Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Nov 7;71(Pt 12):m213–m214. doi: 10.1107/S2056989015020642

Crystal structure of 1,1′-bis­(2-meth­oxy­carbonyl-2-methyl­prop­yl)ferrocene

Yan-Feng Guo a, Jian-Jun Wang a, Wei-Juan Xu a, Dong-Hao Sun a, Qiang Gao b,*
PMCID: PMC4719839  PMID: 26870430

Abstract

The Fe atom in the title ferrocene derivative, [Fe(C11H15O2)2], is situated on an inversion centre. As a result of the point-group symmetry -1 of the mol­ecule, the ferrocene moiety adopts a staggered conformation. The average Fe—C(Cp) bond length (Cp is cyclo­penta­dien­yl) is 2.045 (4) Å, in agreement with that of other disubstituted ferrocenes. The Fe—C bond length involving the substituted C atom is slightly longer [2.0521 (17) Å] than the remaining Fe—C bond lengths caused by the inductive effect of the methyl­ene group on the Cp ring. Apart from van der Waals forces, no significant inter­molecular inter­actions are observed in the crystal packing.

Keywords: crystal structure, inversion symmetry, disubstituted ferrocene, ester

Related literature  

The inter­est in disubstituted ferrocene compounds has increased due to their applications in the field of homogeneous catalysis, biology and medicine (Atkinson et al., 2004; Gao et al., 2009; Ferreira et al., 2006). The presence of ester groups on these compounds make them promising candidates for the construction of metal-containing polymers (Wilbert et al., 1995). Related structures have been described by Woodward et al. (1952); Cetina et al. (2003); Navarro et al. (2004); Pérez et al. (2015).graphic file with name e-71-0m213-scheme1.jpg

Experimental  

Crystal data  

  • [Fe(C11H15O2)2]

  • M r = 414.31

  • Triclinic, Inline graphic

  • a = 6.273 (3) Å

  • b = 8.313 (4) Å

  • c = 10.490 (5) Å

  • α = 83.833 (6)°

  • β = 74.405 (7)°

  • γ = 81.652 (8)°

  • V = 520.0 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.75 mm−1

  • T = 296 K

  • 0.15 × 0.12 × 0.12 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Krause et al., 2015) T min = 0.896, T max = 0.916

  • 2753 measured reflections

  • 1793 independent reflections

  • 1688 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.074

  • S = 1.05

  • 1793 reflections

  • 124 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015020642/wm5231sup1.cif

e-71-0m213-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020642/wm5231Isup2.hkl

e-71-0m213-Isup2.hkl (88.3KB, hkl)

x y z . DOI: 10.1107/S2056989015020642/wm5231fig1.tif

The mol­ecular structure of the title complex, showing displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. Unlabelled atoms are related to labelled ones by the symmetry operation −x, −y + 1, −z + 1.

. DOI: 10.1107/S2056989015020642/wm5231fig2.tif

The packing of mol­ecules in the crystal structure of the title compound.

CCDC reference: 1434467

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are very grateful for the financial support from the Open Project Program of Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University (No. KLET1303).

supplementary crystallographic information

S1. Experimental

1,1'-bis(1-methoxy-methyl)ferrocene was first prepared by refluxing 1,1'-bis(hydroxymethyl)ferrocene in methanol and acetic acid (12:1 v/v) for 16 h. Then a solution of 1,1,-bis(1-methoxy-methyl)ferrocene (3.481 g, 12.7 mmol), 1-methoxy-1-(trimethylsiloxy)-2-methyl-1-propene (10.5 ml, 50.8 mmol) and BF3—OEt2 (3.5 ml, 27.9 mmol) in CH2Cl2 (180 ml) was stirred at 195 K for 15 min. The reaction was quenched with a satured solution of NaHCO3 and extracted with CH2Cl2. The organic phases were combined and dried to give a viscous yellow oil, which was chromatographed over a column of silica gel using ethyl acetate/petroleum ether (1:4 v/v) as the eluent. Yellow crystals of the title compound were obtained by slow evaporation of a solution in dichloromethane/petroleum ether (333-363 K). 1H NMR (400 MHz, CDCl3) δ 3.97 (d, 8H, C5H4FeC5H4), 3.62 (s, 6H, OCH3), 2.57 (s, 4H, CH2), 1.08 (s, 12H, C(CH3)2). HRMS (ESI): C22H30FeO4 calcd for [M + H]+ 415.1572, found 415.1575.

S2. Refinement

H atoms were placed in calculated positions and thereafter treated as riding atoms, with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) (Cp rings CH), 0.97 Å and Uiso(H) = 1.2Ueq(C) (methylene CH2) and 0.96 Å Uiso(H) = 1.5Ueq(C) (methyl CH3).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, showing displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. Unlabelled atoms are related to labelled ones by the symmetry operation -x, -y + 1, -z + 1.

Fig. 2.

Fig. 2.

The packing of molecules in the crystal structure of the title compound.

Crystal data

[Fe(C11H15O2)2] Z = 1
Mr = 414.31 F(000) = 220
Triclinic, P1 Dx = 1.323 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.273 (3) Å Cell parameters from 1589 reflections
b = 8.313 (4) Å θ = 3.3–28.2°
c = 10.490 (5) Å µ = 0.75 mm1
α = 83.833 (6)° T = 296 K
β = 74.405 (7)° Block, yellow
γ = 81.652 (8)° 0.15 × 0.12 × 0.12 mm
V = 520.0 (4) Å3

Data collection

Bruker APEXII CCD diffractometer 1793 independent reflections
Radiation source: fine-focus sealed tube 1688 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.013
φ and ω scans θmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −7→5
Tmin = 0.896, Tmax = 0.916 k = −9→9
2753 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.038P)2 + 0.1517P] where P = (Fo2 + 2Fc2)/3
1793 reflections (Δ/σ)max = 0.001
124 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.0000 0.5000 0.5000 0.03254 (14)
O1 0.6653 (2) 0.24987 (19) 0.15534 (14) 0.0536 (4)
O2 0.4288 (3) 0.2353 (2) 0.03404 (15) 0.0646 (4)
C8 0.4892 (3) 0.1969 (2) 0.13268 (18) 0.0397 (4)
C5 0.1330 (3) 0.3282 (2) 0.36443 (16) 0.0335 (4)
C1 0.1796 (3) 0.4864 (2) 0.30665 (17) 0.0387 (4)
H1A 0.3282 0.5203 0.2685 0.046*
C6 0.2998 (3) 0.1817 (2) 0.37491 (17) 0.0377 (4)
H6A 0.2343 0.1094 0.4496 0.045*
H6B 0.4288 0.2169 0.3931 0.045*
C4 −0.1038 (3) 0.3335 (2) 0.40734 (18) 0.0410 (4)
H4A −0.1861 0.2426 0.4513 0.049*
C7 0.3785 (3) 0.0848 (2) 0.24845 (18) 0.0372 (4)
C11 0.1817 (4) 0.0227 (3) 0.2186 (2) 0.0547 (6)
H11A 0.2329 −0.0363 0.1400 0.082*
H11B 0.0746 0.1134 0.2049 0.082*
H11C 0.1134 −0.0482 0.2920 0.082*
C10 0.5508 (4) −0.0594 (3) 0.2709 (2) 0.0519 (5)
H10A 0.6012 −0.1197 0.1930 0.078*
H10B 0.4836 −0.1293 0.3452 0.078*
H10C 0.6753 −0.0192 0.2884 0.078*
C2 −0.0263 (4) 0.5867 (3) 0.31440 (18) 0.0467 (5)
H2A −0.0442 0.7018 0.2825 0.056*
C9 0.7892 (5) 0.3576 (3) 0.0540 (3) 0.0721 (7)
H9A 0.9106 0.3869 0.0826 0.108*
H9B 0.6925 0.4542 0.0387 0.108*
H9C 0.8468 0.3033 −0.0267 0.108*
C3 −0.1995 (4) 0.4931 (3) 0.3759 (2) 0.0488 (5)
H3A −0.3593 0.5316 0.3944 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0326 (2) 0.0351 (2) 0.0286 (2) −0.00167 (15) −0.00463 (15) −0.00833 (14)
O1 0.0475 (8) 0.0685 (10) 0.0448 (8) −0.0180 (7) −0.0123 (7) 0.0122 (7)
O2 0.0833 (12) 0.0734 (11) 0.0426 (8) −0.0069 (9) −0.0298 (8) 0.0029 (8)
C8 0.0437 (11) 0.0398 (10) 0.0332 (10) 0.0076 (8) −0.0094 (8) −0.0109 (8)
C5 0.0359 (9) 0.0366 (9) 0.0269 (8) −0.0039 (7) −0.0040 (7) −0.0089 (7)
C1 0.0447 (11) 0.0408 (10) 0.0270 (9) −0.0049 (8) −0.0019 (8) −0.0060 (7)
C6 0.0409 (10) 0.0396 (10) 0.0306 (9) −0.0009 (8) −0.0075 (8) −0.0034 (7)
C4 0.0371 (10) 0.0479 (11) 0.0395 (10) −0.0079 (8) −0.0069 (8) −0.0138 (8)
C7 0.0375 (10) 0.0338 (9) 0.0394 (10) 0.0018 (8) −0.0098 (8) −0.0073 (8)
C11 0.0513 (12) 0.0519 (13) 0.0651 (14) −0.0067 (10) −0.0150 (11) −0.0224 (11)
C10 0.0533 (13) 0.0396 (11) 0.0557 (12) 0.0082 (9) −0.0100 (10) −0.0017 (9)
C2 0.0610 (13) 0.0430 (11) 0.0338 (10) 0.0073 (10) −0.0139 (9) −0.0068 (8)
C9 0.0694 (16) 0.0802 (18) 0.0595 (15) −0.0259 (14) −0.0050 (13) 0.0195 (13)
C3 0.0414 (11) 0.0622 (13) 0.0449 (11) 0.0074 (10) −0.0155 (9) −0.0199 (10)

Geometric parameters (Å, º)

Fe1—C2i 2.043 (2) C6—C7 1.554 (3)
Fe1—C2 2.043 (2) C6—H6A 0.9700
Fe1—C4i 2.044 (2) C6—H6B 0.9700
Fe1—C4 2.044 (2) C4—C3 1.418 (3)
Fe1—C3i 2.044 (2) C4—H4A 0.9800
Fe1—C3 2.044 (2) C7—C11 1.522 (3)
Fe1—C1i 2.0445 (19) C7—C10 1.536 (3)
Fe1—C1 2.0445 (19) C11—H11A 0.9600
Fe1—C5i 2.0521 (17) C11—H11B 0.9600
Fe1—C5 2.0521 (17) C11—H11C 0.9600
O1—C8 1.333 (3) C10—H10A 0.9600
O1—C9 1.446 (3) C10—H10B 0.9600
O2—C8 1.192 (2) C10—H10C 0.9600
C8—C7 1.522 (3) C2—C3 1.400 (3)
C5—C1 1.424 (3) C2—H2A 0.9800
C5—C4 1.428 (3) C9—H9A 0.9600
C5—C6 1.501 (3) C9—H9B 0.9600
C1—C2 1.420 (3) C9—H9C 0.9600
C1—H1A 0.9800 C3—H3A 0.9800
C2i—Fe1—C2 180.0 C2—C1—C5 108.24 (18)
C2i—Fe1—C4i 67.98 (9) C2—C1—Fe1 69.61 (10)
C2—Fe1—C4i 112.02 (9) C5—C1—Fe1 69.95 (10)
C2i—Fe1—C4 112.02 (9) C2—C1—H1A 125.9
C2—Fe1—C4 67.98 (9) C5—C1—H1A 125.9
C4i—Fe1—C4 180.0 Fe1—C1—H1A 125.9
C2i—Fe1—C3i 40.08 (9) C5—C6—C7 113.97 (15)
C2—Fe1—C3i 139.92 (9) C5—C6—H6A 108.8
C4i—Fe1—C3i 40.61 (8) C7—C6—H6A 108.8
C4—Fe1—C3i 139.39 (8) C5—C6—H6B 108.8
C2i—Fe1—C3 139.92 (9) C7—C6—H6B 108.8
C2—Fe1—C3 40.08 (9) H6A—C6—H6B 107.7
C4i—Fe1—C3 139.39 (8) C3—C4—C5 108.21 (18)
C4—Fe1—C3 40.61 (8) C3—C4—Fe1 69.70 (12)
C3i—Fe1—C3 180.0 C5—C4—Fe1 69.92 (10)
C2i—Fe1—C1i 40.65 (8) C3—C4—H4A 125.9
C2—Fe1—C1i 139.35 (8) C5—C4—H4A 125.9
C4i—Fe1—C1i 68.18 (8) Fe1—C4—H4A 125.9
C4—Fe1—C1i 111.82 (8) C11—C7—C8 110.12 (17)
C3i—Fe1—C1i 68.00 (9) C11—C7—C10 109.95 (17)
C3—Fe1—C1i 112.00 (9) C8—C7—C10 108.85 (16)
C2i—Fe1—C1 139.35 (8) C11—C7—C6 110.52 (16)
C2—Fe1—C1 40.65 (8) C8—C7—C6 108.53 (15)
C4i—Fe1—C1 111.82 (8) C10—C7—C6 108.84 (16)
C4—Fe1—C1 68.18 (8) C7—C11—H11A 109.5
C3i—Fe1—C1 112.00 (9) C7—C11—H11B 109.5
C3—Fe1—C1 68.00 (9) H11A—C11—H11B 109.5
C1i—Fe1—C1 180.0 C7—C11—H11C 109.5
C2i—Fe1—C5i 68.48 (8) H11A—C11—H11C 109.5
C2—Fe1—C5i 111.52 (8) H11B—C11—H11C 109.5
C4i—Fe1—C5i 40.80 (8) C7—C10—H10A 109.5
C4—Fe1—C5i 139.20 (8) C7—C10—H10B 109.5
C3i—Fe1—C5i 68.51 (8) H10A—C10—H10B 109.5
C3—Fe1—C5i 111.49 (8) C7—C10—H10C 109.5
C1i—Fe1—C5i 40.67 (7) H10A—C10—H10C 109.5
C1—Fe1—C5i 139.33 (7) H10B—C10—H10C 109.5
C2i—Fe1—C5 111.52 (8) C3—C2—C1 108.31 (18)
C2—Fe1—C5 68.48 (8) C3—C2—Fe1 69.99 (12)
C4i—Fe1—C5 139.20 (8) C1—C2—Fe1 69.73 (11)
C4—Fe1—C5 40.80 (8) C3—C2—H2A 125.8
C3i—Fe1—C5 111.49 (8) C1—C2—H2A 125.8
C3—Fe1—C5 68.51 (8) Fe1—C2—H2A 125.8
C1i—Fe1—C5 139.33 (7) O1—C9—H9A 109.5
C1—Fe1—C5 40.67 (7) O1—C9—H9B 109.5
C5i—Fe1—C5 180.00 (7) H9A—C9—H9B 109.5
C8—O1—C9 117.84 (18) O1—C9—H9C 109.5
O2—C8—O1 123.17 (19) H9A—C9—H9C 109.5
O2—C8—C7 125.6 (2) H9B—C9—H9C 109.5
O1—C8—C7 111.19 (16) C2—C3—C4 108.28 (18)
C1—C5—C4 106.96 (17) C2—C3—Fe1 69.92 (12)
C1—C5—C6 126.84 (17) C4—C3—Fe1 69.69 (11)
C4—C5—C6 126.17 (17) C2—C3—H3A 125.9
C1—C5—Fe1 69.38 (10) C4—C3—H3A 125.9
C4—C5—Fe1 69.28 (10) Fe1—C3—H3A 125.9
C6—C5—Fe1 127.75 (13)

Symmetry code: (i) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5231).

References

  1. Atkinson, R. C. J., Gibson, V. C. & Long, N. J. (2004). Chem. Soc. Rev. 33, 313–328. [DOI] [PubMed]
  2. Brandenburg, K. & Berndt, M. (1999). DIAMOND. University of Bonn, Germany.
  3. Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cetina, M., Jukić, M., Rapić, V. & Golobič, A. (2003). Acta Cryst. C59, m212–m214. [DOI] [PubMed]
  5. Ferreira, C. L., Ewart, C. B., Barta, C. A., Little, S., Yardley, V., Martins, C., Polishchuk, E., Smith, P. J., Moss, J. R., Merkel, M., Adam, M. J. & Orvig, C. (2006). Inorg. Chem. 45, 8414–8422. [DOI] [PubMed]
  6. Gao, L. M., Hernández, R., Matta, J. & Meléndez, E. (2009). Metal-based Drugs, Article ID 420784, 10.1155/2009/420784. [DOI] [PMC free article] [PubMed]
  7. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  8. Navarro, A.-E., Spinelli, N., Moustrou, C., Chaix, C., Mandrand, B. & Brisset, H. (2004). Nucleic Acids Res. 32, 5310–5319. [DOI] [PMC free article] [PubMed]
  9. Pérez, W. I., Rheingold, A. L. & Meléndez, E. (2015). Acta Cryst. E71, 536–539. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Wilbert, G., Wiesemann, A. & Zentel, R. (1995). Macromol. Chem. Phys. 196, 3771–3788.
  12. Woodward, R. B., Rosenblum, M. & Whiting, M. C. (1952). J. Am. Chem. Soc. 74, 3458–3459.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015020642/wm5231sup1.cif

e-71-0m213-sup1.cif (17KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015020642/wm5231Isup2.hkl

e-71-0m213-Isup2.hkl (88.3KB, hkl)

x y z . DOI: 10.1107/S2056989015020642/wm5231fig1.tif

The mol­ecular structure of the title complex, showing displacement ellipsoids drawn at the 50% probability level. All H atoms have been omitted for clarity. Unlabelled atoms are related to labelled ones by the symmetry operation −x, −y + 1, −z + 1.

. DOI: 10.1107/S2056989015020642/wm5231fig2.tif

The packing of mol­ecules in the crystal structure of the title compound.

CCDC reference: 1434467

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES