Abstract
We assessed the dynamics of neuroendocrine (NE) cell numbers, the intensity of specific 5-HT fluorescence, and the arterial medial thickness in the lungs of neonatal rabbits in normoxia and acute and chronic hypoxia. Hypoxic neonates had significantly higher NE cell numbers and medial thickness of the pulmonary arteries at 5 days of age than did normoxic controls; 1- and 3-day-old young that died in hypoxia also had significantly higher cell numbers and medial thickness than did hypoxic survivors. A decline in these cell numbers was noted between 1 and 5 days of age among normoxic young, whereas there was no significant change among hypoxic young. Medial thickness was unchanged among normoxic young but increased between 1 and 5 days of age among hypoxic survivors. A 1-day exposure to normoxia of hypoxic young four days postpartum caused a decrease in NE cell numbers and medial thickness to more normal values. Serotonin (5-HT) fluorescence intensity levels of groups of NE cells or neuroepithelial bodies (NEBs) in this group were equal to those of normal controls although these levels were decreased in early chronic hypoxia. Medial thickness and NE cell numbers were inversely correlated with serotonin levels, suggesting that serotonin may be associated with medial hypertrophy and presence of argyrophil material. Medial thickness was positively correlated with NE cell numbers. The above findings led to the following summary: pulmonary NE cells respond to changes in airway oxygen levels; hypoxia or decreased oxygen is associated with decreased cellular 5-HT content and an increase in NE cell numbers by argyrophil stain and medial thickness of pulmonary artery walls. The change to normoxia from hypoxia results in higher cellular 5-HT content and decreased NE argyrophil cell numbers along with reduced pulmonary artery wall medial thickness.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bisgard G. E., Orr J. A., Will J. A. Hypoxic pulmonary hypertension in the pony. Am J Vet Res. 1975 Jan;36(1):49–52. [PubMed] [Google Scholar]
- Collins D. D., Scoggin C. H., Zwillich C. W., Weil J. V. Hereditary aspects of decreased hypoxic response. J Clin Invest. 1978 Jul;62(1):105–110. doi: 10.1172/JCI109093. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dingemans K. P., Wagenvoort C. A. Pulmonary arteries and veins in experimental hypoxia. An ultrastructural study. Am J Pathol. 1978 Nov;93(2):353–368. [PMC free article] [PubMed] [Google Scholar]
- FISHMAN A. P. Respiratory gases in the regulation of the pulmonary circulation. Physiol Rev. 1961 Jan;41:214–280. doi: 10.1152/physrev.1961.41.1.214. [DOI] [PubMed] [Google Scholar]
- GROVER R. F., VOGEL J. H., AVERILL K. H., BLOUNT S. G., Jr PULMONARY HYPERTENSION. INDIVIDUAL AND SPECIES VARIABILITY RELATIVE TO VASCULAR REACTIVITY. Am Heart J. 1963 Jul;66:1–3. doi: 10.1016/0002-8703(63)90062-0. [DOI] [PubMed] [Google Scholar]
- Grimelius L. A silver nitrate stain for alpha-2 cells in human pancreatic islets. Acta Soc Med Ups. 1968;73(5-6):243–270. [PubMed] [Google Scholar]
- Grover R. F. Pulmonary circulation in animals and man at high altitude. Ann N Y Acad Sci. 1965 Sep 8;127(1):632–639. doi: 10.1111/j.1749-6632.1965.tb49429.x. [DOI] [PubMed] [Google Scholar]
- Hage E. Amine-handling properties of APUD-cells in the bronchial epithelium of human foetuses and in the epithelium of the main bronchi of human adults. Acta Pathol Microbiol Scand A. 1973 Jan;81(1):64–70. doi: 10.1111/j.1699-0463.1973.tb00477.x. [DOI] [PubMed] [Google Scholar]
- Hauge A. Hypoxia and pulmonary vascular resistance. The relative effects of pulmonary arterial and alveolar PO2. Acta Physiol Scand. 1969 May-Jun;76(1):121–130. doi: 10.1111/j.1748-1716.1969.tb04456.x. [DOI] [PubMed] [Google Scholar]
- Hernandez-Vasquez A., Will J. A., Quay W. B. Quantitative characteristics of the Feyrter (APUD) cells of the neonatal rabbit lung in normoxia and chronic hypoxia. Thorax. 1977 Aug;32(4):449–456. doi: 10.1136/thx.32.4.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith I. M., Wiley L. A., Will J. A. Pulmonary neuroendocrine cells: decreased serotonin fluorescence and stable argyrophil-cell numbers in acute hypoxia. Cell Tissue Res. 1981;214(1):201–205. doi: 10.1007/BF00235157. [DOI] [PubMed] [Google Scholar]
- Laros C. D. Local chemical regulation of the flow resistance in the bronchial tree and pulmonary circulation. Respiration. 1971;28(2):120–136. doi: 10.1159/000192809. [DOI] [PubMed] [Google Scholar]
- Lauweryns J. M., Cokelaere J., Theunynck P. Serotonin producing neuroepithelial bodies in rabbit respiratory mucosa. Science. 1973 Apr 27;180(4084):410–413. doi: 10.1126/science.180.4084.410. [DOI] [PubMed] [Google Scholar]
- Lauweryns J. M., Cokelaere M., Deleersynder M., Liebens M. Intrapulmonary neuro-epithelial bodies in newborn rabbits. Influence of hypoxia, hyperoxia, hypercapnia, nicotine, reserpine, L-DOPA and 5-HTP. Cell Tissue Res. 1977 Sep 5;182(4):425–440. doi: 10.1007/BF00219827. [DOI] [PubMed] [Google Scholar]
- Lauweryns J. M., Cokelaere M. Hypoxia-sensitive neuro-epithelial bodies. Intrapulmonary secretory neuroreceptors, modulated by the CNS. Z Zellforsch Mikrosk Anat. 1973 Dec 21;145(4):521–540. doi: 10.1007/BF00306722. [DOI] [PubMed] [Google Scholar]
- Lauweryns J. M., Cokelaere M., Lerut T., Theunynck P. Cross-circulation studies on the influence of hypoxia and hypoxaemia on neuro-epithelial bodies in young rabbits. Cell Tissue Res. 1978 Oct 30;193(3):373–386. doi: 10.1007/BF00225336. [DOI] [PubMed] [Google Scholar]
- Lauweryns J. M., Liebens M. Microspectrography of formaldehyde and fluorescamine-induced fluorescence in rabbit pulmonary neuroepithelial bodies: demonstration of a new, probably polypeptide intracytoplasmic substance. Experientia. 1977 Nov 15;33(11):1510–1511. doi: 10.1007/BF01918840. [DOI] [PubMed] [Google Scholar]
- Lloyd T. C., Jr Hypoxic pulmonary vasoconstriction: role of perivascular tissue. J Appl Physiol. 1968 Nov;25(5):560–565. doi: 10.1152/jappl.1968.25.5.560. [DOI] [PubMed] [Google Scholar]
- Lloyd T. C., Jr Role of nerve pathways in the hypoxic vasoconstriction of lung. J Appl Physiol. 1966 Jul;21(4):1351–1355. doi: 10.1152/jappl.1966.21.4.1351. [DOI] [PubMed] [Google Scholar]
- Miller P. J. An elastin stain. Med Lab Technol. 1971 Apr;28(2):148–149. [PubMed] [Google Scholar]
- Moosavi H., Smith P., Heath D. The Feyrter cell in hypoxia. Thorax. 1973 Nov;28(6):729–741. doi: 10.1136/thx.28.6.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NAEYE R. L., LETTS H. W. The effects of prolonged neonatal hypoxemia on the pulmonary vascular bed and heart. Pediatrics. 1962 Dec;30:902–908. [PubMed] [Google Scholar]
- NAEYE R. L. PULMONARY VASCULAR CHANGES WITH CHRONIC UNILATERAL PULMONARY HYPOXIA. Circ Res. 1965 Aug;17:160–167. doi: 10.1161/01.res.17.2.160. [DOI] [PubMed] [Google Scholar]
- Pearse A. G. The cytochemistry and ultrastructure of polypeptide hormone-producing cells of the APUD series and the embryologic, physiologic and pathologic implications of the concept. J Histochem Cytochem. 1969 May;17(5):303–313. doi: 10.1177/17.5.303. [DOI] [PubMed] [Google Scholar]
- Ruiz A. V., Bisgard G. E., Tyson I. B., Grover R. F., Will J. A. Regional lung function in calves during acute and chronic pulmonary hypertension. J Appl Physiol. 1974 Sep;37(3):384–391. doi: 10.1152/jappl.1974.37.3.384. [DOI] [PubMed] [Google Scholar]
- Taylor W. Pulmonary argyrophil cells at high altitude. J Pathol. 1977 Jul;122(3):137–144. doi: 10.1002/path.1711220304. [DOI] [PubMed] [Google Scholar]
- Tucker A. Pulmonary and systemic vascular responses to hypoxia after chemical sympathectomy. Cardiovasc Res. 1979 Aug;13(8):469–476. doi: 10.1093/cvr/13.8.469. [DOI] [PubMed] [Google Scholar]
- Wagenvoort C. A., Wagenvoort N. Hypoxic pulmonary vascular lesions in man at high altitude and in patients with chronic respiratory disease. Pathol Microbiol (Basel) 1973;39(3):276–282. doi: 10.1159/000162661. [DOI] [PubMed] [Google Scholar]
- Weir E. K. Does normoxic pulmonary vasodilatation rather than hypoxic vasoconstriction account for the pulmonary pressor response to hypoxia? Lancet. 1978 Mar 4;1(8062):476–477. doi: 10.1016/s0140-6736(78)90138-1. [DOI] [PubMed] [Google Scholar]
- Weir E. K., Tucker A., Reeves J. T., Groove R. F. Increased pulmonary vascular pressor response to hypoxia in highland dogs. Proc Soc Exp Biol Med. 1977 Jan;154(1):112–115. doi: 10.3181/00379727-154-39615. [DOI] [PubMed] [Google Scholar]
- Weir E. K., Tucker A., Reeves J. T., Will D. H., Grover R. F. The genetic factor influencing pulmonary hypertension in cattle at high altitude. Cardiovasc Res. 1974 Nov;8(6):745–749. doi: 10.1093/cvr/8.6.745. [DOI] [PubMed] [Google Scholar]
- Wharton J., Polak J. M., Bloom S. R., Ghatei M. A., Solcia E., Brown M. R., Pearse A. G. Bombesin-like immunoreactivity in the lung. Nature. 1978 Jun 29;273(5665):769–770. doi: 10.1038/273769a0. [DOI] [PubMed] [Google Scholar]
- Zakheim R. M., Mattioli L., Molteni A., Mullis K. B., Bartley J. Prevention of pulmonary vascular changes of chronic alveolar hypoxia by inhibition of angiotensin I-converting enzyme in the rat. Lab Invest. 1975 Jul;33(1):57–61. [PubMed] [Google Scholar]



