ch/record/1099735. Accessed 14 Dec 2015
  • 54.ATLAS Collaboration, Eur. Phys. J. C 75, 17 (2015). arXiv:1406.0076 [hep-ex] [DOI] [PMC free article] [PubMed]
  • 55.ATLAS Collaboration, Eur. Phys. J. C 74(10), 3071 (2014). arXiv:1407.5063 [hep-ex]
  • 56.G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71, 1554 (2011). arXiv:1007.1727 [physics.data-an]. [Erratum ibid. C 73, 2501 (2013)]
  • 57.M. Baak et al., Eur. Phys. J. C 75(4), 153 (2015). arXiv:1410.1280 [hep-ex]
  • 58.L. Moneta et al., PoS ACAT 2010, 057 (2010). arXiv:1009.1003 [physics.data-an]
  • 59.McCausland WJ. J. Econom. 2012;168:189–206. doi: 10.1016/j.jeconom.2011.12.003. [DOI] [Google Scholar]
  • 60.A.L. Read, J. Phys. G Nucl. Part. Phys. 28(10), 2693 (2002). http://stacks.iop.org/0954-3899/28/i=10/a=313
  • 61.ATLAS Collaboration, ATLAS-CONF-2011-102. http://cdsweb.cern.ch/record/1369219. Accessed 14 Dec 2015
  • 62.Tovey DR. JHEP. 2008;0804:034. doi: 10.1088/1126-6708/2008/04/034. [DOI] [Google Scholar]
  • 63.ATLAS Collaboration, Phys. Rev. D 87, 012008 (2013). arXiv:1208.0949 [hep-ex]
  • 64.C. Lester, D. Summers, Phys. Lett. B 463, 99–103 (1999). arXiv:hep-ph/9906349
  • 65.Bai Y, Cheng H, Gallicchio J, Gu J. JHEP. 2012;07:110. doi: 10.1007/JHEP07(2012)110. [DOI] [Google Scholar]
  • 66.Barr A, Gripaios B, Lester C. JHEP. 2009;11:096. doi: 10.1088/1126-6708/2009/11/096. [DOI] [Google Scholar]
  • 67.Graesser ML, Shelton J. Phys. Rev. Lett. 2013;111(12):121802. doi: 10.1103/PhysRevLett.111.121802. [DOI] [PubMed] [Google Scholar]
  • 68.Nachman B, Lester C. Phys. Rev. D. 2013;88:075013. doi: 10.1103/PhysRevD.88.075013. [DOI] [Google Scholar]
  • 69.ATLAS Collaboration, JHEP 09, 076 (2013). arXiv:1306.4945 [hep-ph]
  • 70.Krohn D, Thaler J, Wang L. JHEP. 2010;02:084. doi: 10.1007/JHEP02(2010)084. [DOI] [Google Scholar]
  • 71.ATLAS Collaboration, Phys. Rev. D 85, 012006 (2012). arXiv:1109.6606 [hep-ex]
  • 72.ATLAS Collaboration, Phys. Rev. D 86, 092002 (2012). arXiv:1208.4688 [hep-ex]

Articles from The European Physical Journal. C, Particles and Fields are provided here courtesy of Springer

RESOURCES