Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 28;71(Pt 12):1545–1547. doi: 10.1107/S2056989015022410

Crystal structure of 7-{[bis­(pyridin-2-ylmeth­yl)amino]­meth­yl}-5-chloro­quinolin-8-ol

Koji Kubono a,*, Kimiko Kado a, Yukiyasu Kashiwagi b, Keita Tani a, Kunihiko Yokoi a
PMCID: PMC4719835  PMID: 26870426

In the title compound, there is an intra­molecular O—H⋯N hydrogen bond forming an S(9) ring motif. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds forming inversion dimers with an R 4 4(10) ring motif. The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons along [01-1].

Keywords: crystal structure, 8-quinolinol, bis­(2-picol­yl)amine, hydrogen bonding, π–π inter­actions

Abstract

In the title compound, C22H19ClN4O, the quinolinol moiety is almost planar [r.m.s. deviation = 0.012 Å]. There is an intra­molecular O—H⋯N hydrogen bond involving the hy­droxy group and a pyridine N atom forming an S(9) ring motif. The dihedral angles between the planes of the quinolinol moiety and the pyridine rings are 44.15 (9) and 36.85 (9)°. In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds forming inversion dimers with an R 4 4(10) ring motif. The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons along [01-1]. The ribbons are linked by C—H⋯π and π–π inter­actions [inter-centroid distance = 3.7109 (11) Å], forming layers parallel to (01-1).

Chemical context  

8-Quinolinol and its derivatives are well-known chelating reagents, forming fluorescent complexes with various metal ions, such as Al3+, Zn2+ and Cd2+ (Goon et al., 1953; Valeur & Leray, 2000; Pohl & Anzenbacher, 2003). Bis(pyridin-2-ylmeth­yl)amine [di-(2-picol­yl)amine (DPA)] is an excellent ligand showing high selectivity for Zn2+, which plays important roles in biological, pathological and environmental processes (Berg & Shi, 1996; Bush et al., 1994; Callender & Rice, 2000), and it is used to detect Zn2+ with low concentration in biological and environmental samples. Therefore, many fluorescence probes for Zn2+ bearing DPA as an ion-recognition site have been developed (Xue et al., 2008; Chen et al., 2011; Kwon et al., 2012). We have synthesized a new fluorescence chemosensor, based on 8-quinolinol containing DPA via a two-step reaction, and herein we report on its synthesis and crystal structure.graphic file with name e-71-01545-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound, is shown in Fig. 1. There is an O—H⋯N intra­molecular hydrogen bond involving the hy­droxy group (O2—H2) and a pyridine N atom, N5, generating an S(9) ring motif (Fig. 1 and Table 1). The N(tertiaryamine)—C—C—N(pyridine) torsion angles, N4—C17—C18—N5 and N4—C23—C24—N6 are 75.0 (2) and 152.46 (19)°, respectively. The dihedral angle between the N5- and N6-containing pyridine rings pyridine rings is 80.97 (12)°, and they make dihedral angles of 44.15 (9) and 36.85 (9)°, respectively, with the quinolinol moiety.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular O—H⋯N hydrogen bond is shown as a dashed line (see Table 1).

Table 1. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of rings N5/C18–C22 and N6/C24–C28, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N5 1.04 (3) 1.66 (4) 2.689 (3) 168 (2)
C22—H22⋯O2i 0.93 2.46 3.348 (3) 160
C27—H27⋯N3ii 0.93 2.55 3.406 (3) 153
C17—H17b⋯Cg2iii 0.97 2.79 3.599 (3) 141
C23—H23ACg3iv 0.97 2.86 3.770 (3) 156

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked via C—H⋯O hydrogen bonds, forming inversion dimers with an Inline graphic(10) ring motif (Fig. 2 and Table 1). The dimers are linked by C—H⋯N hydrogen bonds, forming ribbons along [01Inline graphic]. The ribbons are linked by C—H⋯π (Table 1) and slipped parallel π–π inter­actions [Cg1⋯Cg1i, = 3.7109 (11) Å; Cg1 is the centroid of ring C7–C11/C15; inter-planar distance = 3.5518 (8) Å; slippage = 1.075 Å; symmetry code: (i) −x, −y + 1, −z], forming layers parallel to (01Inline graphic) .

Figure 2.

Figure 2

A view along the a axis of the crystal packing of the title compound. The hydrogen bonds (see Table 1) and π–π inter­actions are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.36; Groom & Allen, 2014) for 8-quinolinols gave 387 hits, and for DPA, bis­(pyridine-2-ylmeth­yl)amine gave 4535 hits. A search for the fragment 2-[bis­(pyridin-2-ylmethyl-amino)-meth­yl]phenol gave 56 hits of which none contained 8-quinolinol. In the compounds that resemble the title compound, namely 2,6-bis­[bis­(pyridine-2-ylmeth­yl)amino­meth­yl]-4-tert-butyl­phenol (I) (Bjernemose & McKenzie, 2003), and 3-{[bis­(pyridin-2-ylmeth­yl)amino]­meth­yl}-2-hy­droxy-5-methyl­benzaldehyde (II) (Wang et al., 2012), an intra­molecular bifurcated hydrogen bond is formed. The N—C—C—N torsion angles in the related compounds are −46.9 (2) and 152.7 (2)° in (I) and 48.35 (18) and −116.99 (15)° in (II), compared to 75.0 (2) and 152.46 (19)° in the title compound. The crystal structures of other compounds containing a fluorescent core and bis­(pyridine-2-ylmeth­yl)amine have been reported; for example one containing a fluorescein core (Wong et al., 2009), and another a coumarin core (Kobayashi et al., 2014).

Synthesis and crystallization  

A suspension of paraformaldehyde (0.41 g, 14 mmol) and bis­(2-pyridyl­meth­yl)amine (1.99 g, 10 mmol) in 100 ml of MeOH was stirred for 18 h at room temperature. The solvent was removed under vacuum. To the product obtained was added 100 ml of toluene and 5-chloro-8-quinolinol (1.80 g, 10 mmol), and the mixture was heated for 24 h at 353 K. The solvent was removed under vacuum to give an oily product, which was crystallized from hexa­ne–di­chloro­methane. The crude solid was recrystallized from aceto­nitrile to obtain yellow crystals of the title compound (yield 55%; m.p. 380.4–382.6 K). HRMS (m/z): [M + 1]+ calculated, 391.1326; found, 391.1271. Analysis calculated for C22H19ClN4O: C 67.60, H 4.90, N 14.33%; found: C 67.50, H 5.01, N 14.37%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C22H19ClN4O
M r 390.86
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 296
a, b, c (Å) 8.3170 (5), 11.5993 (7), 11.6135 (6)
α, β, γ (°) 116.8473 (13), 105.2809 (13), 92.0110 (17)
V3) 948.68 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.30 × 0.20 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Higashi, 1995)
T min, T max 0.769, 0.978
No. of measured, independent and observed [F 2 > 2.0σ(F 2)] reflections 9412, 4293, 2329
R int 0.023
(sin θ/λ)max−1) 0.648
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.036, 0.123, 1.09
No. of reflections 4293
No. of parameters 257
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.24

Computer programs: RAPID-AUTO (Rigaku, 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and CrystalStructure (Rigaku, 2014).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015022410/su5241sup1.cif

e-71-01545-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022410/su5241Isup2.hkl

e-71-01545-Isup2.hkl (210.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022410/su5241Isup3.cml

CCDC reference: 1438483

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This study was supported financially in part by Grants-in-Aid for Scientific Research (No. 15 K05539) from the Japan Society for the Promotion of Science.

supplementary crystallographic information

Crystal data

C22H19ClN4O Z = 2
Mr = 390.86 F(000) = 408.00
Triclinic, P1 Dx = 1.368 Mg m3
a = 8.3170 (5) Å Mo Kα radiation, λ = 0.71075 Å
b = 11.5993 (7) Å Cell parameters from 5840 reflections
c = 11.6135 (6) Å θ = 3.1–27.4°
α = 116.8473 (13)° µ = 0.22 mm1
β = 105.2809 (13)° T = 296 K
γ = 92.0110 (17)° Block, yellow
V = 948.68 (10) Å3 0.30 × 0.20 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 2329 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.023
ω scans θmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −10→10
Tmin = 0.769, Tmax = 0.978 k = −15→15
9412 measured reflections l = −14→15
4293 independent reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0488P)2 + 0.1777P] where P = (Fo2 + 2Fc2)/3
4293 reflections (Δ/σ)max < 0.001
257 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.24 e Å3
Primary atom site location: structure-invariant direct methods

Special details

Geometry. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 sigma(F2) is used only for calculating R-factor (gt).
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.20020 (9) 0.40251 (6) 0.58501 (6) 0.0724 (2)
O2 0.3787 (2) 0.45209 (15) 0.14798 (14) 0.0563 (4)
N3 0.3767 (2) 0.22221 (18) 0.14868 (17) 0.0560 (5)
N4 0.1525 (2) 0.72637 (15) 0.33905 (15) 0.0432 (4)
N5 0.2432 (2) 0.61932 (17) 0.06500 (16) 0.0500 (4)
N6 0.2990 (2) 1.07071 (18) 0.58796 (17) 0.0562 (5)
C7 0.3408 (2) 0.4468 (2) 0.25274 (18) 0.0444 (5)
C8 0.3075 (2) 0.5531 (2) 0.35655 (19) 0.0440 (5)
C9 0.2637 (3) 0.5344 (2) 0.45812 (19) 0.0488 (5)
C10 0.2564 (3) 0.4177 (2) 0.45746 (19) 0.0474 (5)
C11 0.2949 (2) 0.3074 (2) 0.35528 (18) 0.0451 (5)
C12 0.2940 (3) 0.1827 (2) 0.3486 (2) 0.0546 (5)
C13 0.3335 (3) 0.0841 (2) 0.2454 (2) 0.0642 (6)
C14 0.3733 (3) 0.1088 (2) 0.1483 (2) 0.0645 (6)
C15 0.3387 (2) 0.3236 (2) 0.25179 (18) 0.0439 (5)
C16 0.3190 (3) 0.6889 (2) 0.3710 (2) 0.0469 (5)
C17 0.0484 (3) 0.6472 (2) 0.19651 (18) 0.0453 (5)
C18 0.1068 (3) 0.67040 (19) 0.09391 (18) 0.0440 (5)
C19 0.0266 (3) 0.7400 (2) 0.0336 (2) 0.0542 (5)
C20 0.0860 (3) 0.7593 (3) −0.0582 (2) 0.0646 (6)
C21 0.2264 (3) 0.7087 (3) −0.0865 (2) 0.0637 (6)
C22 0.2999 (3) 0.6399 (2) −0.0238 (2) 0.0577 (6)
C23 0.1681 (3) 0.8665 (2) 0.3842 (2) 0.0549 (6)
C24 0.2147 (3) 0.9495 (2) 0.53687 (19) 0.0463 (5)
C25 0.1679 (3) 0.9048 (2) 0.6174 (2) 0.0563 (6)
C26 0.2149 (3) 0.9865 (2) 0.7564 (2) 0.0600 (6)
C27 0.3044 (3) 1.1103 (2) 0.8101 (2) 0.0570 (6)
C28 0.3404 (3) 1.1481 (2) 0.7224 (2) 0.0614 (6)
H2 0.329 (3) 0.526 (3) 0.129 (3) 0.098 (9)*
H9 0.23914 0.60515 0.52745 0.0585*
H12 0.26668 0.16817 0.41415 0.0655*
H13 0.33386 0.00152 0.23959 0.0771*
H14 0.39931 0.0399 0.07819 0.0774*
H16A 0.38532 0.7515 0.46354 0.0563*
H16B 0.37804 0.69349 0.31109 0.0563*
H17A −0.06633 0.66426 0.18846 0.0544*
H17B 0.04458 0.55522 0.17233 0.0544*
H19 −0.06765 0.77418 0.05442 0.0651*
H20 0.03192 0.80564 −0.10001 0.0776*
H21 0.27022 0.72111 −0.14678 0.0764*
H22 0.39441 0.60539 −0.04348 0.0692*
H23A 0.06141 0.88388 0.34197 0.0659*
H23B 0.25394 0.89247 0.35362 0.0659*
H25 0.10548 0.82092 0.57873 0.0676*
H26 0.18619 0.95777 0.81246 0.0720*
H27 0.33951 1.16686 0.90321 0.0684*
H28 0.39751 1.2333 0.75867 0.0737*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0990 (5) 0.0762 (4) 0.0553 (4) 0.0150 (4) 0.0451 (3) 0.0312 (3)
O2 0.0698 (10) 0.0665 (10) 0.0499 (8) 0.0272 (8) 0.0355 (8) 0.0321 (8)
N3 0.0734 (13) 0.0579 (12) 0.0446 (10) 0.0263 (10) 0.0282 (9) 0.0247 (9)
N4 0.0515 (10) 0.0396 (9) 0.0336 (8) 0.0077 (8) 0.0159 (7) 0.0123 (8)
N5 0.0525 (11) 0.0546 (11) 0.0389 (9) 0.0099 (9) 0.0180 (8) 0.0169 (9)
N6 0.0747 (13) 0.0454 (11) 0.0413 (10) 0.0005 (9) 0.0243 (9) 0.0122 (9)
C7 0.0422 (11) 0.0567 (13) 0.0350 (10) 0.0116 (10) 0.0153 (9) 0.0206 (10)
C8 0.0415 (11) 0.0493 (12) 0.0364 (10) 0.0063 (9) 0.0121 (8) 0.0167 (9)
C9 0.0504 (12) 0.0543 (13) 0.0336 (10) 0.0101 (10) 0.0165 (9) 0.0125 (10)
C10 0.0511 (12) 0.0551 (14) 0.0363 (10) 0.0075 (10) 0.0161 (9) 0.0208 (10)
C11 0.0416 (11) 0.0543 (13) 0.0347 (10) 0.0079 (10) 0.0108 (8) 0.0181 (10)
C12 0.0622 (14) 0.0598 (15) 0.0463 (12) 0.0117 (11) 0.0188 (11) 0.0281 (12)
C13 0.0846 (18) 0.0573 (15) 0.0593 (14) 0.0216 (13) 0.0287 (13) 0.0308 (13)
C14 0.0896 (18) 0.0579 (15) 0.0530 (13) 0.0316 (13) 0.0333 (13) 0.0250 (12)
C15 0.0437 (11) 0.0522 (13) 0.0352 (10) 0.0132 (10) 0.0143 (9) 0.0192 (10)
C16 0.0478 (12) 0.0478 (12) 0.0364 (10) 0.0022 (10) 0.0140 (9) 0.0129 (9)
C17 0.0450 (11) 0.0461 (12) 0.0361 (10) 0.0051 (9) 0.0135 (9) 0.0122 (9)
C18 0.0441 (11) 0.0431 (11) 0.0305 (9) 0.0027 (9) 0.0095 (8) 0.0075 (9)
C19 0.0544 (13) 0.0585 (14) 0.0441 (11) 0.0130 (11) 0.0146 (10) 0.0201 (11)
C20 0.0732 (17) 0.0701 (16) 0.0520 (13) 0.0108 (13) 0.0155 (12) 0.0326 (13)
C21 0.0717 (16) 0.0737 (17) 0.0466 (12) 0.0020 (13) 0.0214 (12) 0.0288 (13)
C22 0.0566 (14) 0.0681 (15) 0.0446 (12) 0.0090 (12) 0.0230 (10) 0.0203 (12)
C23 0.0801 (16) 0.0432 (13) 0.0376 (11) 0.0105 (11) 0.0217 (11) 0.0144 (10)
C24 0.0585 (13) 0.0413 (12) 0.0363 (10) 0.0111 (10) 0.0191 (9) 0.0137 (9)
C25 0.0781 (16) 0.0463 (13) 0.0465 (12) 0.0078 (11) 0.0280 (11) 0.0193 (11)
C26 0.0820 (17) 0.0648 (16) 0.0449 (12) 0.0187 (13) 0.0331 (12) 0.0283 (12)
C27 0.0613 (14) 0.0620 (15) 0.0355 (11) 0.0108 (12) 0.0189 (10) 0.0113 (11)
C28 0.0685 (16) 0.0535 (14) 0.0442 (12) −0.0039 (12) 0.0215 (11) 0.0076 (11)

Geometric parameters (Å, º)

Cl1—C10 1.743 (3) C21—C22 1.366 (4)
O2—C7 1.361 (3) C23—C24 1.514 (3)
N3—C14 1.313 (4) C24—C25 1.382 (4)
N3—C15 1.368 (3) C25—C26 1.384 (3)
N4—C16 1.470 (3) C26—C27 1.369 (4)
N4—C17 1.466 (2) C27—C28 1.370 (4)
N4—C23 1.454 (3) O2—H2 1.04 (3)
N5—C18 1.349 (3) C9—H9 0.930
N5—C22 1.347 (4) C12—H12 0.930
N6—C24 1.334 (3) C13—H13 0.930
N6—C28 1.338 (3) C14—H14 0.930
C7—C8 1.381 (3) C16—H16A 0.970
C7—C15 1.424 (4) C16—H16B 0.970
C8—C9 1.422 (4) C17—H17A 0.970
C8—C16 1.504 (3) C17—H17B 0.970
C9—C10 1.349 (4) C19—H19 0.930
C10—C11 1.416 (3) C20—H20 0.930
C11—C12 1.412 (4) C21—H21 0.930
C11—C15 1.429 (4) C22—H22 0.930
C12—C13 1.359 (3) C23—H23A 0.970
C13—C14 1.394 (5) C23—H23B 0.970
C17—C18 1.521 (4) C25—H25 0.930
C18—C19 1.375 (4) C26—H26 0.930
C19—C20 1.384 (4) C27—H27 0.930
C20—C21 1.376 (4) C28—H28 0.930
C14—N3—C15 117.7 (2) N6—C28—C27 124.4 (2)
C16—N4—C17 113.69 (15) C7—O2—H2 112.4 (18)
C16—N4—C23 111.51 (16) C8—C9—H9 118.825
C17—N4—C23 112.33 (18) C10—C9—H9 118.839
C18—N5—C22 117.9 (2) C11—C12—H12 120.293
C24—N6—C28 117.2 (2) C13—C12—H12 120.294
O2—C7—C8 123.5 (2) C12—C13—H13 120.515
O2—C7—C15 116.17 (17) C14—C13—H13 120.514
C8—C7—C15 120.4 (2) N3—C14—H14 117.649
C7—C8—C9 118.4 (2) C13—C14—H14 117.655
C7—C8—C16 124.0 (2) N4—C16—H16A 108.956
C9—C8—C16 117.66 (18) N4—C16—H16B 108.959
C8—C9—C10 122.34 (19) C8—C16—H16A 108.959
Cl1—C10—C9 119.55 (16) C8—C16—H16B 108.962
Cl1—C10—C11 119.4 (2) H16A—C16—H16B 107.759
C9—C10—C11 121.1 (2) N4—C17—H17A 108.296
C10—C11—C12 124.8 (2) N4—C17—H17B 108.295
C10—C11—C15 117.6 (2) C18—C17—H17A 108.301
C12—C11—C15 117.59 (18) C18—C17—H17B 108.301
C11—C12—C13 119.4 (3) H17A—C17—H17B 107.402
C12—C13—C14 119.0 (3) C18—C19—H19 119.991
N3—C14—C13 124.7 (2) C20—C19—H19 119.983
N3—C15—C7 118.2 (2) C19—C20—H20 120.561
N3—C15—C11 121.6 (2) C21—C20—H20 120.563
C7—C15—C11 120.18 (18) C20—C21—H21 120.849
N4—C16—C8 113.11 (17) C22—C21—H21 120.854
N4—C17—C18 115.94 (17) N5—C22—H22 118.151
N5—C18—C17 116.4 (2) C21—C22—H22 118.151
N5—C18—C19 121.2 (2) N4—C23—H23A 108.897
C17—C18—C19 122.4 (2) N4—C23—H23B 108.899
C18—C19—C20 120.0 (2) C24—C23—H23A 108.892
C19—C20—C21 118.9 (3) C24—C23—H23B 108.896
C20—C21—C22 118.3 (3) H23A—C23—H23B 107.725
N5—C22—C21 123.7 (2) C24—C25—H25 120.400
N4—C23—C24 113.4 (2) C26—C25—H25 120.399
N6—C24—C23 115.3 (2) C25—C26—H26 120.492
N6—C24—C25 122.17 (18) C27—C26—H26 120.490
C23—C24—C25 122.53 (19) C26—C27—H27 121.022
C24—C25—C26 119.2 (2) C28—C27—H27 121.032
C25—C26—C27 119.0 (3) N6—C28—H28 117.816
C26—C27—C28 117.95 (19) C27—C28—H28 117.809
C14—N3—C15—C7 −179.57 (17) C8—C9—C10—C11 0.9 (3)
C14—N3—C15—C11 −0.6 (3) Cl1—C10—C11—C12 −1.0 (2)
C15—N3—C14—C13 0.1 (3) Cl1—C10—C11—C15 179.37 (11)
C16—N4—C17—C18 −70.7 (2) C9—C10—C11—C12 178.57 (16)
C17—N4—C16—C8 −65.3 (2) C9—C10—C11—C15 −1.1 (3)
C16—N4—C23—C24 −72.8 (2) C10—C11—C12—C13 −179.91 (16)
C23—N4—C16—C8 166.49 (16) C10—C11—C15—N3 −179.63 (15)
C17—N4—C23—C24 158.23 (17) C10—C11—C15—C7 −0.7 (2)
C23—N4—C17—C18 57.1 (2) C12—C11—C15—N3 0.7 (2)
C18—N5—C22—C21 −0.4 (2) C12—C11—C15—C7 179.66 (15)
C22—N5—C18—C17 −178.93 (13) C15—C11—C12—C13 −0.3 (3)
C22—N5—C18—C19 0.8 (2) C11—C12—C13—C14 −0.2 (3)
C24—N6—C28—C27 1.1 (3) C12—C13—C14—N3 0.4 (4)
C28—N6—C24—C23 178.99 (18) N4—C17—C18—N5 75.0 (2)
C28—N6—C24—C25 1.3 (3) N4—C17—C18—C19 −104.73 (19)
O2—C7—C8—C9 177.87 (14) N5—C18—C19—C20 −0.3 (2)
O2—C7—C8—C16 −3.8 (3) C17—C18—C19—C20 179.38 (13)
O2—C7—C15—N3 1.0 (2) C18—C19—C20—C21 −0.5 (3)
O2—C7—C15—C11 −177.99 (13) C19—C20—C21—C22 0.9 (3)
C8—C7—C15—N3 −178.35 (15) C20—C21—C22—N5 −0.4 (3)
C8—C7—C15—C11 2.7 (2) N4—C23—C24—N6 152.46 (19)
C15—C7—C8—C9 −2.8 (2) N4—C23—C24—C25 −29.9 (3)
C15—C7—C8—C16 175.54 (14) N6—C24—C25—C26 −2.4 (4)
C7—C8—C9—C10 1.1 (3) C23—C24—C25—C26 −179.9 (2)
C7—C8—C16—N4 107.8 (2) C24—C25—C26—C27 1.0 (4)
C9—C8—C16—N4 −73.8 (2) C25—C26—C27—C28 1.2 (4)
C16—C8—C9—C10 −177.37 (15) C26—C27—C28—N6 −2.3 (4)
C8—C9—C10—Cl1 −179.55 (14)

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of rings N5/C18–C22 and N6/C24–C28, respectively.

D—H···A D—H H···A D···A D—H···A
O2—H2···N5 1.04 (3) 1.66 (4) 2.689 (3) 168 (2)
C22—H22···O2i 0.93 2.46 3.348 (3) 160
C27—H27···N3ii 0.93 2.55 3.406 (3) 153
C17—H17b···Cg2iii 0.97 2.79 3.599 (3) 141
C23—H23A···Cg3iv 0.97 2.86 3.770 (3) 156

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x, y+1, z+1; (iii) −x, −y+1, −z; (iv) −x, −y+2, −z+1.

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  2. Berg, J. M. & Shi, Y. (1996). Science, 271, 1081–1085. [DOI] [PubMed]
  3. Bjernemose, J. K. & McKenzie, C. J. (2003). Acta Cryst. E59, o1275–o1276.
  4. Bush, A. I., Pettingell, W. H., Multhaup, G., d Paradis, M., Vonsattel, J.-P., Gusella, J. F., Beyreuther, K., Masters, C. L. & Tanzi, R. E. (1994). Science, 265, 1464–1467. [DOI] [PubMed]
  5. Callender, E. & Rice, K. C. (2000). Environ. Sci. Technol. 34, 232–238.
  6. Chen, W.-H., Xing, Y. & Pang, Y. (2011). Org. Lett. 13, 1362–1365. [DOI] [PubMed]
  7. Goon, E., Petley, J. E., McMullen, W. H. & Wiberley, S. E. (1953). Anal. Chem. 25, 608–610.
  8. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  9. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
  10. Kobayashi, H., Katano, K., Hashimoto, T. & Hayashita, T. (2014). Anal. Sci. 30, 1045–1050. [DOI] [PubMed]
  11. Kwon, J. E., Lee, S., You, Y., Baek, K.-H., Ohkubo, K., Cho, J., Fukuzumi, S., Shin, I., Park, S. Y. & Nam, W. (2012). Inorg. Chem. 51, 8760–8774. [DOI] [PubMed]
  12. Pohl, R. & Anzenbacher, P. Jr (2003). Org. Lett. 5, 2769–2772. [DOI] [PubMed]
  13. Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  14. Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Valeur, B. & Leray, I. (2000). Coord. Chem. Rev. 205, 3–40.
  18. Wang, R.-X., Gao, D.-Z., Ye, F., Wu, Y.-F. & Zhu, D.-R. (2012). Acta Cryst. E68, o1672–o1673. [DOI] [PMC free article] [PubMed]
  19. Wong, B. A., Friedle, S. & Lippard, S. J. (2009). J. Am. Chem. Soc. 131, 7142–7152. [DOI] [PMC free article] [PubMed]
  20. Xue, L., Wang, H.-H., Wang, X. J. & Jiang, H. (2008). Inorg. Chem. 47, 4310–4318. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015022410/su5241sup1.cif

e-71-01545-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022410/su5241Isup2.hkl

e-71-01545-Isup2.hkl (210.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015022410/su5241Isup3.cml

CCDC reference: 1438483

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES