Skip to main content
Thorax logoLink to Thorax
. 1980 Jul;35(7):552–556. doi: 10.1136/thx.35.7.552

Effect of an extension tube on the bronchodilator efficacy of terbutaline delivered from a metered dose inhaler.

S A Gomm, N P Keaney, N J Winsey, T B Stretton
PMCID: PMC471332  PMID: 7001671

Abstract

A double-blind within-patient investigation was performed to determine whether the interposition of an extension tube (10 cm length X 3.2 cm diameter) between a metered dose inhaler and the mouth alters the bronchodilator efficacy of terbutaline sulphate. On two consecutive study days 14 adult patients with stable reversible airways obstruction inhaled a cumulative dose of 500 micrograms of terbutaline which was delivered from a metered dose inhaler with or without the extension tube attached and received placebo in a similar manner. The drug was inhaled in doses of 125, 125, and 250 micrograms at 20 minutes intervals. The following measurements were made: forced expiratory volume in one second (FEV1), forced vital capacity (FVC), peak expiratory flow rate (PEFR), thoracic gas volume (TGV), and specific airways conductance (sGaw). These were done immediately before and at five and 15 minute intervals after each dose, and were repeated 90, 120, 180, 240, and 300 minutes after the first inhalation of terbutaline. Administration of terbutaline with and without an extension tube achieved significant bronchodilation at all dose levels in all respiratory variables (p < 0.001). There was no statistically significant difference in FEV1, FVC, PEFR, and sGaw values at any time or dose level with either method of administration. The use of the extension tube did not impair the efficacy or duration of action of inhaled terbutaline.

Full text

PDF
552

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackwell E. W., Briant R. H., Conolly M. E., Davies D. S., Dollery C. T. Metabolism of isoprenaline after aerosol and direct intrabronchial administration in man and dog. Br J Pharmacol. 1974 Apr;50(4):587–591. doi: 10.1111/j.1476-5381.1974.tb08593.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bloomfield P., Crompton G. K., Winsey N. J. A tube spacer to improve inhalation of drugs from pressurised aerosols. Br Med J. 1979 Dec 8;2(6203):1479–1479. doi: 10.1136/bmj.2.6203.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Booker D. V., Chamberlain A. C., Rundo J., Muir D. C., Thomson M. L. Elimination of 5 mu particles from the human lung. Nature. 1967 Jul 1;215(5096):30–33. doi: 10.1038/215030a0. [DOI] [PubMed] [Google Scholar]
  4. Connolly C. K. Method of using pressurized aerosols. Br Med J. 1975 Jul 5;3(5974):21–21. doi: 10.1136/bmj.3.5974.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davies D. S. Pharmacokinetics of inhaled substances. Postgrad Med J. 1975;51(7 Suppl):69–75. [PubMed] [Google Scholar]
  6. Dolovich M. B., Sanchis J., Rossman C., Newhouse M. T. Aerosol penetrance: a sensitive index of peripheral airways obstruction. J Appl Physiol. 1976 Mar;40(3):468–471. doi: 10.1152/jappl.1976.40.3.468. [DOI] [PubMed] [Google Scholar]
  7. Godfrey S., Zeidifard E., Brown K., Bell J. H. The possible site of action of sodium cromoglycate assessed by exercise challenge. Clin Sci Mol Med. 1974 Feb;46(2):265–272. doi: 10.1042/cs0460265. [DOI] [PubMed] [Google Scholar]
  8. Goldberg I. S., Lourenço R. V. Deposition of aerosols in pulmonary disease. Arch Intern Med. 1973 Jan;131(1):88–91. [PubMed] [Google Scholar]
  9. Lippmann M., Albert R. E. The effect of particle size on the regional deposition of inhaled aerosols in the human respiratory tract. Am Ind Hyg Assoc J. 1969 May-Jun;30(3):257–275. doi: 10.1080/00028896909343120. [DOI] [PubMed] [Google Scholar]
  10. Palmes E. D., Wang C. S., Goldring R. M., Altshuler B. Effect of depth of inhalation on aerosol persistence during breath holding. J Appl Physiol. 1973 Mar;34(3):356–360. doi: 10.1152/jappl.1973.34.3.356. [DOI] [PubMed] [Google Scholar]
  11. Paterson I. C., Crompton G. K. Use of pressurised aerosols by asthmatic patients. Br Med J. 1976 Jan 10;1(6001):76–77. doi: 10.1136/bmj.1.6001.76-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pavia D., Thomson M. L. The fractional deposition of inhaled 2 and 5 mum particles in the alveolar and tracheobronchial regions of the healthy human lung. Ann Occup Hyg. 1976 Nov;19(2):109–114. doi: 10.1093/annhyg/19.2.109. [DOI] [PubMed] [Google Scholar]
  13. Pavia D., Thomson M., Shannon H. S. Aerosol inhalation and depth of deposition in the human lung. The effect of airway obstruction and tidal volume inhaled. Arch Environ Health. 1977 May-Jun;32(3):131–137. doi: 10.1080/00039896.1977.10667269. [DOI] [PubMed] [Google Scholar]
  14. Stanescu D. C., De Sutter P., Van De Woestijne K. P. Pressure-corrected flow body plethysmograph. Am Rev Respir Dis. 1972 Feb;105(2):304–305. doi: 10.1164/arrd.1972.105.2.304. [DOI] [PubMed] [Google Scholar]
  15. Thomson M. L., Short M. D. Mucociliary function in health, chronic obstructive airway disease, and asbestosis. J Appl Physiol. 1969 May;26(5):535–539. doi: 10.1152/jappl.1969.26.5.535. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES