Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1993 Aug 15;90(16):7480–7484. doi: 10.1073/pnas.90.16.7480

The synonymous substitution rate of the major histocompatibility complex loci in primates.

Y Satta 1, C O'hUigin 1, N Takahata 1, J Klein 1
PMCID: PMC47165  PMID: 8356042

Abstract

Because the divergence of many allelic lineages at the major histocompatibility complex (MHC) loci predates species divergence, standard methods of calculating synonymous substitution rates are not applicable to this system. We used three alternative methods of rate estimation: one based on the minimum number of substitutions (Dm), another on the nucleotide difference (Dxy), and the third on the net nucleotide difference (Dn). We applied these methods to the protein-encoding sequences of primate MHC class I (A, B, and C) and class II (DRB1) genes. To determine the reliability of the different estimates, we carried out computer simulation. The distribution of the estimates based on Dxy or Dn is generally much broader than that based on Dm. More importantly, the Dm-based method nearly always has the highest probability of recovering true rates, provided that Dm is not smaller than 5. Because of its desirable statistical properties, we used the Dm-based method to estimate the rate of synonymous substitutions. The rate is 1.37 +/- 0.61 for A, 1.84 +/- 0.40 for B, 3.87 +/- 1.05 for C, and 1.18 +/- 0.36 for DRB1 loci, always per site per 10(9) years. Hence despite the extraordinary polymorphism, the mutation rate at the primate MHC loci is no higher than that of other loci.

