Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 28;71(Pt 12):1542–1544. doi: 10.1107/S2056989015022434

Crystal structure of 3-O-benzyl-4(R)-C-(1-benzyl-1H-1,2,3-triazol-4-yl)-1,2-O-iso­propyl­idene-α-d-erythro­furan­ose

Nikita Semjonovs a, Vitalijs Rjabovs a, Dmitrijs Stepanovs b, Maris Turks a,*
PMCID: PMC4719834  PMID: 26870425

The title compound is a substituted 2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxole. The furan­ose ring adopts an envelope conformation, close to C 3-exo, as does the fused dioxolane ring. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming zigzag chains along [010].

Keywords: crystal structure; 1,2,3-triazole; click chemistry; carbohydrate triazole conjugate; pseudo-nucleoside

Abstract

The title compound, C23H25N3O4, {systematic name: 1-benzyl-4-[(3aR,5R,6R,6aR)-6-benz­yloxy-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl]-1H-1,2,3-triazole}, consists of a substituted 2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxole. The furan­ose ring adopts an envelope conformation close to C 3-exo, where the C atom substituted by the benz­yloxy group is the flap. The fused dioxolane ring also adopts an envelope conformation, with the methyl­ene C atom as the flap. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming zigzag chains along [010].

Chemical context  

The title compound, (1), was obtained in a one-pot multicomponent click reaction (Rostovtsev et al., 2002; Kumar et al., 2009) of alkyne (2), sodium azide, and benzyl bromide (3), in the presence of copper(II) sulfate and sodium ascorbate in THF solution at 323 K (Fig. 1). Similar C(4)-linked carbo­hydrate-1,2,3-triazole conjugates have been synthesized under different reaction conditions (Dururgkar et al., 2009; Kaliappan et al., 2009; Strakova et al., 2011). Many carbohydrate-triazole conjugates have been probed as glycosidase inhibitors (Rjabova et al., 2012), galectin inhibitors (Mackeviča et al., 2014), and anti­microbial agents (Jana et al., 2014; Reddy et al., 2014). Starting alkyne (2) and similar carbo­hydrate alkynes have been studied previously as precursors for triazole syntheses (Ciunik & Jarosz, 1998; Jarosz, 1988; Rjabovs et al., 2015; Strakova et al., 2011).graphic file with name e-71-01542-scheme1.jpg

Figure 1.

Figure 1

Synthesis of the title compound (1).

Structural commentary  

The title compound, Fig. 2, consists of a tetra­hydro­furan core fused with a dioxolane ring, and substituted with benzyl and (1-benz­yl)-1H-1,2,3-triazol-4-yl moieties. The furan­ose ring adopts an envelope conformation close to C 3-exo, where atom C3 deviates from the mean plane through atoms O1/C1/C2/C4 by 0.577 (4) Å. The fused dioxolane ring also adopts an envelope conformation, where atom C2 deviates from the mean plane through the four near planar atoms (O17/C18/O19/C1) by 0.364 (4) Å. The dihedral angle between the mean planes of the fragments of these rings is 69.3 (1)°.

Figure 2.

Figure 2

The mol­ecular structure of compound (1), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, weak C—H⋯O hydrogen bonds (Table 1) link the mol­ecules, forming zigzag chains along the b-axis direction. There are no other significant inter­molecular inter­actions present.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21C⋯O19i 0.96 2.53 3.285 (3) 136

Symmetry code: (i) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) for substituted 3a,5,6,6a-tetra­hydro­furo[2,3-d][1,3]dioxoles gave 485 hits (excluding organomet­allics). Three of them are triazoles: (4R)-4-(2-allyl-2H-1,2,3-triazol-4-yl)-1,2-O-iso­propyl­idene-l-threose (LOHTIM; Jenkinson et al., 2008) and 5-({5-[6-(benz­yloxy)-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-5-yl]-1H-1,2,3-triazol-1-yl}meth­yl)-2,2-di­methyl­tetra­hydro­furo[2,3-d][1,3]dioxol-6-ol (DOPVAH01 and DOPVEL01, two stereoisomers; Kayet et al., 2014).

Synthesis and crystallization  

The synthesis of the title compound is illustrated in Fig. 1. Sodium azide (98 mg, 1.5 mmol, 3 eq.) was added to a solution of alkyne (2) (140 mg, 0.5 mmol, 1 eq.) in THF (10 ml). The mixture was cooled to 273 K and benzyl bromide (3) (70 µl, 0.6 mmol, 1.2 eq.) was added. After 20 min solutions of copper(II) sulfate penta­hydrate (12 mg, 10 mol%) in water (0.5 ml) and sodium ascorbate (20 mg, 20 mol%) in water (0.5 ml) were added and the resulting reaction mixture was warmed to 323 K. After 3 h the solvent was evaporated under reduced pressure, the residue was dissolved in EtOAc (20 ml). The organic layer was washed with a saturated aqueous solution of NaHCO3 (3 × 5 ml) and brine (3 × 5 ml), dried over Na2SO4, filtered and evaporated. The solid residue was purified by column chromatography on silica gel eluting with hexa­nes/EtOAc giving a white crystalline solid (yield: 132 mg, 65%; m.p. 430-431 K). Colourless plate-like crystals were obtained by slow evaporation of a di­chloro­methane solution at ambient temperature.

Spectroscopic data: IR (KBr, cm−1): 3125, 3085, 2985, 2895, 1495, 1455, 1385, 1370, 1230, 1145, 1100, 1075, 1040, 995. 1H NMR (CDCl3, 300 MHz): δ 7.37 (m, 4H), 7.28–7.16 (m, 6H), 5.83 (d, J = 3.6 Hz, 1H), 5.54 (d, AB syst., J = 14.8 Hz, 1H), 5.47 (d, AB syst., J = 14.8 Hz, 1H), 5.13 (d, J = 9.0 Hz, 1H), 4.64 (m, 2H), 4.55 (d, AB syst., J = 12.2 Hz, 1H), 4.25 (dd, J = 8.0, 4.0 Hz, 1H), 1.63 (s, 3H), 1.37 (s, 3H). 13C NMR (CDCl3, 75 MHz): 13C NMR (75 MHz, CDCl3) δ 145.12, 137.64, 134.54, 129.28, 128.96, 128.43, 128.27, 128.12, 127.98, 123.26, 113.14, 103.98, 81.43, 77.93, 72.59, 72.57, 54.31, 26.92, 26.54.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The C-bound H atoms were positioned geometrically and refined as riding on their parent atoms: C—H = 0.93–0.98Å with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(C) for other H atoms. Reflection (0,0,2) whose intensity was affected by the beam-stop was removed from the final refinement. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf′′ set to zero.

Table 2. Experimental details.

Crystal data
Chemical formula C23H25N3O4
M r 407.46
Crystal system, space group Orthorhombic, P212121
Temperature (K) 173
a, b, c (Å) 9.5276 (2), 10.0030 (2), 21.9495 (7)
V3) 2091.89 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.31 × 0.17 × 0.12
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction
No. of measured, independent and observed [I > 2σ(I)] reflections 5878, 3423, 1983
R int 0.070
(sin θ/λ)max−1) 0.705
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.053, 0.106, 1.02
No. of reflections 3423
No. of parameters 273
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022434/su5245sup1.cif

e-71-01542-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022434/su5245Isup2.hkl

e-71-01542-Isup2.hkl (167.9KB, hkl)

CCDC reference: 1438541

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JSC ‘Olainfarm’ is acknowledged for the donation of diacetone-d-glucose and JSC ‘Grindeks’ is acknowledged for the donation of organic solvents.

supplementary crystallographic information

Crystal data

C23H25N3O4 Dx = 1.294 Mg m3
Mr = 407.46 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121 Cell parameters from 11742 reflections
a = 9.5276 (2) Å θ = 1.0–30.0°
b = 10.0030 (2) Å µ = 0.09 mm1
c = 21.9495 (7) Å T = 173 K
V = 2091.89 (9) Å3 Plate, colourless
Z = 4 0.31 × 0.17 × 0.12 mm
F(000) = 864

Data collection

Nonius KappaCCD diffractometer 1983 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.070
Graphite monochromator θmax = 30.1°, θmin = 2.2°
φ and ω scan h = −13→13
5878 measured reflections k = −14→14
3423 independent reflections l = −30→30

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0425P)2] where P = (Fo2 + 2Fc2)/3
3423 reflections (Δ/σ)max < 0.001
273 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.16295 (19) 0.88874 (17) 0.19794 (8) 0.0303 (4)
C1 1.2698 (3) 0.9325 (2) 0.23846 (11) 0.0257 (6)
H1 1.2802 1.0299 0.2367 0.031*
C2 1.2262 (3) 0.8879 (2) 0.30203 (12) 0.0264 (6)
H2 1.2484 0.9535 0.3338 0.032*
C3 1.0704 (3) 0.8622 (2) 0.29521 (11) 0.0249 (6)
H3 1.0190 0.9468 0.2983 0.030*
C4 1.0612 (3) 0.8090 (2) 0.23003 (11) 0.0255 (6)
H4 1.0914 0.7153 0.2295 0.031*
C5 0.9254 (3) 0.8207 (2) 0.19804 (11) 0.0247 (6)
C6 0.8620 (3) 0.9299 (3) 0.17250 (11) 0.0281 (7)
H6 0.8943 1.0176 0.1724 0.034*
N7 0.8440 (3) 0.7120 (2) 0.18755 (10) 0.0330 (6)
N8 0.7314 (3) 0.7502 (2) 0.15626 (10) 0.0340 (6)
N9 0.7435 (2) 0.8834 (2) 0.14768 (9) 0.0281 (5)
C10 0.6401 (3) 0.9530 (3) 0.11021 (12) 0.0347 (7)
H10A 0.6524 1.0487 0.1150 0.042*
H10B 0.5466 0.9304 0.1243 0.042*
C11 0.6530 (3) 0.9172 (2) 0.04351 (12) 0.0278 (6)
C12 0.7666 (4) 0.9615 (3) 0.00985 (13) 0.0424 (8)
H12 0.8340 1.0160 0.0278 0.051*
C13 0.7797 (4) 0.9242 (3) −0.05091 (14) 0.0509 (9)
H13 0.8563 0.9536 −0.0735 0.061*
C14 0.6808 (4) 0.8446 (3) −0.07767 (14) 0.0507 (9)
H14 0.6908 0.8191 −0.1182 0.061*
C15 0.5672 (4) 0.8026 (3) −0.04496 (15) 0.0511 (9)
H15 0.4987 0.7502 −0.0635 0.061*
C16 0.5537 (3) 0.8380 (3) 0.01595 (14) 0.0402 (8)
H16 0.4770 0.8078 0.0382 0.048*
O17 1.29867 (19) 0.76405 (16) 0.30941 (8) 0.0286 (5)
C18 1.4170 (3) 0.7600 (2) 0.26879 (11) 0.0278 (6)
O19 1.3983 (2) 0.86916 (16) 0.22727 (8) 0.0308 (5)
C20 1.5517 (3) 0.7802 (3) 0.30359 (13) 0.0360 (7)
H20A 1.5477 0.8636 0.3252 0.054*
H20B 1.6292 0.7816 0.2757 0.054*
H20C 1.5639 0.7084 0.3321 0.054*
C21 1.4123 (3) 0.6299 (2) 0.23368 (12) 0.0364 (7)
H21A 1.4858 0.6291 0.2038 0.055*
H21B 1.3230 0.6216 0.2137 0.055*
H21C 1.4250 0.5564 0.2613 0.055*
O3' 1.0121 (2) 0.76803 (16) 0.33605 (8) 0.0283 (4)
C4' 0.9967 (4) 0.8185 (3) 0.39562 (13) 0.0497 (9)
H4'1 0.9405 0.8992 0.3945 0.060*
H4'2 1.0883 0.8413 0.4119 0.060*
C5' 0.9281 (3) 0.7180 (2) 0.43610 (12) 0.0303 (7)
C6' 0.9439 (4) 0.7281 (3) 0.49853 (14) 0.0446 (8)
H6' 0.9965 0.7976 0.5150 0.054*
C7' 0.8820 (4) 0.6357 (3) 0.53642 (13) 0.0495 (9)
H7' 0.8924 0.6437 0.5784 0.059*
C8' 0.8054 (4) 0.5322 (3) 0.51301 (15) 0.0500 (9)
H8' 0.7648 0.4692 0.5388 0.060*
C9' 0.7889 (4) 0.5223 (3) 0.45101 (15) 0.0480 (9)
H9' 0.7360 0.4528 0.4348 0.058*
C10' 0.8498 (3) 0.6139 (3) 0.41277 (12) 0.0360 (7)
H10' 0.8383 0.6058 0.3709 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0293 (11) 0.0383 (10) 0.0232 (9) −0.0053 (9) −0.0004 (9) 0.0065 (8)
C1 0.0310 (17) 0.0218 (14) 0.0244 (14) −0.0016 (13) 0.0007 (13) 0.0025 (11)
C2 0.0315 (16) 0.0208 (13) 0.0267 (14) 0.0026 (12) −0.0007 (13) −0.0005 (11)
C3 0.0319 (16) 0.0216 (12) 0.0211 (13) 0.0002 (13) 0.0030 (13) −0.0002 (10)
C4 0.0318 (17) 0.0212 (13) 0.0235 (13) 0.0007 (13) 0.0046 (13) 0.0038 (10)
C5 0.0325 (16) 0.0231 (12) 0.0185 (13) −0.0036 (13) 0.0028 (13) 0.0020 (11)
C6 0.0304 (17) 0.0298 (14) 0.0242 (14) −0.0049 (13) −0.0024 (13) −0.0029 (11)
N7 0.0321 (14) 0.0315 (13) 0.0354 (14) −0.0074 (12) −0.0046 (12) 0.0026 (10)
N8 0.0346 (14) 0.0320 (13) 0.0354 (13) −0.0103 (12) 0.0012 (12) 0.0013 (11)
N9 0.0278 (14) 0.0283 (13) 0.0281 (12) 0.0003 (11) −0.0023 (11) −0.0025 (10)
C10 0.0305 (17) 0.0389 (15) 0.0347 (16) 0.0069 (15) −0.0020 (14) −0.0042 (13)
C11 0.0285 (16) 0.0281 (14) 0.0268 (14) 0.0061 (13) −0.0068 (13) −0.0018 (12)
C12 0.042 (2) 0.0478 (19) 0.0371 (18) −0.0066 (17) −0.0070 (16) −0.0003 (14)
C13 0.053 (2) 0.061 (2) 0.0384 (19) 0.0017 (19) 0.0041 (18) 0.0066 (17)
C14 0.071 (3) 0.053 (2) 0.0280 (17) 0.0107 (19) −0.0061 (19) −0.0054 (15)
C15 0.061 (3) 0.0497 (18) 0.043 (2) −0.0042 (19) −0.016 (2) −0.0110 (15)
C16 0.0359 (19) 0.0394 (17) 0.0452 (19) −0.0010 (15) −0.0034 (17) −0.0013 (14)
O17 0.0303 (11) 0.0232 (9) 0.0324 (10) 0.0064 (8) 0.0054 (9) 0.0073 (8)
C18 0.0317 (16) 0.0252 (13) 0.0266 (14) 0.0049 (13) 0.0040 (13) 0.0039 (11)
O19 0.0279 (11) 0.0299 (9) 0.0346 (10) 0.0030 (9) 0.0061 (9) 0.0087 (8)
C20 0.0371 (18) 0.0359 (16) 0.0350 (16) 0.0024 (14) −0.0021 (15) 0.0045 (13)
C21 0.0406 (19) 0.0271 (14) 0.0415 (17) 0.0033 (15) 0.0032 (16) −0.0038 (12)
O3' 0.0390 (11) 0.0255 (9) 0.0203 (9) −0.0023 (9) 0.0070 (8) 0.0003 (8)
C4' 0.080 (3) 0.0394 (17) 0.0298 (17) −0.0144 (19) 0.0176 (18) −0.0088 (13)
C5' 0.0356 (18) 0.0296 (14) 0.0258 (15) −0.0002 (14) 0.0070 (13) −0.0038 (11)
C6' 0.050 (2) 0.0518 (19) 0.0317 (17) −0.0111 (18) 0.0060 (16) −0.0077 (14)
C7' 0.060 (2) 0.064 (2) 0.0240 (16) −0.003 (2) 0.0109 (17) 0.0030 (15)
C8' 0.061 (3) 0.0463 (19) 0.043 (2) −0.0046 (18) 0.0200 (18) 0.0107 (15)
C9' 0.053 (2) 0.0410 (17) 0.050 (2) −0.0119 (17) 0.0146 (19) −0.0063 (16)
C10' 0.0406 (18) 0.0404 (17) 0.0270 (15) −0.0024 (16) 0.0031 (14) −0.0011 (13)

Geometric parameters (Å, º)

O1—C1 1.421 (3) C14—H14 0.9300
O1—C4 1.439 (3) C15—C16 1.389 (4)
C1—O19 1.400 (3) C15—H15 0.9300
C1—C2 1.523 (3) C16—H16 0.9300
C1—H1 0.9800 O17—C18 1.438 (3)
C2—O17 1.428 (3) C18—O19 1.433 (3)
C2—C3 1.514 (4) C18—C20 1.507 (4)
C2—H2 0.9800 C18—C21 1.513 (3)
C3—O3' 1.414 (3) C20—H20A 0.9600
C3—C4 1.529 (3) C20—H20B 0.9600
C3—H3 0.9800 C20—H20C 0.9600
C4—C5 1.477 (4) C21—H21A 0.9600
C4—H4 0.9800 C21—H21B 0.9600
C5—N7 1.355 (3) C21—H21C 0.9600
C5—C6 1.369 (3) O3'—C4' 1.409 (3)
C6—N9 1.337 (3) C4'—C5' 1.492 (4)
C6—H6 0.9300 C4'—H4'1 0.9700
N7—N8 1.330 (3) C4'—H4'2 0.9700
N8—N9 1.351 (3) C5'—C10' 1.379 (4)
N9—C10 1.460 (3) C5'—C6' 1.382 (4)
C10—C11 1.513 (3) C6'—C7' 1.376 (4)
C10—H10A 0.9700 C6'—H6' 0.9300
C10—H10B 0.9700 C7'—C8' 1.367 (4)
C11—C16 1.374 (4) C7'—H7' 0.9300
C11—C12 1.383 (4) C8'—C9' 1.373 (4)
C12—C13 1.391 (4) C8'—H8' 0.9300
C12—H12 0.9300 C9'—C10' 1.371 (4)
C13—C14 1.366 (4) C9'—H9' 0.9300
C13—H13 0.9300 C10'—H10' 0.9300
C14—C15 1.365 (5)
C1—O1—C4 110.29 (18) C13—C14—H14 120.0
O19—C1—O1 112.16 (19) C14—C15—C16 120.0 (3)
O19—C1—C2 105.47 (19) C14—C15—H15 120.0
O1—C1—C2 106.7 (2) C16—C15—H15 120.0
O19—C1—H1 110.8 C11—C16—C15 120.5 (3)
O1—C1—H1 110.8 C11—C16—H16 119.8
C2—C1—H1 110.8 C15—C16—H16 119.8
O17—C2—C3 109.7 (2) C2—O17—C18 109.46 (17)
O17—C2—C1 103.1 (2) O19—C18—O17 105.97 (19)
C3—C2—C1 103.1 (2) O19—C18—C20 109.0 (2)
O17—C2—H2 113.3 O17—C18—C20 110.5 (2)
C3—C2—H2 113.3 O19—C18—C21 109.1 (2)
C1—C2—H2 113.3 O17—C18—C21 108.4 (2)
O3'—C3—C2 115.8 (2) C20—C18—C21 113.5 (2)
O3'—C3—C4 109.82 (19) C1—O19—C18 110.00 (19)
C2—C3—C4 102.0 (2) C18—C20—H20A 109.5
O3'—C3—H3 109.6 C18—C20—H20B 109.5
C2—C3—H3 109.6 H20A—C20—H20B 109.5
C4—C3—H3 109.6 C18—C20—H20C 109.5
O1—C4—C5 108.25 (19) H20A—C20—H20C 109.5
O1—C4—C3 103.10 (19) H20B—C20—H20C 109.5
C5—C4—C3 117.9 (2) C18—C21—H21A 109.5
O1—C4—H4 109.1 C18—C21—H21B 109.5
C5—C4—H4 109.1 H21A—C21—H21B 109.5
C3—C4—H4 109.1 C18—C21—H21C 109.5
N7—C5—C6 108.5 (2) H21A—C21—H21C 109.5
N7—C5—C4 121.3 (2) H21B—C21—H21C 109.5
C6—C5—C4 130.2 (2) C4'—O3'—C3 113.00 (19)
N9—C6—C5 105.2 (2) O3'—C4'—C5' 110.9 (2)
N9—C6—H6 127.4 O3'—C4'—H4'1 109.5
C5—C6—H6 127.4 C5'—C4'—H4'1 109.5
N8—N7—C5 108.6 (2) O3'—C4'—H4'2 109.5
N7—N8—N9 106.6 (2) C5'—C4'—H4'2 109.5
C6—N9—N8 111.0 (2) H4'1—C4'—H4'2 108.0
C6—N9—C10 129.3 (2) C10'—C5'—C6' 118.8 (3)
N8—N9—C10 119.5 (2) C10'—C5'—C4' 121.6 (2)
N9—C10—C11 112.1 (2) C6'—C5'—C4' 119.5 (3)
N9—C10—H10A 109.2 C7'—C6'—C5' 120.2 (3)
C11—C10—H10A 109.2 C7'—C6'—H6' 119.9
N9—C10—H10B 109.2 C5'—C6'—H6' 119.9
C11—C10—H10B 109.2 C8'—C7'—C6' 120.7 (3)
H10A—C10—H10B 107.9 C8'—C7'—H7' 119.7
C16—C11—C12 119.2 (3) C6'—C7'—H7' 119.7
C16—C11—C10 120.5 (3) C7'—C8'—C9' 119.2 (3)
C12—C11—C10 120.3 (3) C7'—C8'—H8' 120.4
C11—C12—C13 119.8 (3) C9'—C8'—H8' 120.4
C11—C12—H12 120.1 C10'—C9'—C8' 120.7 (3)
C13—C12—H12 120.1 C10'—C9'—H9' 119.7
C14—C13—C12 120.4 (3) C8'—C9'—H9' 119.7
C14—C13—H13 119.8 C9'—C10'—C5' 120.4 (3)
C12—C13—H13 119.8 C9'—C10'—H10' 119.8
C15—C14—C13 120.0 (3) C5'—C10'—H10' 119.8
C15—C14—H14 120.0
C4—O1—C1—O19 109.7 (2) N9—C10—C11—C12 −70.7 (3)
C4—O1—C1—C2 −5.3 (3) C16—C11—C12—C13 −0.8 (4)
O19—C1—C2—O17 −24.2 (2) C10—C11—C12—C13 177.9 (3)
O1—C1—C2—O17 95.2 (2) C11—C12—C13—C14 0.3 (5)
O19—C1—C2—C3 −138.4 (2) C12—C13—C14—C15 0.8 (5)
O1—C1—C2—C3 −19.0 (3) C13—C14—C15—C16 −1.6 (5)
O17—C2—C3—O3' 44.2 (3) C12—C11—C16—C15 0.1 (4)
C1—C2—C3—O3' 153.50 (19) C10—C11—C16—C15 −178.6 (3)
O17—C2—C3—C4 −75.0 (2) C14—C15—C16—C11 1.1 (5)
C1—C2—C3—C4 34.3 (2) C3—C2—O17—C18 131.7 (2)
C1—O1—C4—C5 152.8 (2) C1—C2—O17—C18 22.4 (2)
C1—O1—C4—C3 27.2 (3) C2—O17—C18—O19 −12.5 (2)
O3'—C3—C4—O1 −161.15 (19) C2—O17—C18—C20 105.5 (2)
C2—C3—C4—O1 −37.8 (2) C2—O17—C18—C21 −129.5 (2)
O3'—C3—C4—C5 79.7 (3) O1—C1—O19—C18 −98.2 (2)
C2—C3—C4—C5 −156.9 (2) C2—C1—O19—C18 17.6 (3)
O1—C4—C5—N7 136.0 (2) O17—C18—O19—C1 −4.0 (3)
C3—C4—C5—N7 −107.6 (3) C20—C18—O19—C1 −123.0 (2)
O1—C4—C5—C6 −41.0 (4) C21—C18—O19—C1 112.5 (2)
C3—C4—C5—C6 75.3 (3) C2—C3—O3'—C4' 74.5 (3)
N7—C5—C6—N9 0.4 (3) C4—C3—O3'—C4' −170.7 (3)
C4—C5—C6—N9 177.7 (2) C3—O3'—C4'—C5' 177.0 (2)
C6—C5—N7—N8 −0.1 (3) O3'—C4'—C5'—C10' −20.4 (4)
C4—C5—N7—N8 −177.7 (2) O3'—C4'—C5'—C6' 159.0 (3)
C5—N7—N8—N9 −0.3 (3) C10'—C5'—C6'—C7' −0.2 (5)
C5—C6—N9—N8 −0.5 (3) C4'—C5'—C6'—C7' −179.6 (3)
C5—C6—N9—C10 −174.5 (2) C5'—C6'—C7'—C8' 0.6 (5)
N7—N8—N9—C6 0.5 (3) C6'—C7'—C8'—C9' −0.9 (5)
N7—N8—N9—C10 175.2 (2) C7'—C8'—C9'—C10' 0.8 (5)
C6—N9—C10—C11 103.7 (3) C8'—C9'—C10'—C5' −0.3 (5)
N8—N9—C10—C11 −69.9 (3) C6'—C5'—C10'—C9' 0.0 (5)
N9—C10—C11—C16 108.0 (3) C4'—C5'—C10'—C9' 179.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C21—H21C···O19i 0.96 2.53 3.285 (3) 136

Symmetry code: (i) −x+3, y−1/2, −z+1/2.

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  2. Ciunik, Z. & Jarosz, S. (1998). J. Mol. Struct. 442, 115–119.
  3. Dururgkar, K. A., Gonnade, R. G. & Ramana, C. V. (2009). Tetrahedron, 65, 3974–3979.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Jana, S. K., Löppenberg, M., Daniliuc, C. G. & Holl, R. (2014). Tetrahedron, 70, 6569–6577.
  7. Jarosz, S. (1988). Tetrahedron Lett. 29, 1193–1196.
  8. Jenkinson, S. F., Best, D., Wilson, F. X., Fleet, G. W. J. & Watkin, D. J. (2008). Acta Cryst. E64, o2361. [DOI] [PMC free article] [PubMed]
  9. Kaliappan, K. P., Kalanidhi, P. & Mahapatra, S. (2009). Synlett, pp. 2162–2166.
  10. Kayet, A., Datta, D., Kumar, G., Ghosh, A. S. & Pathak, T. (2014). RSC Adv. 4, 63036–63038.
  11. Kumar, D., Reddy, V. B. & Varma, R. S. (2009). Tetrahedron Lett. 50, 2065–2068.
  12. Mackeviča, J., Ostrovskis, P., Leffler, H., Nilsson, U. J., Rudovica, V., Viksna, A., Belyakov, S. & Turks, M. (2014). ARKIVOC, (III), 90–112.
  13. Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
  14. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  15. Reddy, P. V., Saquib, M., Mishra, N. N., Shukla, P. K. & Shaw, A. K. (2014). ARKIVOC, (IV), 170–182.
  16. Rjabova, J., Rjabovs, V., Moreno Vargas, A. J., Clavijo, E. M. & Turks, M. (2012). Cent. Eur. J. Chem. 10, 386–394.
  17. Rjabovs, V., Ostrovskis, P., Posevins, D., Kiselovs, G., Kumpiņš, V., Mishnev, A. & Turks, M. (2015). Eur. J. Org. Chem. pp. 5572–5584.
  18. Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. (2002). Angew. Chem. Int. Ed. 41, 2596–2599. [DOI] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  21. Strakova, I., Kumpiņa, I., Rjabovs, V., Lugiņina, J., Belyakov, S. & Turks, M. (2011). Tetrahedron Asymmetry, 22, 728–739.
  22. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015022434/su5245sup1.cif

e-71-01542-sup1.cif (30.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022434/su5245Isup2.hkl

e-71-01542-Isup2.hkl (167.9KB, hkl)

CCDC reference: 1438541

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES