Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 25;71(Pt 12):1525–1527. doi: 10.1107/S205698901502201X

Crystal structure of 4-({(1E,2E)-3-[3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl]allyl­idene}amino)-1H-1,2,4-triazole-5(4H)-thione

Ajaykumar D Kulkarni a, Md Lutfor Rahman b,*, Mashitah Mohd Yusoff b, Huey Chong Kwong c, Ching Kheng Quah d
PMCID: PMC4719829  PMID: 26870420

The asymmetric unit of the title compound comprises two independent mol­ecules which exist in the trans conformation with respect to the methene C= C and the acyclic N=C bonds. In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming chains along the b-axis direction.

Keywords: crystal structure; 1,2,4-triazole-3-thione; indole; Schiff base; N—H⋯N hydrogen bonds; C—H⋯π inter­actions; π–π inter­actions

Abstract

The asymmetric unit of the titled compound, C22H20FN5S, comprises two independent mol­ecules (A and B), both of which have a trans conformation with respect to the methene C=C [1.342 (2) and 1.335 (2) Å] and the acyclic N=C [1.283 (2) and 1.281 (2) Å] bonds. In mol­ecule A, the triazole ring makes dihedral angles of 55.01 (12) and 18.17 (9)° with the benzene and indole rings, respectively. The corresponding dihedral angles for mol­ecule B are 54.54 (11) and 14.60 (10)°, respectively. In the crystal, mol­ecules are consolidated into –ABAB– chains along [010] via N—H⋯N hydrogen bonds. The chains are further linked into layers parallel to the ac plane via π–π inter­actions involving inversion-related triazole rings [centroid–centroid distances = 3.3436 (11)–3.4792 (13) Å].

Chemical context  

The chemistry of 1,2,4-triazole derivatives has attracted widespread attention due to their diverse biological activities and because they are a new class of anti­microbial agents (Sun et al., 2004; Verreck et al., 2003); for example fluconazole and itraconazole are used as anti­microbial drugs. Hence, metal complexes of Schiff bases derived from 1,2,4-triazole derivatives have been the subject of considerable study (Ozarowski et al., 1991; Cornelissen et al., 1992; Varma et al., 1992; Mishra & Said, 1996). A number of metal complexes with 1,2,4-tri­azole Schiff bases have been reported from our laboratory (Yadawe & Patil, 1997; Avaji et al., 2006; Kulkarni et al., 2009, 2011). In addition to this isatin, which is an endogenous indole, and its derivatives have been shown to exhibit a wide range of biological activities (Daisley & Shah, 1984; Pandeya et al., 1999a ,b ; Cerchiaro & Ferreira, 2006; Sridhar et al., 2002).Since triazoles are heterocyclic compounds and Schiff bases derived from isatin often act as versatile chelating agents and exhibit promising bioactivities, it is likely that a Schiff base derived from fluvastatin–triazole might also exhibit useful biological activities. In this way, it was planned to prepare a Schiff base which possesses both nitro­gen and sulfur coordination cites so that it might coordinate effectively to metal ions.

Structural commentary  

The asymmetric unit of the title compound (Fig. 1) is comprised of two independent mol­ecules (A and B). Both mol­ecules have a trans conformation with respect to the methene C=C [1.342 (2) and 1.335 (2) Å in mol­ecules A and B, respectively] and the acyclic N=C bonds [1.283 (2) and 1.281 (2) Å in mol­ecules A and B, respectively]. The indole rings are almost planar [maximum deviations of 0.017 (2) Å for atom C8A in mol­ecule A and 0.027 (2) Å for atom N1B in mol­ecule B]. In mol­ecule A, the triazole ring makes dihedral angles of 55.01 (12) and 18.17 (9)°, respectively, with the fluoro­phenyl and indole rings [54.54 (11) and 14.60 (10)°, respectively, in mol­ecule B]. The indole and fluoro­phenyl rings are inclined to one another by a dihedral angle of 64.78 (9)° [55.21 (8)° in mol­ecule B]. The bond lengths and angles in the triazole-thione moiety of the title compound are comparable to those reported for related compounds (Fun et al., 2008; Kulkarni et al., 2015).graphic file with name e-71-01525-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, mol­ecules A and B are consolidated into –ABAB– chains along [010] via N—H⋯N hydrogen bonds (Table 1 and Fig. 2). The chains are linked via C—H⋯π inter­actions (Table 1) and slipped parallel π–π inter­actions, involving inversion-related triazole rings, forming layers parallel to the ac plane [Cg4⋯Cg4i = 3.3436 (11) Å; Cg4 is the centroid of ring N3A–N5A/C12A/C13A; inter­planar distance = 3.2317 (8) Å; slippage = 0.858 Å; symmetry code: (i) −x, −y + 1, −z, and Cg5⋯Cg5ii = 3.4792 (13) Å; Cg5 is the centroid of ring N3B–N5B/C12B/C13B; inter­planar distance = 3.4194 (9) Å; slippage = 0.642 Å; symmetry code: (ii) −x + 2, −y + 2, −z].

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of ring N3A–N5A/C12A/C13A, Cg2 is the centroid of ring C17B–C22B, and Cg3 is the centroid of ring C1A–C6A.

D—H⋯A D—H H⋯A DA D—H⋯A
N4A—H4AB⋯N2B i 0.90 (2) 2.05 (2) 2.944 (2) 170 (2)
N4B—H4BB⋯N2A ii 0.89 (2) 2.02 (2) 2.906 (2) 170 (3)
C15B—H15ECg1iii 0.96 2.91 3.521 (3) 123
C16A—H16BCg2iv 0.96 2.87 3.716 (2) 148
C21A—H21ACg3v 0.93 2.90 3.668 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

The crystal packing of the title compound viewed along the a axis. The N—H⋯N hydrogen bonds are shown as dashed lines (see Table 1). H atoms not involved in hydrogen bonding have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version35.6, last update May 2015; Groom and Allen, 2014) using 4-(λ1-azan­yl)-5-methyl-2,4-di­hydro-3H-1,2,4-triazole-3-thione as the main skeleton, revealed the presence of 57 structures containing the triazole-thione moiety but only four structures containing the fluvastatin nucleus. These include 5-(3-(4-fluoro­phen­yl)-1-isopropyl-1H-indol-2-yl)-1-(X)penta-2,4-diene-1-one (Kalalbandi et al., 2015), where X = 4-nitro­phenyl (NUHNAH), 2-hy­droxy­phenyl (NUHNEL), 4-meth­oxy­phenyl (NUHNIP) and 4-chloro­phenyl (NUHNOV). In the four compounds the 4-fluoro­phenyl ring of the fluvastatin nucleus is inclined to the indole ring by dihedral angles ranging from ca 46.66 to 68.59°, compared to 55.01 (12) and 55.21 (8)° for the title compound.

Synthesis and crystallization  

The title compound was synthesized by refluxing a hot ethano­lic solution (30 ml) of 3-substituted-4-amino-5-mercapto-1,2,4-triazole (0.01 mol) and a hot ethano­lic solution (30 ml) of fluvastatin (0.01 mol) for 4–5 h with addition of a catalytic amount of concentrated hydro­chloric acid. The product obtained after evaporation of the solvent was filtered and recrystallized from hot ethanol. Single crystals were obtained by slow evaporation of a solution in chloro­form (yield 74%; m.p. 464 K). 1H NMR (D6-DMSO): 10.4 (s, 1H, NH), 10.01 (s, 1H, CH=N), 7.1–7.7 (m, 8H, Ar–H), 7.3 (s, 1H, triazole-H), 6.47–6.55 (d, 2H, –CH=CH–), 6.47–6.56 (s, 6H, isopropyl group). IR (KBr, cm−1): 3224, 3176 (N—H), 2754 (C—H), 1616 (C=N), 1600–1500 (C=C), 1105 (C=S). FAB–MS: m/z 405. Analysis: observed(calculated) C, 65.11 (65.18); H, 4.81 (4.93); N, 17.19 (17.28).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically [C—H = 0.95–0.97 Å] and refined using a riding model with U iso(H) = 1.2 or 1.5U eq(C). All N-bound H atoms were located from a difference Fourier map and freely refined [N—H = 0.90 (3)–0.91 (3) Å].

Table 2. Experimental details.

Crystal data
Chemical formula C22H20FN5S
M r 405.49
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 297
a, b, c (Å) 9.9283 (4), 11.5343 (5), 18.4694 (7)
α, β, γ (°) 99.8886 (13), 94.9582 (14), 98.4315 (14)
V3) 2047.54 (14)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.66 × 0.60 × 0.46
 
Data collection
Diffractometer Bruker APEXII DUO CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.730, 0.830
No. of measured, independent and observed [I > 2σ(I)] reflections 78666, 12002, 7987
R int 0.048
(sin θ/λ)max−1) 0.707
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.135, 1.02
No. of reflections 12002
No. of parameters 535
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.35

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901502201X/su5237sup1.cif

e-71-01525-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901502201X/su5237Isup2.hkl

e-71-01525-Isup2.hkl (657KB, hkl)

Supporting information file. DOI: 10.1107/S205698901502201X/su5237Isup3.cml

CCDC reference: 1437565

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by a PRGS Research Grant (No. RDU 130121).

supplementary crystallographic information

Crystal data

C22H20FN5S Z = 4
Mr = 405.49 F(000) = 848
Triclinic, P1 Dx = 1.315 Mg m3
a = 9.9283 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.5343 (5) Å Cell parameters from 9367 reflections
c = 18.4694 (7) Å θ = 2.3–27.8°
α = 99.8886 (13)° µ = 0.19 mm1
β = 94.9582 (14)° T = 297 K
γ = 98.4315 (14)° Block, yellow
V = 2047.54 (14) Å3 0.66 × 0.60 × 0.46 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer 12002 independent reflections
Radiation source: fine-focus sealed tube 7987 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
φ and ω scans θmax = 30.2°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→14
Tmin = 0.730, Tmax = 0.830 k = −16→16
78666 measured reflections l = −26→26

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0463P)2 + 1.0061P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
12002 reflections Δρmax = 0.32 e Å3
535 parameters Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.08455 (7) 0.69136 (4) 0.16534 (3) 0.05868 (16)
F1A −0.31446 (17) 0.78739 (11) 0.47019 (10) 0.0905 (5)
N1A −0.10366 (15) 0.16736 (12) 0.33308 (8) 0.0362 (3)
N2A 0.09099 (16) 0.39301 (12) 0.11449 (8) 0.0380 (3)
N3A 0.12047 (15) 0.48279 (12) 0.07369 (8) 0.0365 (3)
N4A 0.18107 (18) 0.64187 (14) 0.03380 (9) 0.0465 (4)
H4AB 0.204 (2) 0.719 (2) 0.0296 (13) 0.073 (7)*
N5A 0.20935 (18) 0.55200 (14) −0.01880 (9) 0.0480 (4)
C1A −0.13898 (18) 0.14893 (14) 0.40148 (9) 0.0362 (4)
C2A −0.1351 (2) 0.05110 (16) 0.43631 (10) 0.0456 (4)
H2AA −0.1068 −0.0177 0.4130 0.055*
C3A −0.1746 (2) 0.05986 (18) 0.50619 (11) 0.0523 (5)
H3AA −0.1719 −0.0042 0.5304 0.063*
C4A −0.2188 (2) 0.16190 (18) 0.54209 (11) 0.0514 (5)
H4AA −0.2443 0.1647 0.5895 0.062*
C5A −0.22476 (19) 0.25805 (16) 0.50808 (10) 0.0437 (4)
H5AA −0.2552 0.3256 0.5317 0.052*
C6A −0.18407 (17) 0.25233 (14) 0.43690 (9) 0.0347 (3)
C7A −0.17501 (16) 0.33564 (14) 0.38866 (9) 0.0332 (3)
C8A −0.12480 (17) 0.28220 (14) 0.32566 (9) 0.0327 (3)
C9A −0.09289 (17) 0.34389 (14) 0.26649 (9) 0.0353 (3)
H9AA −0.1367 0.4096 0.2654 0.042*
C10A −0.01208 (18) 0.32505 (14) 0.21247 (9) 0.0370 (4)
H10A 0.0286 0.2569 0.2059 0.044*
C11A 0.01137 (18) 0.40985 (14) 0.16505 (9) 0.0362 (4)
H11A −0.0310 0.4771 0.1708 0.043*
C12A 0.12757 (19) 0.60532 (15) 0.09206 (10) 0.0389 (4)
C13A 0.17236 (19) 0.45754 (16) 0.00762 (10) 0.0423 (4)
H13A 0.1800 0.3809 −0.0155 0.051*
C14A −0.07844 (19) 0.07247 (14) 0.27346 (10) 0.0394 (4)
H14A −0.0741 0.1071 0.2287 0.047*
C15A 0.0590 (2) 0.0347 (2) 0.28984 (13) 0.0601 (6)
H15A 0.0701 −0.0299 0.2517 0.090*
H15B 0.0631 0.0092 0.3367 0.090*
H15C 0.1309 0.1009 0.2916 0.090*
C16A −0.1958 (2) −0.03206 (18) 0.25663 (12) 0.0545 (5)
H16A −0.1871 −0.0821 0.2106 0.082*
H16B −0.2813 −0.0028 0.2531 0.082*
H16C −0.1931 −0.0774 0.2956 0.082*
C17A −0.21013 (17) 0.45672 (14) 0.40646 (9) 0.0349 (3)
C18A −0.34346 (19) 0.47005 (16) 0.41822 (11) 0.0434 (4)
H18A −0.4101 0.4025 0.4124 0.052*
C19A −0.3798 (2) 0.58122 (18) 0.43839 (12) 0.0517 (5)
H19A −0.4699 0.5893 0.4453 0.062*
C20A −0.2803 (2) 0.67830 (17) 0.44782 (12) 0.0550 (5)
C21A −0.1487 (2) 0.67053 (18) 0.43688 (15) 0.0667 (6)
H21A −0.0829 0.7389 0.4434 0.080*
C22A −0.1138 (2) 0.55868 (17) 0.41574 (13) 0.0550 (5)
H22A −0.0238 0.5523 0.4077 0.066*
S1B 0.68905 (7) 0.83235 (5) 0.03129 (3) 0.06422 (17)
F1B 0.46558 (19) 0.78643 (12) 0.34049 (10) 0.0933 (5)
N1B 0.49537 (16) 1.38803 (13) 0.20432 (8) 0.0401 (3)
N2B 0.75225 (17) 1.11714 (12) −0.00035 (8) 0.0452 (4)
N3B 0.81061 (17) 1.01944 (12) −0.03051 (8) 0.0432 (4)
N4B 0.8607 (2) 0.85069 (15) −0.07253 (10) 0.0563 (5)
H4BB 0.866 (3) 0.773 (2) −0.0831 (14) 0.080 (8)*
N5B 0.9290 (2) 0.92793 (15) −0.11091 (10) 0.0652 (5)
C1B 0.40567 (18) 1.41730 (15) 0.25539 (9) 0.0383 (4)
C2B 0.3447 (2) 1.51889 (16) 0.27086 (10) 0.0454 (4)
H2BA 0.3608 1.5806 0.2447 0.054*
C3B 0.2599 (2) 1.52490 (18) 0.32609 (11) 0.0500 (5)
H3BA 0.2178 1.5917 0.3370 0.060*
C4B 0.23559 (19) 1.43340 (18) 0.36616 (11) 0.0480 (5)
H4BA 0.1802 1.4413 0.4042 0.058*
C5B 0.29213 (18) 1.33217 (17) 0.35015 (10) 0.0424 (4)
H5BA 0.2738 1.2706 0.3763 0.051*
C6B 0.37813 (17) 1.32248 (15) 0.29381 (9) 0.0368 (4)
C7B 0.45102 (17) 1.23172 (15) 0.26345 (9) 0.0365 (4)
C8B 0.52169 (18) 1.27408 (15) 0.20931 (9) 0.0373 (4)
C9B 0.60246 (18) 1.20425 (15) 0.16399 (10) 0.0391 (4)
H9BA 0.6333 1.1443 0.1855 0.047*
C10B 0.6420 (2) 1.20839 (15) 0.09709 (10) 0.0420 (4)
H10B 0.6236 1.2692 0.0725 0.050*
C11B 0.71322 (19) 1.11722 (15) 0.06399 (10) 0.0408 (4)
H11B 0.7314 1.0574 0.0895 0.049*
C12B 0.7857 (2) 0.90104 (15) −0.02282 (10) 0.0437 (4)
C13B 0.8952 (3) 1.02883 (18) −0.08422 (12) 0.0575 (6)
H13B 0.9251 1.0998 −0.0998 0.069*
C14B 0.5777 (2) 1.47295 (16) 0.16779 (10) 0.0432 (4)
H14B 0.6475 1.4314 0.1454 0.052*
C15B 0.4908 (3) 1.5060 (2) 0.10514 (12) 0.0648 (6)
H15D 0.5475 1.5581 0.0805 0.097*
H15E 0.4198 1.5459 0.1248 0.097*
H15F 0.4503 1.4350 0.0705 0.097*
C16B 0.6536 (2) 1.58146 (18) 0.22234 (13) 0.0576 (5)
H16D 0.7206 1.6251 0.1983 0.086*
H16E 0.6987 1.5561 0.2636 0.086*
H16F 0.5896 1.6318 0.2396 0.086*
C17B 0.45015 (17) 1.11375 (15) 0.28393 (10) 0.0381 (4)
C18B 0.4860 (2) 1.10356 (16) 0.35652 (11) 0.0457 (4)
H18B 0.5065 1.1721 0.3929 0.055*
C19B 0.4921 (2) 0.99369 (19) 0.37605 (13) 0.0559 (5)
H19B 0.5177 0.9876 0.4247 0.067*
C20B 0.4592 (2) 0.89457 (17) 0.32175 (15) 0.0586 (6)
C21B 0.4200 (2) 0.89917 (18) 0.25037 (14) 0.0615 (6)
H21B 0.3967 0.8296 0.2149 0.074*
C22B 0.4154 (2) 1.00955 (17) 0.23120 (12) 0.0504 (5)
H22B 0.3887 1.0140 0.1824 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0947 (4) 0.0325 (2) 0.0520 (3) 0.0121 (2) 0.0265 (3) 0.0061 (2)
F1A 0.0981 (11) 0.0402 (7) 0.1313 (14) 0.0313 (7) 0.0106 (10) −0.0051 (8)
N1A 0.0483 (8) 0.0295 (7) 0.0346 (7) 0.0111 (6) 0.0152 (6) 0.0072 (5)
N2A 0.0550 (9) 0.0260 (6) 0.0376 (7) 0.0088 (6) 0.0146 (7) 0.0121 (6)
N3A 0.0479 (8) 0.0286 (7) 0.0376 (7) 0.0096 (6) 0.0131 (6) 0.0114 (6)
N4A 0.0640 (10) 0.0333 (8) 0.0484 (9) 0.0096 (7) 0.0189 (8) 0.0175 (7)
N5A 0.0635 (10) 0.0417 (8) 0.0469 (9) 0.0156 (7) 0.0223 (8) 0.0166 (7)
C1A 0.0429 (9) 0.0326 (8) 0.0347 (8) 0.0064 (7) 0.0105 (7) 0.0074 (6)
C2A 0.0606 (12) 0.0351 (9) 0.0444 (10) 0.0101 (8) 0.0125 (9) 0.0112 (7)
C3A 0.0697 (13) 0.0430 (10) 0.0476 (11) 0.0036 (9) 0.0131 (10) 0.0193 (9)
C4A 0.0645 (13) 0.0532 (11) 0.0378 (10) 0.0021 (10) 0.0180 (9) 0.0124 (8)
C5A 0.0506 (11) 0.0411 (9) 0.0385 (9) 0.0034 (8) 0.0164 (8) 0.0028 (7)
C6A 0.0374 (8) 0.0314 (8) 0.0348 (8) 0.0031 (6) 0.0095 (7) 0.0042 (6)
C7A 0.0347 (8) 0.0297 (7) 0.0358 (8) 0.0052 (6) 0.0096 (7) 0.0048 (6)
C8A 0.0368 (8) 0.0282 (7) 0.0348 (8) 0.0066 (6) 0.0088 (7) 0.0071 (6)
C9A 0.0427 (9) 0.0286 (7) 0.0371 (9) 0.0088 (7) 0.0087 (7) 0.0082 (6)
C10A 0.0492 (10) 0.0281 (8) 0.0371 (9) 0.0092 (7) 0.0111 (7) 0.0094 (6)
C11A 0.0440 (9) 0.0293 (8) 0.0379 (9) 0.0084 (7) 0.0091 (7) 0.0092 (6)
C12A 0.0477 (10) 0.0298 (8) 0.0430 (9) 0.0088 (7) 0.0094 (8) 0.0127 (7)
C13A 0.0536 (11) 0.0370 (9) 0.0423 (10) 0.0131 (8) 0.0180 (8) 0.0126 (7)
C14A 0.0531 (10) 0.0301 (8) 0.0365 (9) 0.0092 (7) 0.0146 (8) 0.0038 (7)
C15A 0.0558 (12) 0.0563 (12) 0.0698 (14) 0.0210 (10) 0.0184 (11) 0.0006 (10)
C16A 0.0670 (13) 0.0414 (10) 0.0508 (11) 0.0011 (9) 0.0041 (10) 0.0046 (9)
C17A 0.0406 (9) 0.0300 (8) 0.0343 (8) 0.0070 (7) 0.0084 (7) 0.0041 (6)
C18A 0.0397 (9) 0.0354 (9) 0.0527 (11) 0.0045 (7) 0.0058 (8) 0.0024 (8)
C19A 0.0455 (11) 0.0490 (11) 0.0618 (13) 0.0183 (9) 0.0090 (9) 0.0032 (9)
C20A 0.0655 (13) 0.0330 (9) 0.0664 (13) 0.0190 (9) 0.0055 (11) 0.0010 (9)
C21A 0.0585 (13) 0.0295 (9) 0.107 (2) 0.0000 (9) 0.0110 (13) 0.0033 (11)
C22A 0.0391 (10) 0.0373 (10) 0.0883 (16) 0.0051 (8) 0.0153 (10) 0.0083 (10)
S1B 0.0919 (4) 0.0371 (3) 0.0697 (4) 0.0092 (3) 0.0418 (3) 0.0115 (2)
F1B 0.1249 (13) 0.0413 (7) 0.1258 (14) 0.0180 (8) 0.0379 (11) 0.0337 (8)
N1B 0.0509 (9) 0.0360 (7) 0.0381 (8) 0.0176 (6) 0.0147 (7) 0.0067 (6)
N2B 0.0683 (10) 0.0299 (7) 0.0451 (8) 0.0209 (7) 0.0244 (8) 0.0081 (6)
N3B 0.0665 (10) 0.0301 (7) 0.0410 (8) 0.0192 (7) 0.0242 (7) 0.0100 (6)
N4B 0.0911 (14) 0.0338 (8) 0.0544 (10) 0.0246 (9) 0.0361 (9) 0.0113 (7)
N5B 0.1056 (15) 0.0434 (9) 0.0627 (11) 0.0304 (10) 0.0506 (11) 0.0185 (8)
C1B 0.0421 (9) 0.0383 (9) 0.0343 (8) 0.0118 (7) 0.0076 (7) 0.0003 (7)
C2B 0.0550 (11) 0.0393 (9) 0.0434 (10) 0.0172 (8) 0.0089 (8) 0.0027 (8)
C3B 0.0521 (11) 0.0485 (11) 0.0484 (11) 0.0216 (9) 0.0076 (9) −0.0057 (9)
C4B 0.0422 (10) 0.0556 (11) 0.0439 (10) 0.0119 (8) 0.0127 (8) −0.0043 (9)
C5B 0.0403 (9) 0.0449 (10) 0.0403 (9) 0.0066 (8) 0.0089 (7) 0.0012 (8)
C6B 0.0365 (9) 0.0371 (8) 0.0348 (8) 0.0073 (7) 0.0051 (7) −0.0004 (7)
C7B 0.0396 (9) 0.0344 (8) 0.0350 (8) 0.0086 (7) 0.0070 (7) 0.0017 (7)
C8B 0.0432 (9) 0.0342 (8) 0.0370 (9) 0.0133 (7) 0.0101 (7) 0.0049 (7)
C9B 0.0471 (10) 0.0335 (8) 0.0397 (9) 0.0144 (7) 0.0114 (8) 0.0050 (7)
C10B 0.0567 (11) 0.0332 (8) 0.0405 (9) 0.0178 (8) 0.0150 (8) 0.0059 (7)
C11B 0.0548 (11) 0.0313 (8) 0.0401 (9) 0.0142 (7) 0.0143 (8) 0.0073 (7)
C12B 0.0632 (12) 0.0309 (8) 0.0409 (9) 0.0150 (8) 0.0161 (8) 0.0062 (7)
C13B 0.0915 (16) 0.0388 (10) 0.0548 (12) 0.0238 (10) 0.0413 (11) 0.0166 (9)
C14B 0.0551 (11) 0.0391 (9) 0.0408 (9) 0.0166 (8) 0.0158 (8) 0.0096 (7)
C15B 0.0834 (16) 0.0719 (15) 0.0486 (12) 0.0267 (13) 0.0121 (11) 0.0237 (11)
C16B 0.0616 (13) 0.0447 (11) 0.0674 (14) 0.0100 (9) 0.0150 (11) 0.0081 (10)
C17B 0.0349 (8) 0.0329 (8) 0.0461 (10) 0.0047 (7) 0.0108 (7) 0.0037 (7)
C18B 0.0521 (11) 0.0359 (9) 0.0477 (10) 0.0006 (8) 0.0119 (8) 0.0062 (8)
C19B 0.0648 (13) 0.0498 (11) 0.0580 (12) 0.0071 (10) 0.0150 (10) 0.0215 (10)
C20B 0.0613 (13) 0.0345 (10) 0.0853 (17) 0.0063 (9) 0.0265 (12) 0.0185 (10)
C21B 0.0618 (13) 0.0336 (10) 0.0814 (17) −0.0006 (9) 0.0130 (12) −0.0057 (10)
C22B 0.0521 (11) 0.0423 (10) 0.0519 (11) 0.0050 (8) 0.0039 (9) −0.0015 (8)

Geometric parameters (Å, º)

S1A—C12A 1.6621 (18) S1B—C12B 1.6618 (19)
F1A—C20A 1.356 (2) F1B—C20B 1.359 (2)
N1A—C1A 1.382 (2) N1B—C1B 1.386 (2)
N1A—C8A 1.399 (2) N1B—C8B 1.394 (2)
N1A—C14A 1.479 (2) N1B—C14B 1.473 (2)
N2A—C11A 1.283 (2) N2B—C11B 1.281 (2)
N2A—N3A 1.3940 (18) N2B—N3B 1.3955 (18)
N3A—C13A 1.368 (2) N3B—C13B 1.362 (2)
N3A—C12A 1.385 (2) N3B—C12B 1.386 (2)
N4A—C12A 1.344 (2) N4B—C12B 1.341 (2)
N4A—N5A 1.372 (2) N4B—N5B 1.371 (2)
N4A—H4AB 0.91 (3) N4B—H4BB 0.90 (3)
N5A—C13A 1.287 (2) N5B—C13B 1.287 (2)
C1A—C2A 1.395 (2) C1B—C2B 1.394 (2)
C1A—C6A 1.411 (2) C1B—C6B 1.409 (2)
C2A—C3A 1.373 (3) C2B—C3B 1.377 (3)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.396 (3) C3B—C4B 1.394 (3)
C3A—H3AA 0.9300 C3B—H3BA 0.9300
C4A—C5A 1.371 (3) C4B—C5B 1.367 (3)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.402 (2) C5B—C6B 1.402 (2)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.417 (2) C6B—C7B 1.423 (2)
C7A—C8A 1.388 (2) C7B—C8B 1.385 (2)
C7A—C17A 1.478 (2) C7B—C17B 1.473 (2)
C8A—C9A 1.436 (2) C8B—C9B 1.437 (2)
C9A—C10A 1.342 (2) C9B—C10B 1.335 (2)
C9A—H9AA 0.9300 C9B—H9BA 0.9300
C10A—C11A 1.429 (2) C10B—C11B 1.432 (2)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—H11A 0.9300 C11B—H11B 0.9300
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—C15A 1.514 (3) C14B—C15B 1.518 (3)
C14A—C16A 1.518 (3) C14B—C16B 1.520 (3)
C14A—H14A 0.9800 C14B—H14B 0.9800
C15A—H15A 0.9600 C15B—H15D 0.9600
C15A—H15B 0.9600 C15B—H15E 0.9600
C15A—H15C 0.9600 C15B—H15F 0.9600
C16A—H16A 0.9600 C16B—H16D 0.9600
C16A—H16B 0.9600 C16B—H16E 0.9600
C16A—H16C 0.9600 C16B—H16F 0.9600
C17A—C22A 1.379 (2) C17B—C18B 1.386 (3)
C17A—C18A 1.386 (2) C17B—C22B 1.389 (2)
C18A—C19A 1.381 (2) C18B—C19B 1.384 (3)
C18A—H18A 0.9300 C18B—H18B 0.9300
C19A—C20A 1.356 (3) C19B—C20B 1.364 (3)
C19A—H19A 0.9300 C19B—H19B 0.9300
C20A—C21A 1.353 (3) C20B—C21B 1.354 (3)
C21A—C22A 1.385 (3) C21B—C22B 1.385 (3)
C21A—H21A 0.9300 C21B—H21B 0.9300
C22A—H22A 0.9300 C22B—H22B 0.9300
C1A—N1A—C8A 107.86 (13) C1B—N1B—C8B 107.49 (14)
C1A—N1A—C14A 124.51 (13) C1B—N1B—C14B 125.46 (14)
C8A—N1A—C14A 126.36 (13) C8B—N1B—C14B 124.92 (14)
C11A—N2A—N3A 117.96 (13) C11B—N2B—N3B 116.57 (14)
C13A—N3A—C12A 108.07 (14) C13B—N3B—C12B 108.25 (14)
C13A—N3A—N2A 119.78 (13) C13B—N3B—N2B 120.17 (14)
C12A—N3A—N2A 131.35 (14) C12B—N3B—N2B 131.03 (15)
C12A—N4A—N5A 114.68 (15) C12B—N4B—N5B 114.71 (15)
C12A—N4A—H4AB 124.6 (16) C12B—N4B—H4BB 125.5 (17)
N5A—N4A—H4AB 120.5 (16) N5B—N4B—H4BB 119.8 (17)
C13A—N5A—N4A 103.21 (14) C13B—N5B—N4B 103.27 (15)
N1A—C1A—C2A 131.02 (15) N1B—C1B—C2B 130.38 (17)
N1A—C1A—C6A 108.27 (14) N1B—C1B—C6B 108.73 (14)
C2A—C1A—C6A 120.71 (15) C2B—C1B—C6B 120.88 (16)
C3A—C2A—C1A 117.77 (17) C3B—C2B—C1B 117.91 (18)
C3A—C2A—H2AA 121.1 C3B—C2B—H2BA 121.0
C1A—C2A—H2AA 121.1 C1B—C2B—H2BA 121.0
C2A—C3A—C4A 122.14 (18) C2B—C3B—C4B 121.70 (17)
C2A—C3A—H3AA 118.9 C2B—C3B—H3BA 119.1
C4A—C3A—H3AA 118.9 C4B—C3B—H3BA 119.1
C5A—C4A—C3A 120.66 (17) C5B—C4B—C3B 120.80 (17)
C5A—C4A—H4AA 119.7 C5B—C4B—H4BA 119.6
C3A—C4A—H4AA 119.7 C3B—C4B—H4BA 119.6
C4A—C5A—C6A 118.62 (17) C4B—C5B—C6B 119.06 (18)
C4A—C5A—H5AA 120.7 C4B—C5B—H5BA 120.5
C6A—C5A—H5AA 120.7 C6B—C5B—H5BA 120.5
C5A—C6A—C1A 120.09 (15) C5B—C6B—C1B 119.59 (15)
C5A—C6A—C7A 132.27 (15) C5B—C6B—C7B 133.36 (17)
C1A—C6A—C7A 107.63 (14) C1B—C6B—C7B 107.05 (14)
C8A—C7A—C6A 106.91 (14) C8B—C7B—C6B 107.00 (15)
C8A—C7A—C17A 128.82 (14) C8B—C7B—C17B 125.95 (15)
C6A—C7A—C17A 124.25 (14) C6B—C7B—C17B 127.04 (15)
C7A—C8A—N1A 109.33 (13) C7B—C8B—N1B 109.70 (14)
C7A—C8A—C9A 122.57 (14) C7B—C8B—C9B 122.96 (15)
N1A—C8A—C9A 127.96 (14) N1B—C8B—C9B 127.25 (15)
C10A—C9A—C8A 132.44 (15) C10B—C9B—C8B 132.70 (16)
C10A—C9A—H9AA 113.8 C10B—C9B—H9BA 113.7
C8A—C9A—H9AA 113.8 C8B—C9B—H9BA 113.7
C9A—C10A—C11A 119.92 (15) C9B—C10B—C11B 118.64 (16)
C9A—C10A—H10A 120.0 C9B—C10B—H10B 120.7
C11A—C10A—H10A 120.0 C11B—C10B—H10B 120.7
N2A—C11A—C10A 119.84 (15) N2B—C11B—C10B 120.80 (16)
N2A—C11A—H11A 120.1 N2B—C11B—H11B 119.6
C10A—C11A—H11A 120.1 C10B—C11B—H11B 119.6
N4A—C12A—N3A 101.82 (14) N4B—C12B—N3B 101.69 (15)
N4A—C12A—S1A 126.62 (13) N4B—C12B—S1B 126.76 (14)
N3A—C12A—S1A 131.56 (13) N3B—C12B—S1B 131.55 (13)
N5A—C13A—N3A 112.20 (16) N5B—C13B—N3B 112.06 (17)
N5A—C13A—H13A 123.9 N5B—C13B—H13B 124.0
N3A—C13A—H13A 123.9 N3B—C13B—H13B 124.0
N1A—C14A—C15A 111.43 (16) N1B—C14B—C15B 110.91 (17)
N1A—C14A—C16A 111.89 (15) N1B—C14B—C16B 112.39 (15)
C15A—C14A—C16A 112.67 (16) C15B—C14B—C16B 112.68 (17)
N1A—C14A—H14A 106.8 N1B—C14B—H14B 106.8
C15A—C14A—H14A 106.8 C15B—C14B—H14B 106.8
C16A—C14A—H14A 106.8 C16B—C14B—H14B 106.8
C14A—C15A—H15A 109.5 C14B—C15B—H15D 109.5
C14A—C15A—H15B 109.5 C14B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
C14A—C15A—H15C 109.5 C14B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
C14A—C16A—H16A 109.5 C14B—C16B—H16D 109.5
C14A—C16A—H16B 109.5 C14B—C16B—H16E 109.5
H16A—C16A—H16B 109.5 H16D—C16B—H16E 109.5
C14A—C16A—H16C 109.5 C14B—C16B—H16F 109.5
H16A—C16A—H16C 109.5 H16D—C16B—H16F 109.5
H16B—C16A—H16C 109.5 H16E—C16B—H16F 109.5
C22A—C17A—C18A 117.71 (16) C18B—C17B—C22B 117.97 (17)
C22A—C17A—C7A 122.67 (15) C18B—C17B—C7B 120.80 (15)
C18A—C17A—C7A 119.54 (15) C22B—C17B—C7B 121.23 (17)
C19A—C18A—C17A 121.63 (17) C19B—C18B—C17B 121.48 (18)
C19A—C18A—H18A 119.2 C19B—C18B—H18B 119.3
C17A—C18A—H18A 119.2 C17B—C18B—H18B 119.3
C20A—C19A—C18A 118.09 (18) C20B—C19B—C18B 118.0 (2)
C20A—C19A—H19A 121.0 C20B—C19B—H19B 121.0
C18A—C19A—H19A 121.0 C18B—C19B—H19B 121.0
C21A—C20A—C19A 122.76 (18) C21B—C20B—F1B 118.8 (2)
C21A—C20A—F1A 118.94 (19) C21B—C20B—C19B 122.98 (19)
C19A—C20A—F1A 118.30 (19) F1B—C20B—C19B 118.3 (2)
C20A—C21A—C22A 118.65 (19) C20B—C21B—C22B 118.66 (19)
C20A—C21A—H21A 120.7 C20B—C21B—H21B 120.7
C22A—C21A—H21A 120.7 C22B—C21B—H21B 120.7
C17A—C22A—C21A 121.14 (18) C21B—C22B—C17B 120.9 (2)
C17A—C22A—H22A 119.4 C21B—C22B—H22B 119.6
C21A—C22A—H22A 119.4 C17B—C22B—H22B 119.6
C11A—N2A—N3A—C13A −162.30 (17) C11B—N2B—N3B—C13B −157.5 (2)
C11A—N2A—N3A—C12A 29.3 (3) C11B—N2B—N3B—C12B 32.0 (3)
C12A—N4A—N5A—C13A 0.0 (2) C12B—N4B—N5B—C13B 0.0 (3)
C8A—N1A—C1A—C2A −178.94 (19) C8B—N1B—C1B—C2B −177.88 (19)
C14A—N1A—C1A—C2A 13.3 (3) C14B—N1B—C1B—C2B 18.1 (3)
C8A—N1A—C1A—C6A 0.66 (19) C8B—N1B—C1B—C6B 1.4 (2)
C14A—N1A—C1A—C6A −167.09 (15) C14B—N1B—C1B—C6B −162.60 (16)
N1A—C1A—C2A—C3A 178.64 (19) N1B—C1B—C2B—C3B −179.10 (19)
C6A—C1A—C2A—C3A −0.9 (3) C6B—C1B—C2B—C3B 1.7 (3)
C1A—C2A—C3A—C4A 0.6 (3) C1B—C2B—C3B—C4B 0.5 (3)
C2A—C3A—C4A—C5A 0.3 (3) C2B—C3B—C4B—C5B −2.1 (3)
C3A—C4A—C5A—C6A −0.8 (3) C3B—C4B—C5B—C6B 1.5 (3)
C4A—C5A—C6A—C1A 0.4 (3) C4B—C5B—C6B—C1B 0.6 (3)
C4A—C5A—C6A—C7A −178.17 (19) C4B—C5B—C6B—C7B −179.50 (19)
N1A—C1A—C6A—C5A −179.20 (16) N1B—C1B—C6B—C5B 178.37 (16)
C2A—C1A—C6A—C5A 0.4 (3) C2B—C1B—C6B—C5B −2.3 (3)
N1A—C1A—C6A—C7A −0.31 (19) N1B—C1B—C6B—C7B −1.53 (19)
C2A—C1A—C6A—C7A 179.35 (17) C2B—C1B—C6B—C7B 177.81 (17)
C5A—C6A—C7A—C8A 178.54 (19) C5B—C6B—C7B—C8B −178.80 (19)
C1A—C6A—C7A—C8A −0.17 (19) C1B—C6B—C7B—C8B 1.08 (19)
C5A—C6A—C7A—C17A 0.2 (3) C5B—C6B—C7B—C17B 2.4 (3)
C1A—C6A—C7A—C17A −178.53 (15) C1B—C6B—C7B—C17B −177.68 (17)
C6A—C7A—C8A—N1A 0.59 (19) C6B—C7B—C8B—N1B −0.3 (2)
C17A—C7A—C8A—N1A 178.84 (16) C17B—C7B—C8B—N1B 178.53 (16)
C6A—C7A—C8A—C9A −175.47 (16) C6B—C7B—C8B—C9B −177.13 (16)
C17A—C7A—C8A—C9A 2.8 (3) C17B—C7B—C8B—C9B 1.7 (3)
C1A—N1A—C8A—C7A −0.78 (19) C1B—N1B—C8B—C7B −0.7 (2)
C14A—N1A—C8A—C7A 166.68 (16) C14B—N1B—C8B—C7B 163.39 (16)
C1A—N1A—C8A—C9A 175.00 (17) C1B—N1B—C8B—C9B 176.01 (17)
C14A—N1A—C8A—C9A −17.5 (3) C14B—N1B—C8B—C9B −19.9 (3)
C7A—C8A—C9A—C10A 158.93 (19) C7B—C8B—C9B—C10B 155.7 (2)
N1A—C8A—C9A—C10A −16.4 (3) N1B—C8B—C9B—C10B −20.6 (3)
C8A—C9A—C10A—C11A −173.41 (18) C8B—C9B—C10B—C11B −174.33 (19)
N3A—N2A—C11A—C10A −174.54 (15) N3B—N2B—C11B—C10B −174.83 (17)
C9A—C10A—C11A—N2A 178.49 (17) C9B—C10B—C11B—N2B 179.52 (19)
N5A—N4A—C12A—N3A −0.8 (2) N5B—N4B—C12B—N3B −0.6 (2)
N5A—N4A—C12A—S1A 178.96 (15) N5B—N4B—C12B—S1B 178.81 (17)
C13A—N3A—C12A—N4A 1.21 (19) C13B—N3B—C12B—N4B 1.0 (2)
N2A—N3A—C12A—N4A 170.61 (17) N2B—N3B—C12B—N4B 172.32 (19)
C13A—N3A—C12A—S1A −178.51 (16) C13B—N3B—C12B—S1B −178.40 (19)
N2A—N3A—C12A—S1A −9.1 (3) N2B—N3B—C12B—S1B −7.1 (3)
N4A—N5A—C13A—N3A 0.8 (2) N4B—N5B—C13B—N3B 0.7 (3)
C12A—N3A—C13A—N5A −1.4 (2) C12B—N3B—C13B—N5B −1.1 (3)
N2A—N3A—C13A—N5A −172.20 (16) N2B—N3B—C13B—N5B −173.56 (19)
C1A—N1A—C14A—C15A −75.0 (2) C1B—N1B—C14B—C15B −78.5 (2)
C8A—N1A—C14A—C15A 119.51 (19) C8B—N1B—C14B—C15B 120.25 (19)
C1A—N1A—C14A—C16A 52.1 (2) C1B—N1B—C14B—C16B 48.7 (2)
C8A—N1A—C14A—C16A −113.34 (19) C8B—N1B—C14B—C16B −112.61 (19)
C8A—C7A—C17A—C22A −64.4 (3) C8B—C7B—C17B—C18B 125.1 (2)
C6A—C7A—C17A—C22A 113.6 (2) C6B—C7B—C17B—C18B −56.4 (3)
C8A—C7A—C17A—C18A 119.0 (2) C8B—C7B—C17B—C22B −54.0 (3)
C6A—C7A—C17A—C18A −63.0 (2) C6B—C7B—C17B—C22B 124.5 (2)
C22A—C17A—C18A—C19A 0.2 (3) C22B—C17B—C18B—C19B 2.2 (3)
C7A—C17A—C18A—C19A 176.91 (17) C7B—C17B—C18B—C19B −176.87 (18)
C17A—C18A—C19A—C20A −1.1 (3) C17B—C18B—C19B—C20B −1.1 (3)
C18A—C19A—C20A—C21A 1.4 (4) C18B—C19B—C20B—C21B −0.7 (3)
C18A—C19A—C20A—F1A −177.68 (19) C18B—C19B—C20B—F1B 179.67 (19)
C19A—C20A—C21A—C22A −0.5 (4) F1B—C20B—C21B—C22B −179.12 (19)
F1A—C20A—C21A—C22A 178.5 (2) C19B—C20B—C21B—C22B 1.2 (3)
C18A—C17A—C22A—C21A 0.7 (3) C20B—C21B—C22B—C17B 0.0 (3)
C7A—C17A—C22A—C21A −176.0 (2) C18B—C17B—C22B—C21B −1.6 (3)
C20A—C21A—C22A—C17A −0.5 (4) C7B—C17B—C22B—C21B 177.44 (18)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of ring N3A–N5A/C12A/C13A, Cg2 is the centroid of ring C17B–C22B, and Cg3 is the centroid of ring C1A–C6A.

D—H···A D—H H···A D···A D—H···A
N4A—H4AB···N2Bi 0.90 (2) 2.05 (2) 2.944 (2) 170 (2)
N4B—H4BB···N2Aii 0.89 (2) 2.02 (2) 2.906 (2) 170 (3)
C15B—H15E···Cg1iii 0.96 2.91 3.521 (3) 123
C16A—H16B···Cg2iv 0.96 2.87 3.716 (2) 148
C21A—H21A···Cg3v 0.93 2.90 3.668 (2) 140

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x+1, −y+1, −z; (iii) x, y+1, z; (iv) x−1, y−1, z; (v) −x, −y+1, −z+1.

References

  1. Avaji, P. G., Reddy, B. N., Patil, S. A. & Badami, P. S. (2006). Transition Met. Chem. 31, 842–848.
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cerchiaro, G. & Ferreira, A. M. da C. (2006). J. Braz. Chem. Soc. 17, 1473–1485.
  4. Cornelissen, J. P., Van Diemen, J. H., Groeneveld, L. R., Haasnoot, J. G., Spek, A. L. & Reedijk, J. (1992). Inorg. Chem. 31, 198–202.
  5. Daisley, R. W. & Shah, V. K. (1984). J. Pharm. Sci. 73, 407–408. [DOI] [PubMed]
  6. Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1528–o1529. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Kalalbandi, V. K. A., Seetharamappa, J. & Katrahalli, U. (2015). RSC Adv. 5, 38748–38759.
  9. Kulkarni, A. D., Patil, S. A. & Badami, P. S. (2009). J. Sulfur Chem. 30, 145–159.
  10. Kulkarni, A. D., Patil, S. A., Naik, V. H. & Badami, P. S. (2011). Med. Chem. Res. 20, 346–354.
  11. Kulkarni, A. D., Rahman, M. L., Mohd. Yusoff, M., Kwong, H. C. & Quah, C. K. (2015). Acta Cryst. E71, 1411–1413. [DOI] [PMC free article] [PubMed]
  12. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  13. Mishra, L. & Said, M. K. (1996). Indian J. Chem. Sect. A, 35, 304–307.
  14. Ozarowski, A., Shunzhong, Y., McGarvey, B. R., Mislankar, A. & Drake, J. E. (1991). Inorg. Chem. 30, 3167–3174.
  15. Pandeya, S. N., Sriram, D., Declecq, E., Pannecouque, C. & Mitvrouw, M. (1999a). Indian J. Pharm. Sci. 60, 207–212.
  16. Pandeya, S. N., Sriram, D., Nath, G. & DeClercq, E. (1999b). Eur. J. Pharm. Sci. 9, 25–31. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132. [DOI] [PubMed]
  21. Sun, S., Lou, H., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. J. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124. [DOI] [PubMed]
  22. Varma, R. C., Varma, K., Verma, R. K. & Bhattacharjee, N. C. J. (1992). Indian Chem. Soc. 69, 577–578.
  23. Verreck, G., Six, K., Van den Mooter, G., Baert, L., Peeters, J. & Brewster, M. E. (2003). Int. J. Pharm. 251, 165–174. [DOI] [PubMed]
  24. Yadawe, M. S. & Patil, S. A. (1997). Transition Met. Chem. 22, 220–224.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S205698901502201X/su5237sup1.cif

e-71-01525-sup1.cif (2.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901502201X/su5237Isup2.hkl

e-71-01525-Isup2.hkl (657KB, hkl)

Supporting information file. DOI: 10.1107/S205698901502201X/su5237Isup3.cml

CCDC reference: 1437565

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES