Abstract
The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13352/full. Nuclear hormone receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein‐coupled receptors, ligand‐gated ion channels, voltage‐gated ion channels, other ion channels, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC‐IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR‐DB and GRAC and provides a permanent, citable, point‐in‐time record that will survive database updates.
Conflict of interest
The authors state that there are no conflicts of interest to declare.
Overview
Nuclear hormone receptors are specialised transcription factors with commonalities of sequence and structure, which bind as homo‐ or heterodimers to specific consensus sequences of DNA (response elements) in the promoter region of particular target genes. They regulate (either promoting or repressing) transcription of these target genes in response to a variety of endogenous ligands. Endogenous agonists are hydrophobic entities which, when bound to the receptor promote conformational changes in the receptor to allow recruitment (or dissociation) of protein partners, generating a large multiprotein complex.
Two major subclasses of nuclear receptors with identified endogenous agonists can be identified: steroid and non‐steroid hormone receptors. Steroid hormone receptors function typically as dimeric entities and are thought to be resident outside the nucleus in the unliganded state in a complex with chaperone proteins, which are liberated upon agonist binding. Migration to the nucleus and interaction with other regulators of gene transcription, including RNA polymerase, acetyltransferases and deacetylases, allows gene transcription to be regulated. Non‐steroid hormone receptors typically exhibit a greater distribution in the nucleus in the unliganded state and interact with other nuclear receptors to form heterodimers, as well as with other regulators of gene transcription, leading to changes in gene transcription upon agonist binding.
Selectivity of gene regulation is brought about through interaction of nuclear receptors with particular consensus sequences of DNA, which are arranged typically as repeats or inverted palindromes to allow accumulation of multiple transcription factors in the promoter regions of genes.
Family structure
5958 1A. Thyroid hormone receptors
5959 1B. Retinoic acid receptors
5960 1C. Peroxisome proliferator‐activated receptors
5962 1F. Retinoic acid‐related orphans
5963 1H. Liver X receptor‐like receptors
5964 1I. Vitamin D receptor‐like receptors
5965 2A. Hepatocyte nuclear factor‐4 receptors
5968 2E. Tailless‐like receptors
5969 2F. COUP‐TF‐like receptors
5970 3B. Estrogen‐related receptors
5971 4A. Nerve growth factor IB‐like receptors
5972 5A. Fushi tarazu F1‐like receptors
5973 6A. Germ cell nuclear factor receptors
1A. Thyroid hormone receptors
Overview
Thyroid hormone receptors (TRs, nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [41]) are nuclear hormone receptors of the NR1A family, with diverse roles regulating macronutrient metabolism, cognition and cardiovascular homeostasis. TRs are activated by thyroxine (T4) and thyroid hormone (triiodothyronine). Once activated by a ligand, the receptor acts as a transcription factor either as a monomer, homodimer or heterodimer with members of the retinoid X receptor family. NH‐3 has been described as an antagonist at TRs with modest selectivity for TRβ[111].
Nomenclature | Thyroid hormone receptor‐α | Thyroid hormone receptor‐β |
Systematic nomenclature | NR1A1 | NR1A2 |
HGNC, UniProt | THRA, P10827 | THRB, P10828 |
Rank order of potency | triiodothyronine>T4 | triiodothyronine>T4 |
Agonists | dextrothyroxine [20] | dextrothyroxine [20] |
Selective agonists | – | sobetirome (pK d 10.2) [27, 133] |
Comments
An interaction with integrin αVβ3 has been suggested to underlie plasma membrane localization of TRs and non‐genomic signalling [9].One splice variant, TRα2, lacks a functional DNA‐binding domain and appears to act as a transcription suppressor.
Although radioligand binding assays have been described for these receptors, the radioligands are not commercially available.
Further Reading
Bianco AC. (2011) Minireview: cracking the metabolic code for thyroid hormone signaling. Endocrinology 152: 3306‐11 [PMID:21712363]
Brent GA. (2012) Mechanisms of thyroid hormone action. J. Clin. Invest. 122: 3035‐43 [PMID:22945636]
Flamant F et al. (2006) International Union of Pharmacology. LIX. The pharmacology and classification of the nuclear receptor superfamily: thyroid hormone receptors. Pharmacol. Rev. 58: 705‐11 [PMID:17132849]
Pramfalk C et al. (2011) Role of thyroid receptor β in lipid metabolism. Biochim. Biophys. Acta 1812: 929‐37 [PMID:21194564]
Sirakov M et al. (2011) The thyroid hormones and their nuclear receptors in the gut: from developmental biology to cancer. Biochim. Biophys. Acta 1812: 938‐46 [PMID:21194566]
Tancevski I et al. (2011) Thyromimetics: a journey from bench to bed‐side. Pharmacol. Ther. 131: 33‐9 [PMID:21504761]
1B. Retinoic acid receptors
Overview
Retinoic acid receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [46]) are nuclear hormone receptors of the NR1B family activated by the vitamin A‐derived agonists tretinoin (ATRA) and alitretinoin, and the RAR‐selective synthetic agonists TTNPB and adapalene. BMS493 is a family‐selective antagonist [47].
Nomenclature | Retinoic acid receptor‐α | Retinoic acid receptor‐β | Retinoic acid receptor‐γ |
Systematic nomenclature | NR1B1 | NR1B2 | NR1B3 |
HGNC, UniProt | RARA, P10276 | RARB, P10826 | RARG, P13631 |
Agonists | tretinoin (pEC50 7.8) [26] | tretinoin (pEC50 7.9) [26] | tretinoin (pEC50 9.7) [26] |
(Sub)family‐selective agonists | tazarotene (pEC50 7.2) [26] | tazarotene (pEC50 9.1) [26], adapalene (pK i 7.5) [25] | tazarotene (pEC50 7.4) [26], adapalene (pK i 6.9) [25] |
Selective agonists | BMS753 (pK i 8.7) [53], Ro 40‐6055 (pK d 8.2) [33], tamibarotene (pIC50 6.9) [65, 108, 146] | AC261066 (pEC50 7.9–8.1) [90], AC55649 (pEC50 6.5–7.3) [90] | AHPN (pK i 7.1) [25] |
Selective antagonists | Ro 41‐5253 (pIC50 6.3–7.2) [2, 70] | – | MM 11253 [77] |
Comments
Ro 41‐5253 has been suggested to be a PPARγ agonist [131]. LE135 is an antagonist with selectivity for RARα and RARβ compared with RARγ[85].
Further Reading
Bour G et al. (2007) Protein kinases and the proteasome join in the combinatorial control of transcription by nuclear retinoic acid receptors. Trends Cell Biol. 17: 302‐9 [PMID:17467991]
Duong V et al. (2011) The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim. Biophys. Acta 1812: 1023‐31 [PMID:20970498]
Germain P et al. (2006) International Union of Pharmacology. LX. Retinoic acid receptors. Pharmacol. Rev. 58: 712‐25 [PMID:17132850]
Maden M. (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci. 8: 755‐65 [PMID:17882253]
Mark M et al. (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol. 46: 451‐80 [PMID:16402912]
1C. Peroxisome proliferator‐activated receptors
Overview
Peroxisome proliferator‐activated receptors (PPARs, nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors[101]) are nuclear hormone receptors of the NR1C family, with diverse roles regulating lipid homeostasis, cellular differentiation, proliferation and the immune response. PPARs have many potential endogenous agonists [14, 101], including 15‐deoxy‐Δ12,14‐PGJ2, prostacyclin (PGI2), many fatty acids and their oxidation products, lysophosphatidic acid (LPA) [98], 13‐HODE, 15S‐HETE, Paz‐PC, azelaoyl‐PAF and leukotriene B4 (LTB4). Bezafibrate acts as a non‐selective agonist for the PPAR family [159]. These receptors also bind hypolipidaemic drugs (PPARα) and anti‐diabetic thiazolidinediones (PPARγ), as well as many non‐steroidal anti‐inflammatory drugs, such as sulindac and indomethacin. Once activated by a ligand, the receptor forms a heterodimer with members of the retinoid X receptor family and can act as a transcription factor. Although radioligand binding assays have been described for all three receptors, the radioligands are not commercially available. Commonly, receptor occupancy studies are conducted using fluorescent ligands and truncated forms of the receptor limited to the ligand binding domain.
Nomenclature | Peroxisome proliferator‐activated receptor‐α | Peroxisome proliferator‐activated receptor‐β/δ | Peroxisome proliferator‐activated receptor‐γ |
Systematic nomenclature | NR1C1 | NR1C2 | NR1C3 |
HGNC, UniProt | PPARA, Q07869 | PPARD, Q03181 | PPARG, P37231 |
Agonists | – | – | mesalazine (pIC50 1.8) [126] |
Selective agonists | GW7647 (pEC50 8.2) [18, 19], CP‐775146 (pEC50 7.3) [68], pirinixic acid (pEC50 5.3) [159], gemfibrozil (pEC50 4.2) [31], ciprofibrate | GW0742X (pIC50 9) [50, 144], GW501516 (pEC50 9) [113] | GW1929 (pK i 8.8) [18], bardoxolone (Partial agonist) (pK i 8) [153], rosiglitazone (pK d 7.4) [59, 81, 165], rosiglitazone (pK i 6.9) [88], troglitazone (pIC50 6.3) [59, 165], pioglitazone (pIC50 6.2) [59, 129, 165], troglitazone (pK i 5.8) [8], ciglitazone (pEC50 4.6) [59] |
Selective antagonists | GW6471 (pIC50 6.6) [162] | GSK0660 (pIC50 6.5) [134] | T0070907 (pK i 9) [78], GW9662 (Irreversible inhibition) (pIC50 8.1) [79], CDDO‐Me (pK i 6.9) [153] |
Comments
As with the estrogen receptor antagonists, many agents show tissue‐selective efficacy (e.g. [13, 110, 125]). Agonists with mixed activity at PPARα and PPARγ have also been described (e.g [35, 52, 163]).
Further Reading
Huang JV et al. (2012) PPAR‐γ as a therapeutic target in cardiovascular disease: evidence and uncertainty. J. Lipid Res. 53: 1738‐54 [PMID:22685322]
Michalik L et al. (2006) International Union of Pharmacology. LXI. Peroxisome proliferator‐activated receptors. Pharmacol. Rev. 58: 726‐41 [PMID:17132851]
Michalik L et al. (2008) PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Res 2008: 134059 [PMID:19125181]
Peters JM et al. (2012) The role of peroxisome proliferator‐activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer 12: 181‐95 [PMID:22318237]
Pirat C et al. (2012) Targeting peroxisome proliferator‐activated receptors (PPARs): development of modulators. J. Med. Chem. 55: 4027‐61 [PMID:22260081]
Varga T et al. (2011) PPARs are a unique set of fatty acid regulated transcription factors controlling both lipid metabolism and inflammation. Biochim. Biophys. Acta 1812: 1007‐22 [PMID:21382489]
Youssef J et al. (2011) Peroxisome proliferator‐activated receptors and cancer: challenges and opportunities. Br. J. Pharmacol. 164: 68‐82 [PMID:21449912]
1D. Rev‐Erb receptors
Overview
Rev‐erb receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand, but are thought to be activated by heme.
Nomenclature | Rev‐Erb‐α | Rev‐Erb‐β |
Systematic nomenclature | NR1D1 | NR1D2 |
HGNC, UniProt | NR1D1, P20393 | NR1D2, Q14995 |
Endogenous agonists | heme (Selective) [122, 164] | heme (Selective) [122, 164] |
Selective agonists | GSK4112 (pEC50 6.4) [51], GSK4112 (pIC50 5.6) [73] | – |
Selective antagonists | SR8278 (pIC50 6.5) [73] | – |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Duez H et al. (2009) Rev‐erb‐alpha: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. 107: 1972‐80 [PMID:19696364]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Phelan CA et al. (2010) Structure of Rev‐erbalpha bound to N‐CoR reveals a unique mechanism of nuclear receptor‐co‐repressor interaction. Nat. Struct. Mol. Biol. 17: 808‐14 [PMID:20581824]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
Yin L et al. (2010) Nuclear receptor Rev‐erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal 8: e001 [PMID:20414452]
1F. Retinoic acid‐related orphans
Overview
Retinoic acid receptor‐related orphan receptors (ROR, nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be assigned a definitive endogenous ligand, although RORα may be synthesized with a ‘captured’ agonist such as cholesterol[66, 67].
Nomenclature | RAR‐related orphan receptor‐α | RAR‐related orphan receptor‐β | RAR‐related orphan receptor‐γ |
Systematic nomenclature | NR1F1 | NR1F2 | NR1F3 |
HGNC, UniProt | RORA, P35398 | RORB, Q92753 | RORC, P51449 |
Endogenous agonists | cholesterol (Selective) [67, 115] | – | – |
Selective agonists | 7‐hydroxycholesterol [15], cholesterol sulphate [15, 67] | – | – |
Comments
tretinoin shows selectivity for RORβ within the ROR family [139]. RORα has been suggested to be a nuclear receptor responding to melatonin[158].
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
1H. Liver X receptor‐like receptors
Overview
Liver X and farnesoid X receptors (LXR and FXR, nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors[105]) are members of a steroid analogue‐activated nuclear receptor subfamily, which form heterodimers with members of the retinoid X receptor family. Endogenous ligands for LXRs include hydroxycholesterols (OHC), while FXRs appear to be activated by bile acids.
Nomenclature | Farnesoid X receptor | Farnesoid X receptor‐β | Liver X receptor‐α | Liver X receptor‐β |
Systematic nomenclature | NR1H4 | NR1H5 | NR1H3 | NR1H2 |
HGNC, UniProt | NR1H4, Q96RI1 | NR1H5P, – | NR1H3, Q13133 | NR1H2, P55055 |
Potency order | chenodeoxycholic acid>lithocholic acid, deoxycholic acid [93, 116] | – | 20S‐hydroxycholesterol, 22R‐hydroxycholesterol, 24(S)‐hydroxycholesterol>25‐hydroxycholesterol, 27‐hydroxycholesterol [80] | 20S‐hydroxycholesterol, 22R‐hydroxycholesterol, 24(S)‐hydroxycholesterol>25‐hydroxycholesterol, 27‐hydroxycholesterol [80] |
Endogenous agonists | – | lanosterol (pEC50 6) [114] – Mouse | – | – |
Selective agonists | GW4064 (pEC50 7.8) [95], obeticholic acid (pEC50 7) [117], fexaramine (pEC50 6.6) [36] | – | – | – |
Selective antagonists | guggulsterone (pIC50 5.7–6) [161] | – | – | – |
Comments
T0901317[123] and GW3965[28] are synthetic agonists acting at both LXRα and LXRβ with less than 10‐fold selectivity.
Further Reading
A‐González N et al. (2011) Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim. Biophys. Acta 1812: 982‐94 [PMID:21193033]
Calkin AC et al. (2010) Liver x receptor signaling pathways and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 30: 1513‐8 [PMID:20631351]
Chen WD et al. (2011) Nuclear bile acid receptor FXR in the hepatic regeneration. Biochim. Biophys. Acta 1812: 888‐92 [PMID:21167938]
Claudel T et al. (2011) Role of nuclear receptors for bile acid metabolism, bile secretion, cholestasis, and gallstone disease. Biochim. Biophys. Acta 1812: 867‐78 [PMID:21194565]
El‐Hajjaji FZ et al. (2011) Liver X receptors, lipids and their reproductive secrets in the male. Biochim. Biophys. Acta 1812: 974‐81 [PMID:21334438]
Gadaleta RM et al. (2010) Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim. Biophys. Acta 1801: 683‐92 [PMID:20399894]
Gardmo C et al. (2011) Proteomics for the discovery of nuclear bile acid receptor FXR targets. Biochim. Biophys. Acta 1812: 836‐41 [PMID:21439373]
Kemper JK. (2011) Regulation of FXR transcriptional activity in health and disease: Emerging roles of FXR cofactors and post‐translational modifications. Biochim. Biophys. Acta 1812: 842‐50 [PMID:21130162]
Matsubara T et al. (2013) FXR signaling in the enterohepatic system. Mol. Cell. Endocrinol. 368: 17‐29 [PMID:22609541]
Moore DD et al. (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 58: 742‐59 [PMID:17132852]
1I. Vitamin D receptor‐like receptors
Overview
Vitamin D (VDR), Pregnane X (PXR) and Constitutive Androstane (CAR) receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors[105]) are members of the NR1I family of nuclear receptors, which form heterodimers with members of the retinoid X receptor family. PXR and CAR are activated by a range of exogenous compounds, with no established endogenous physiological agonists, although high concentrations of bile acids and bile pigments activate PXR and CAR [105].
Nomenclature | Vitamin D receptor | Pregnane X receptor | Constitutive androstane receptor |
Systematic nomenclature | NR1I1 | NR1I2 | NR1I3 |
HGNC, UniProt | VDR, P11473 | NR1I2, O75469 | NR1I3, Q14994 |
Endogenous agonists | 1,25‐dihydroxyvitamin D3 (pK d 8.9–9.2) [12, 39] | 17β‐estradiol (Selective) [64] | – |
Selective agonists | seocalcitol (pK d 9.6) [29, 157], doxercalciferol | hyperforin (pEC50 7.6) [106, 156], 5β‐pregnane‐3,20‐dione (pIC50 6.4) [64], lovastatin (pEC50 5.3–6) [82], rifampicin (pEC50 5.5–6) [16, 82] | TCPOBOP (pEC50 7.7) [149] – Mouse, CITCO (pEC50 7.3) [92] |
Selective antagonists | TEI‐9647 (pIC50 8.2) [128] – Chicken, ZK159222 (pIC50 7.5) [42, 60] | – | – |
Comments | – | – | clotrimazole [107] and T0901317 [69] although acting at other sites, function as antagonists of the constitutive androstane receptor. |
Further Reading
Bikle DD. (2011) Vitamin D: an ancient hormone. Exp. Dermatol. 20: 7‐13 [PMID:21197695]
Campbell FC et al. (2010) The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue‐specific growth control. Biochem. Pharmacol. 79: 1‐9 [PMID:19737544]
Chen Y et al. (2012) Nuclear receptors in the multidrug resistance through the regulation of drug‐metabolizing enzymes and drug transporters. Biochem. Pharmacol. 83: 1112‐26 [PMID:22326308]
Cheng J et al. (2012) Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol. Sci. 33: 323‐30 [PMID:22609277]
Ihunnah CA et al. (2011) Nuclear receptor PXR, transcriptional circuits and metabolic relevance. Biochim. Biophys. Acta 1812: 956‐63 [PMID:21295138]
Kachaylo EM et al. (2011) Constitutive androstane receptor (CAR) is a xenosensor and target for therapy. Biochemistry Mosc. 76: 1087‐97 [PMID:22098234]
Moore DD et al. (2006) International Union of Pharmacology. LXII. The NR1H and NR1I receptors: constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol. Rev. 58: 742‐59 [PMID:17132852]
Plum LA et al. (2010) Vitamin D, disease and therapeutic opportunities. Nat Rev Drug Discov 9: 941‐55 [PMID:21119732]
Staudinger JL et al. (2013) Nuclear‐receptor‐mediated regulation of drug‐ and bile‐acid‐transporter proteins in gut and liver. Drug Metab. Rev. 45: 48‐59 [PMID:23330541]
2A. Hepatocyte nuclear factor‐4 receptors
Overview
The nomenclature of hepatocyte nuclear factor‐4 receptors is agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]. While linoleic acid has been identified as the endogenous ligand for HNF4α its function remains ambiguous [167]. HNF4γ has yet to be paired with an endogenous ligand.
Nomenclature | Hepatocyte nuclear factor‐4‐α | Hepatocyte nuclear factor‐4‐γ |
Systematic nomenclature | NR2A1 | NR2A2 |
HGNC, UniProt | HNF4A, P41235 | HNF4G, Q14541 |
Endogenous agonists | linoleic acid (Selective) [167] | – |
Selective antagonists | BI6015 [72] | – |
Comments | HNF4α has constitutive transactivation activity [167] and binds DNA as a homodimer [63]. | – |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Hwang‐Verslues WW et al. (2010) HNF4α–role in drug metabolism and potential drug target? Curr Opin Pharmacol 10: 698‐705 [PMID:20833107]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
2B. Retinoid X receptors
Overview
Retinoid X receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [45]) are NR2B family members activated by alitretinoin and the RXR‐selective agonists bexarotene and LG100268, sometimes referred to as rexinoids. UVI3003[109] and HX 531 [37] have been described as a pan‐RXR antagonists. These receptors form RXR‐RAR heterodimers and RXR‐RXR homodimers [23, 97].
Nomenclature | Retinoid X receptor‐α | Retinoid X receptor‐β | Retinoid X receptor‐γ |
Systematic nomenclature | NR2B1 | NR2B2 | NR2B3 |
HGNC, UniProt | RXRA, P19793 | RXRB, P28702 | RXRG, P48443 |
(Sub)family‐selective agonists | bexarotene (pIC50 7.4) [17, 22, 146] | bexarotene (pIC50 7.7) [17, 22, 146] | bexarotene (pIC50 7.5) [17, 22, 146] |
Selective agonists | CD3254 (pIC50 8.5) [48] | – | – |
Further Reading
Bour G et al. (2007) Protein kinases and the proteasome join in the combinatorial control of transcription by nuclear retinoic acid receptors. Trends Cell Biol. 17: 302‐9 [PMID:17467991]
Duong V et al. (2011) The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim. Biophys. Acta 1812: 1023‐31 [PMID:20970498]
Germain P et al. (2006) International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 58: 760‐72 [PMID:17132853]
Lefebvre P et al. (2010) Retinoid X receptors: common heterodimerization partners with distinct functions. Trends Endocrinol. Metab. 21: 676‐83 [PMID:20674387]
Maden M. (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat. Rev. Neurosci. 8: 755‐65 [PMID:17882253]
Mark M et al. (2006) Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu. Rev. Pharmacol. Toxicol. 46: 451‐80 [PMID:16402912]
Pérez E et al. (2011) Modulation of RXR function through ligand design. Biochim Biophys Acta [PMID:21515403]
2C. Testicular receptors
Overview
Testicular receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand, although testicular receptor 4 has been reported to respond to retinoids.
Nomenclature | Testicular receptor 2 | Testicular receptor 4 |
Systematic nomenclature | NR2C1 | NR2C2 |
HGNC, UniProt | NR2C1, P13056 | NR2C2, P49116 |
Endogenous agonists | – | retinol (Selective) [173], tretinoin (Selective) [173] |
Comments | Forms a heterodimer with TR4; gene disruption appears without effect on testicular development or function [135]. | Forms a heterodimer with TR2. |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Duez H et al. (2009) Rev‐erb‐alpha: an integrator of circadian rhythms and metabolism. J. Appl. Physiol. 107: 1972‐80 [PMID:19696364]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Phelan CA et al. (2010) Structure of Rev‐erbalpha bound to N‐CoR reveals a unique mechanism of nuclear receptor‐co‐repressor interaction. Nat. Struct. Mol. Biol. 17: 808‐14 [PMID:20581824]
Schimmer BP et al. (2010) Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol. Endocrinol. 24: 1322‐37 [PMID:20203099]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
Yin L et al. (2010) Nuclear receptor Rev‐erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl Recept Signal 8: e001 [PMID:20414452]
Zhang Y et al. (2011) Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812: 893‐908 [PMID:20970497]
Zhao Y et al. (2010) NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler. Thromb. Vasc. Biol. 30: 1535‐41 [PMID:20631354]
2E. Tailless‐like receptors
Overview
Tailless‐like receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Gui H et al. (2011) A tale of tailless. Dev. Neurosci. 33: 1‐13 [PMID:21124006]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
2F. COUP‐TF‐like receptors
Overview
COUP‐TF‐like receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Lin FJ et al. (2011) Coup d'Etat: an orphan takes control. Endocr. Rev. 32: 404‐21 [PMID:21257780]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
3B. Estrogen‐related receptors
Overview
Estrogen‐related receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Nomenclature | Estrogen‐related receptor‐α | Estrogen‐related receptor‐β | Estrogen‐related receptor‐γ |
Systematic nomenclature | NR3B1 | NR3B2 | NR3B3 |
HGNC, UniProt | ESRRA, P11474 | ESRRB, O95718 | ESRRG, P62508 |
Comments | Activated by some dietary flavonoids [141]; activated by the syntheticagonist GSK4716 [176] and blocked by XCT790 [160]. | May be activated by DY131 [166]. | May be activated by DY131 [166]. |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Deblois G et al. (2011) Functional and physiological genomics of estrogen‐related receptors (ERRs) in health and disease. Biochim. Biophys. Acta 1812: 1032‐40 [PMID:21172432]
Deblois G et al. (2013) Oestrogen‐related receptors in breast cancer: control of cellular metabolism and beyond. Nat. Rev. Cancer 13: 27‐36 [PMID:23192231]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Hwang‐Verslues WW et al. (2010) HNF4α–role in drug metabolism and potential drug target? Curr Opin Pharmacol 10: 698‐705 [PMID:20833107]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
4A. Nerve growth factor IB‐like receptors
Overview
Nerve growth factor IB‐like receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Nomenclature | Nerve Growth factor IB | Nuclear receptor related 1 | Neuron‐derived orphan receptor 1 |
Systematic nomenclature | NR4A1 | NR4A2 | NR4A3 |
HGNC, UniProt | NR4A1, P22736 | NR4A2, P43354 | NR4A3, Q92570 |
Comments | An endogenous agonist, cytosporone B, has been described [168], although structural analysis and molecular modelling has not identified a ligand binding site [4, 40, 154]. | – | – |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
McMorrow JP et al. (2011) Inflammation: a role for NR4A orphan nuclear receptors? Biochem. Soc. Trans. 39: 688‐93 [PMID:21428963]
Mohan HM et al. (2012) Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clin. Cancer Res. 18: 3223‐8 [PMID:22566377]
Pearen MA et al. (2010) Minireview: Nuclear hormone receptor 4A signaling: implications for metabolic disease. Mol. Endocrinol. 24: 1891‐903 [PMID:20392876]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
Zhao Y et al. (2010) NR4A orphan nuclear receptors: transcriptional regulators of gene expression in metabolism and vascular biology. Arterioscler. Thromb. Vasc. Biol. 30: 1535‐41 [PMID:20631354]
van Tiel CM et al. (2012) NR4All in the vessel wall. J. Steroid Biochem. Mol. Biol. 130: 186‐93 [PMID:21277978]
5A. Fushi tarazu F1‐like receptors
Overview
Fushi tarazu F1‐like receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Nomenclature | Steroidogenic factor 1 | Liver receptor homolog‐1 |
Systematic nomenclature | NR5A1 | NR5A2 |
HGNC, UniProt | NR5A1, Q13285 | NR5A2, O00482 |
Comments | Reported to be inhibited by AC45594 [32] and SID7969543 [91]. | – |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Büdefeld T et al. (2012) Steroidogenic factor 1 and the central nervous system. J. Neuroendocrinol. 24: 225‐35 [PMID:21668533]
El‐Khairi R et al. (2011) Role of DAX‐1 (NR0B1) and steroidogenic factor‐1 (NR5A1) in human adrenal function. Endocr Dev 20: 38‐46 [PMID:21164257]
Fernandez‐Marcos PJ et al. (2011) Emerging actions of the nuclear receptor LRH‐1 in the gut. Biochim. Biophys. Acta 1812: 947‐55 [PMID:21194563]
Ferraz‐de‐Souza B et al. (2011) Steroidogenic factor‐1 (SF‐1, NR5A1) and human disease. Mol. Cell. Endocrinol. 336: 198‐205 [PMID:21078366]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Lazarus KA et al. (2012) Therapeutic potential of Liver Receptor Homolog‐1 modulators. J. Steroid Biochem. Mol. Biol. 130: 138‐46 [PMID:22266285]
Mlnynarczuk J et al. (2010) The role of the orphan receptor SF‐1 in the development and function of the ovary. Reprod Biol 10: 177‐93 [PMID:21113200]
Schimmer BP et al. (2010) Minireview: steroidogenic factor 1: its roles in differentiation, development, and disease. Mol. Endocrinol. 24: 1322‐37 [PMID:20203099]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
6A. Germ cell nuclear factor receptors
Overview
Germ cell nuclear factor receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Nomenclature | Germ cell nuclear factor |
Systematic nomenclature | NR6A1 |
HGNC, UniProt | NR6A1, Q15406 |
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
0B. DAX‐like receptors
Overview
Dax‐like receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [7]) have yet to be officially paired with an endogenous ligand.
Further Reading
Benoit G et al. (2006) International Union of Pharmacology. LXVI. Orphan nuclear receptors. Pharmacol. Rev. 58: 798‐836 [PMID:17132856]
Chanda D et al. (2008) Molecular basis of endocrine regulation by orphan nuclear receptor Small Heterodimer Partner. Endocr. J. 55: 253‐68 [PMID:17984569]
Ehrlund A et al. (2012) Ligand‐independent actions of the orphan receptors/corepressors DAX‐1 and SHP in metabolism, reproduction and disease. J. Steroid Biochem. Mol. Biol. 130: 169‐79 [PMID:21550402]
El‐Khairi R et al. (2011) Role of DAX‐1 (NR0B1) and steroidogenic factor‐1 (NR5A1) in human adrenal function. Endocr Dev 20: 38‐46 [PMID:21164257]
Germain P et al. (2006) Overview of nomenclature of nuclear receptors. Pharmacol. Rev. 58: 685‐704 [PMID:17132848]
Huang P et al. (2010) Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol. 72: 247‐72 [PMID:20148675]
Mlnynarczuk J et al. (2010) The role of the orphan receptor SF‐1 in the development and function of the ovary. Reprod Biol 10: 177‐93 [PMID:21113200]
Sladek FM. (2011) What are nuclear receptor ligands? Mol. Cell. Endocrinol. 334: 3‐13 [PMID:20615454]
Zhang Y et al. (2011) Role of nuclear receptor SHP in metabolism and cancer. Biochim. Biophys. Acta 1812: 893‐908 [PMID:20970497]
Steroid hormone receptors
Overview
Steroid hormone receptors (nomenclature as agreed by the NC‐IUPHAR Subcommittee on Nuclear Hormone Receptors [30, 89]) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3‐hydroxysteroids (estrone and 17β‐estradiol) and 3‐ketosteroids (dihydrotestosterone[DHT], aldosterone, cortisol, corticosterone, progesterone and testosterone). These receptors exist as dimers coupled with chaperone molecules (such as hsp90β(HSP90AB1, P08238) and immunophilin FKBP52:FKBP4, Q02790), which are shed on binding the steroid hormone. Although rapid signalling phenomena are observed [84, 120], the principal signalling cascade appears to involve binding of the activated receptors to nuclear hormone response elements of the genome, with a 15‐nucleotide consensus sequence AGAACAnnnTGTTCT (i.e. an inverted palindrome) as homo‐ or heterodimers. They also affect transcription by protein‐protein interactions with other transcription factors, such as activator protein 1 (AP‐1) and nuclear factor κB (NF‐κB). Splice variants of each of these receptors can form functional or non‐functional monomers that can dimerize to form functional or non‐functional receptors. For example, alternative splicing of PR mRNA produces A and B monomers that combine to produce functional AA, AB and BB receptors with distinct characteristics [150].
A 7TM receptor responsive to estrogen (GPER1, Q99527, also known as GPR30, see [119]) has been described. Human orthologues of 7TM 'membrane progestin receptors' (PAQR7, PAQR8 and PAQR5), initially discovered in fish [174, 175], appear to localize to intracellular membranes and respond to 'non‐genomic' progesterone analogues independently of G proteins [137].
3A. Estrogen receptors
Overview
Estrogen receptor (ER) activity regulates diverse physiological processes via transcriptional modulation of target genes. The selection of target genes and the magnitude of the response, be it induction or repression, are determined by many factors, including the effect of the hormone ligand and DNA binding on ER structural conformation, and the local cellular regulatory environment. The cellular environment defines the specific complement of DNA enhancer and promoter elements present and the availability of coregulators to form functional transcription complexes. Together, these determinants control the resulting biological response.
Nomenclature | Estrogen receptor‐α | Estrogen receptor‐β |
Systematic nomenclature | NR3A1 | NR3A2 |
HGNC, UniProt | ESR1, P03372 | ESR2, Q92731 |
Endogenous agonists | estriol (pK i 8.7) [75], estrone (pK i 8.5) [75] | – |
Selective agonists | propylpyrazoletriol (pK i 9.6) [74, 138], ethinyl estradiol (pIC50 8.7) [62] | WAY200070 (pIC50 8.5–9) [94], diarylpropionitril (pK i 8.6) [100, 138], prinaberel (pIC50 8.3) [94] |
(Sub)family‐selective antagonists | bazedoxifene (pIC50 7.6) [103] | bazedoxifene (pIC50 7.1) [103] |
Selective antagonists | clomiphene (pK i 8.9) [[3]], methyl‐piperidino‐pyrazole (pK i 8.6) [142] | R,R‐THC (pK i 8.4) [99, 143], PHTPP (pK i 6.9) [172] |
Comments
R,R‐THC exhibits partial agonist activity at ERα[99, 143]. Estrogen receptors may be blocked non‐selectively by tamoxifen and raloxifene and labelled by [3H]17β‐estradiol and [3H]tamoxifen. Many agents thought initially to be antagonists at estrogen receptors appear to have tissue‐specific efficacy (e.g. Tamoxifen is an antagonist at estrogen receptors in the breast, but is an agonist at estrogen receptors in the uterus), hence the descriptor SERM (selective estrogen receptor modulator) or SnuRM (selective nuclear receptor modulator). Y134 has been suggested to be an ERα‐selective estrogen receptor modulator [112].
3C. 3‐Ketosteroid receptors
Nomenclature | Androgen receptor | Glucocorticoid receptor | Mineralocorticoid receptor | Progesterone receptor |
Systematic nomenclature | NR3C4 | NR3C1 | NR3C2 | NR3C3 |
HGNC, UniProt | AR, P10275 | NR3C1, P04150 | NR3C2, P08235 | PGR, P06401 |
Rank order of potency | dihydrotestosterone>testosterone | cortisol, corticosterone≫aldosterone, deoxycortisone [127] | corticosterone, cortisol, aldosterone, progesterone [127] | progesterone |
Endogenous agonists | dihydrotestosterone (pK d 9.3) [147] | – | aldosterone (Selective) (pIC50 9.8–10) [58, 127] | progesterone (Selective) (pEC50 8.8) [38] |
Agonists | methyltestosterone (Androgen receptor promoter activity in luciferase reporter assay) (pEC50 9.7) [1], danazol (pK i 8) [24] – Rat, ethylestrenol, nandrolone | – | – | – |
Selective agonists | testosterone propionate (pK i 9.6) [96], mibolerone (pIC50 9) [49], fluoxymesterone (pK i 8.2) [61], methyltrienolone (pEC50<5) [152], dromostanolone propionate | fluticasone propionate (pIC50 9.3) [11], clobetasol propionate (pK i 9.2) [[3]], desoximetasone (pK i 8.9) [[3]], fluorometholone (pK i 8.8) [[3]], flunisolide (pK i 8.6) [[3]], diflorasone diacetate (pK i 8.5) [[3]], fluocinolone acetonide (pIC50 8.5) [[3]], beclometasone (pK i 8.4) [[3]], methylprednisolone (pK i 8.3) [[3]], fluocinonide (pIC50 8.3) [[3]], betamethasone (pIC50 8.1) [[3]], budesonide (pEC50 7.9) [102], triamcinolone (pIC50 7.7) [87], ZK216348 (pIC50 7.7) [132], ciclesonide (pK i 7.4) [6], prednisone (pK i 6.3) [[3]], RU26988 – Unknown, RU28362, difluprednate [145], fluticasone | – | medroxyprogesterone (Affinity at human PR‐A) (pK i 9.5) [170], ORG2058, levonorgestrel [10, 130] |
Antagonists | cyproterone acetate (pK i 7.8) [55] | mifepristone (pK d 9.4) [57, 127] | nimodipine (inhibition of aldosterone‐induced luciferase activity in a reporter system driven by the mineralocorticoid receptor ligand binding domain) (pIC50 6.8) [34] | – |
Selective antagonists | bicalutamide (pK i 7.7) [71], PF0998425 (pIC50 7.1–7.5) [86], enzalutamide (pIC50 7.4) [148], nilutamide (pIC50 7.1–7.1) [136], hydroxyflutamide (pEC50 6.6) [152], galeterone (pIC50 6.4) [56], flutamide (Displacement of 3[H] testosterone from wild‐type androgen receptors) (pK i 5.4) [151] | onapristone (pIC50 7.6) [169], ZK112993 | finerenone (pIC50 7.7) [21], eplerenone (pK i 6.9) [5], onapristone (pIC50 6.3) [169], RU28318, ZK112993 | ulipristal acetate (pIC50 9.7) [124], mifepristone (Mixed) (pK i 9) [171], onapristone (pK i 7.7) [54], ZK112993 |
Labelled ligands | [3H]dihydrotestosterone (Selective Agonist), [3H]methyltrienolone (Selective Agonist), [3H]mibolerone (Agonist) | [3H]dexamethasone (Agonist) | [3H]aldosterone (Selective Agonist) (pK d 9.5–9.4) [44, 140] – Rat | [3H]ORG2058 (Selective Agonist) |
Comments
[3H]dexamethasone also binds to MRin vitro. PR antagonists have been suggested to subdivide into Type I (e.g. onapristone) and Type II (e.g. ZK112993) groups. These groups appear to promote binding of PR to DNA with different efficacies and evoke distinct conformational changes in the receptor, leading to a transcription‐neutral complex [43, 83]. Mutations in AR underlie testicular feminization and androgen insensibility syndromes, spinal and bulbar muscular atrophy (Kennedy's disease).
Alexander, S. PH. , Cidlowski, J. A. , Kelly, E. , Marrion, N. , Peters, J. A. , Benson, H. E. , Faccenda, E. , Pawson, A. J. , Sharman, J. L. , Southan, C. , Davies, J. A. , and CGTP Collaborators (2015) The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. British Journal of Pharmacology, 172: 5956–5978. doi: 10.1111/bph.13352.
References
- 1. Akita K et al. (2013). [24177288].
- 2. Apfel C et al. (1992). [1323127].
- 3. Auerbach SS et al.National Toxicology Program: Dept of Health and Human Services. Accessed on 02/05/2014. DrugMatrix.
- 4. Baker KD et al. (2003). [12809604].
- 5. Bell MG et al. (2007). [18038968].
- 6. Belvisi MG et al. (2005). [15878996].
- 7. Benoit G et al. (2006). [17132856].
- 8. Berger J et al. (1996). [8828476].
- 9. Bergh JJ et al. (2005). [15802494].
- 10. Bergink EW et al. (1983). [6645495].
- 11. Biggadike K et al. (2000). [10633034].
- 12. Bishop JE et al. (1994). [7976510].
- 13. Bishop‐Bailey D et al. (2000). [11030710].
- 14. Bishop‐Bailey D et al. (2003). [12749590].
- 15. Bitsch F et al. (2003). [14622968].
- 16. Blumberg B et al. (1998). [9784494].
- 17. Boehm MF et al. (1994). [8071941].
- 18. Brown KK et al. (1999). [10389847].
- 19. Brown PJ et al. (2001). [11354382].
- 20. Brun LD et al. (1980). [6777394].
- 21. Bärfacker L et al. (2012). [22791416].
- 22. Canan Koch SS et al. (1999). [10052980].
- 23. Chambon P, (1996). [8801176].
- 24. Chamness GC et al. (1980). [7355922].
- 25. Charpentier B et al. (1995). [8544175].
- 26. Charton J et al. (2009). [19058965].
- 27. Chiellini G et al. (1998). [9653548].
- 28. Collins JL et al. (2002). [11985463].
- 29. Colston KW et al. (1992). [1472092].
- 30. Dahlman‐Wright K et al. (2006). [17132854].
- 31. De Filippis B et al. (2011). [21889235].
- 32. Del Tredici AL et al. (2008). [18055761].
- 33. Delescluse C et al. (1991). [1656191].
- 34. Dietz JD et al. (2008). [18250364].
- 35. Doebber TW et al. (2004). [15120604].
- 36. Downes M et al. (2003). [12718892].
- 37. Ebisawa M et al. (1999). [10748721].
- 38. Edwards JP et al. (1998). [9667968].
- 39. Erben RG et al. (2002). [12089348].
- 40. Flaig R et al. (2005). [15716272].
- 41. Flamant F et al. (2006). [17132849].
- 42. Fujishima T et al. (2003). [12901907].
- 43. Gass EK et al. (1998). [9528977].
- 44. Ge RS et al. (2005). [16188378].
- 45. Germain P et al. (2006). [17132853].
- 46. Germain P et al. (2006). [17132850].
- 47. Germain P et al. (2009). [19477412].
- 48. Germain P et al. (2002). [11805839].
- 49. Giwercman A et al. (2000). [10852459].
- 50. Graham TL et al. (2005). [15939051].
- 51. Grant D et al. (2010). [20677822].
- 52. Guo Q et al. (2004). [14701675].
- 53. Géhin M et al. (1999). [10421757].
- 54. Hamann LG et al. (1996). [8627601].
- 55. Hamann LG et al. (1998). [9484511].
- 56. Handratta VD et al. (2005). [15828836].
- 57. Heikinheimo O et al. (1987). [3560943].
- 58. Hellal‐Levy C et al. (1999). [10611474].
- 59. Henke BR et al. (1998). [9836620].
- 60. Herdick M et al. (2000). [11094341].
- 61. Higuchi RI et al. (2007). [17439112].
- 62. Jain N et al. (2006). [16722623].
- 63. Jiang G et al. (1995). [7651430].
- 64. Jones SA et al. (2000). [10628745].
- 65. Kagechika H et al. (1988). [3184125].
- 66. Kallen J et al. (2004). [14722075].
- 67. Kallen JA et al. (2002). [12467577].
- 68. Kane CD et al. (2009). [18971326].
- 69. Kanno Y et al. (2013). [23665929].
- 70. Keidel S et al. (1994). [8264595].
- 71. Kinoyama I et al. (2006). [16420057].
- 72. Kiselyuk A et al. (2012). [22840769].
- 73. Kojetin D et al. (2010). [21043485].
- 74. Kraichely DM et al. (2000). [11014206].
- 75. Kuiper GG et al. (1997). [9048584].
- 76. Land PW et al. (2003). [12902391].
- 77. Le Q et al. (2000). [10723137].
- 78. Lee G et al. (2002). [11877444].
- 79. Leesnitzer LM et al. (2002). [12022867].
- 80. Lehmann JM et al. (1997). [9013544].
- 81. Lehmann JM et al. (1997). [9013583].
- 82. Lehmann JM et al. (1998). [9727070].
- 83. Leonhardt SA et al. (1998). [9849965].
- 84. Levin ER, (2008). [18784332].
- 85. Li E, (1999). [10331664].
- 86. Li JJ et al. (2008). [18921992].
- 87. Lind U et al. (2000). [10747884].
- 88. Liu KG et al. 2001. [11720854].
- 89. Lu NZ et al. (2006). [17132855].
- 90. Lund BW et al. (2005). [16302793].
- 91. Madoux F et al. (2008). [18334597].
- 92. Maglich JM et al. (2003). [12611900].
- 93. Makishima M et al. (1999). [10334992].
- 94. Malamas MS et al. (2004). [15456246].
- 95. Maloney PR et al. (2000). [10956205].
- 96. Manfredi MC et al. (2007). [17574413].
- 97. Mangelsdorf DJ et al. (1995). [8521508].
- 98. McIntyre TM et al. (2003). [12502787].
- 99. Meyers MJ et al. (1999). [10395487].
- 100. Meyers MJ et al. 2001. [11708925].
- 101. Michalik L et al. (2006). [17132851].
- 102. Millan DS et al. (2011). [21880489].
- 103. Miller CP et al. 2001. [11356100].
- 104. Monaghan AP et al. (1997). [9394001].
- 105. Moore DD et al. (2006). [17132852].
- 106. Moore LB et al. (2000). [10852961].
- 107. Moore LB et al. (2000). [10748001].
- 108. Nagy L et al. (1995). [7791761].
- 109. Nahoum V et al. (2007). [17947383].
- 110. Nakamuta M et al. (2002). [11991651].
- 111. Nguyen NH et al. (2002). [12109914].
- 112. Ning M et al. (2007). [17115070].
- 113. Oliver WR et al. 2001. [11309497].
- 114. Otte K et al. (2003). [12529392].
- 115. Paravicini G et al. (1996). [8858107].
- 116. Parks DJ et al. (1999). [10334993].
- 117. Pellicciari R et al. (2002). [12166927].
- 118. Pereira FA et al. (1999). [10215630].
- 119. Prossnitz ER et al. (2008). [18271749].
- 120. Prossnitz ER et al. (2009). [19389460].
- 121. Qiu Y et al. (1997). [9271116].
- 122. Raghuram S et al. (2007). [18037887].
- 123. Repa JJ et al. (2000). [10968783].
- 124. Rewinkel J et al. (2008). [18243712].
- 125. Rocchi S et al. 2001. [11684010].
- 126. Rousseaux C et al. (2005). [15824083].
- 127. Rupprecht R et al. 1993. [8282004].
- 128. Saito N et al. (2006). [17125259].
- 129. Sakamoto J et al. (2000). [11095972].
- 130. Schindler AE et al. (2003). [14670641].
- 131. Schupp M et al. (2007). [17290005].
- 132. Schäcke H et al. (2004). [14694204].
- 133. Sharma SK et al. 1977. [269396].
- 134. Shearer BG et al. (2008). [17975020].
- 135. Shyr CR et al. (2002). [12052874].
- 136. Simard J et al. (1997). [9111629].
- 137. Smith JL et al. (2008). [18603275].
- 138. Stauffer SR et al. (2000). [11150164].
- 139. Stehlin‐Gaon C et al. (2003). [12958591]. [DOI] [PubMed]
- 140. Stephenson G et al. 1984. [6320679].
- 141. Suetsugi M et al. (2003). [14638870].
- 142. Sun J et al. (2002). [11861516].
- 143. Sun J et al. (1999). [9927308].
- 144. Sznaidman ML et al. (2003). [12699745].
- 145. Tajika T et al. (2011). [21182429].
- 146. Thacher SM et al. (2000). [10637371].
- 147. Tilley WD et al. 1989. [2911578].
- 148. Tran C et al. (2009). [19359544].
- 149. Tzameli I et al. (2000). [10757780].
- 150. Vegeto E et al. 1993. [8264658].
- 151. Wakabayashi K et al. (2008). [18571420].
- 152. Wang LG et al. (1998). [10076535].
- 153. Wang Y et al. (2000). [11043571].
- 154. Wang Z et al. (2003). [12774125].
- 155. Warnecke M et al. (2005). [15741322].
- 156. Wentworth JM et al. (2000). [10974665].
- 157. Wiberg K et al. (1995). [8573413].
- 158. Wiesenberg I et al. (1995). [7885826].
- 159. Willson TM et al. (2000). [10691680].
- 160. Willy PJ et al. (2004). [15184675].
- 161. Wu J et al. (2002). [12089353].
- 162. Xu HE et al. (2002). [11845213].
- 163. Xu Y et al. (2004). [15115385].
- 164. Yin L et al. (2007). [18006707].
- 165. Young PW et al. (1998). [9454824].
- 166. Yu DD et al. (2005). [15713377].
- 167. Yuan X et al. (2009). [19440305].
- 168. Zhan Y et al. (2008). [18690216].
- 169. Zhi L et al. (2003). [12781198].
- 170. Zhi L et al. (1998). [9464360].
- 171. Zhi L et al. (2003). [12781197].
- 172. Zhou HB et al. (2007). [17228884].
- 173. Zhou XE et al. (2011). [21068381].
- 174. Zhu Y et al. (2003). [12601167].
- 175. Zhu Y et al. (2003). [12574519].