Full text

PDF
7480

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Britten R. J. Rates of DNA sequence evolution differ between taxonomic groups. Science. 1986 Mar 21;231(4744):1393–1398. doi: 10.1126/science.3082006. [DOI] [PubMed] [Google Scholar]
  2. Chen Z. W., McAdam S. N., Hughes A. L., Dogon A. L., Letvin N. L., Watkins D. I. Molecular cloning of orangutan and gibbon MHC class I cDNA. The HLA-A and -B loci diverged over 30 million years ago. J Immunol. 1992 Apr 15;148(8):2547–2554. [PubMed] [Google Scholar]
  3. Easteal S. The relative rate of DNA evolution in primates. Mol Biol Evol. 1991 Jan;8(1):115–127. doi: 10.1093/oxfordjournals.molbev.a040632. [DOI] [PubMed] [Google Scholar]
  4. Fan W. M., Kasahara M., Gutknecht J., Klein D., Mayer W. E., Jonker M., Klein J. Shared class II MHC polymorphisms between humans and chimpanzees. Hum Immunol. 1989 Oct;26(2):107–121. doi: 10.1016/0198-8859(89)90096-7. [DOI] [PubMed] [Google Scholar]
  5. Grahovac B., Mayer W. E., Vincek V., Figueroa F., O'hUigin C., Tichy H., Klein J. Major-histocompatibility-complex DRB genes of a New-World monkey, the cottontop tamarin (Saguinus oedipus). Mol Biol Evol. 1992 May;9(3):403–416. doi: 10.1093/oxfordjournals.molbev.a040732. [DOI] [PubMed] [Google Scholar]
  6. Hayashida H., Miyata T. Unusual evolutionary conservation and frequent DNA segment exchange in class I genes of the major histocompatibility complex. Proc Natl Acad Sci U S A. 1983 May;80(9):2671–2675. doi: 10.1073/pnas.80.9.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hughes A. L., Nei M. Evolutionary relationships of class II major-histocompatibility-complex genes in mammals. Mol Biol Evol. 1990 Nov;7(6):491–514. doi: 10.1093/oxfordjournals.molbev.a040622. [DOI] [PubMed] [Google Scholar]
  8. Hughes A. L., Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature. 1988 Sep 8;335(6186):167–170. doi: 10.1038/335167a0. [DOI] [PubMed] [Google Scholar]
  9. Kasahara M., Klein D., Vincek V., Sarapata D. E., Klein J. Comparative anatomy of the primate major histocompatibility complex DR subregion: evidence for combinations of DRB genes conserved across species. Genomics. 1992 Oct;14(2):340–349. doi: 10.1016/s0888-7543(05)80224-1. [DOI] [PubMed] [Google Scholar]
  10. Kimura M. Evolutionary rate at the molecular level. Nature. 1968 Feb 17;217(5129):624–626. doi: 10.1038/217624a0. [DOI] [PubMed] [Google Scholar]
  11. Klein J., Kasahara M., Gutknecht J., Figueroa F. Origin and function of Mhc polymorphism. Chem Immunol. 1990;49:35–50. [PubMed] [Google Scholar]
  12. Klein J., Satta Y., O'hUigin C., Takahata N. The molecular descent of the major histocompatibility complex. Annu Rev Immunol. 1993;11:269–295. doi: 10.1146/annurev.iy.11.040193.001413. [DOI] [PubMed] [Google Scholar]
  13. Lawlor D. A., Warren E., Taylor P., Parham P. Gorilla class I major histocompatibility complex alleles: comparison to human and chimpanzee class I. J Exp Med. 1991 Dec 1;174(6):1491–1509. doi: 10.1084/jem.174.6.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lawlor D. A., Warren E., Ward F. E., Parham P. Comparison of class I MHC alleles in humans and apes. Immunol Rev. 1990 Feb;113:147–185. doi: 10.1111/j.1600-065x.1990.tb00040.x. [DOI] [PubMed] [Google Scholar]
  15. Li W. H., Sadler L. A. Low nucleotide diversity in man. Genetics. 1991 Oct;129(2):513–523. doi: 10.1093/genetics/129.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Marsh S. G., Bodmer J. G. HLA class II nucleotide sequences, 1991. Immunogenetics. 1991;33(5-6):321–334. doi: 10.1007/BF00216691. [DOI] [PubMed] [Google Scholar]
  17. Mayer W. E., Jonker M., Klein D., Ivanyi P., van Seventer G., Klein J. Nucleotide sequences of chimpanzee MHC class I alleles: evidence for trans-species mode of evolution. EMBO J. 1988 Sep;7(9):2765–2774. doi: 10.1002/j.1460-2075.1988.tb03131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller M. D., Yamamoto H., Hughes A. L., Watkins D. I., Letvin N. L. Definition of an epitope and MHC class I molecule recognized by gag-specific cytotoxic T lymphocytes in SIVmac-infected rhesus monkeys. J Immunol. 1991 Jul 1;147(1):320–329. [PubMed] [Google Scholar]
  19. Neel J. V., Satoh C., Goriki K., Fujita M., Takahashi N., Asakawa J., Hazama R. The rate with which spontaneous mutation alters the electrophoretic mobility of polypeptides. Proc Natl Acad Sci U S A. 1986 Jan;83(2):389–393. doi: 10.1073/pnas.83.2.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nei M., Li W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5269–5273. doi: 10.1073/pnas.76.10.5269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Takahata N. A simple genealogical structure of strongly balanced allelic lines and trans-species evolution of polymorphism. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2419–2423. doi: 10.1073/pnas.87.7.2419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Takahata N. Allelic genealogy and human evolution. Mol Biol Evol. 1993 Jan;10(1):2–22. doi: 10.1093/oxfordjournals.molbev.a039995. [DOI] [PubMed] [Google Scholar]
  23. Takahata N., Nei M. Gene genealogy and variance of interpopulational nucleotide differences. Genetics. 1985 Jun;110(2):325–344. doi: 10.1093/genetics/110.2.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tavaré S. Line-of-descent and genealogical processes, and their applications in population genetics models. Theor Popul Biol. 1984 Oct;26(2):119–164. doi: 10.1016/0040-5809(84)90027-3. [DOI] [PubMed] [Google Scholar]
  25. Wu C. I., Li W. H. Evidence for higher rates of nucleotide substitution in rodents than in man. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1741–1745. doi: 10.1073/pnas.82.6.1741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zemmour J., Parham P. HLA class I nucleotide sequences, 1991. Immunogenetics. 1991;33(5-6):310–320. doi: 10.1007/BF00216690. [DOI] [PubMed] [Google Scholar]
  27. Zhu Z. F., Vincek V., Figueroa F., Schönbach C., Klein J. Mhc-DRB genes of the pigtail macaque (Macaca nemestrina): implications for the evolution of human DRB genes. Mol Biol Evol. 1991 Sep;8(5):563–578. doi: 10.1093/oxfordjournals.molbev.a040673. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES