Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 6;71(Pt 12):m246. doi: 10.1107/S2056989015022768

Crystal structure of bis­{N-[(di­ethyl­amino)­dimethyl­sil­yl]anilido-κ2 N,N′}zinc

Juan Chen a,*
PMCID: PMC4719856  PMID: 26870447

Abstract

The title zinc amide, [Zn(C12H21N2Si)2], was prepared by the metathetical reaction of [LiN(SiMe2NEt2)(C6H5)]2 with zinc dichloride. It is mononuclear and the mol­ecule is generated by twofold rotation symmetry. The central ZnII atom is N,N′-chelated by each of the two N-silylated anilide ligands in a highly distorted tetra­hedral environment. Two N—Si—N ligands are arranged in a cis fashion around the ZnII atom. The Zn—Namine bonds [2.2315 (12) Å] are much longer than the Zn—Nanilide bonds [1.9367 (11) Å].

Keywords: crystal structure, zinc amide, N-donor, N—Si—N chelating ligand

Related literature  

For related compounds which show linear and tetra­hedral coordination, see: Schumann et al. (2000). For applications of zinc amides, see: Armstrong et al. (2002) and for their utility in MOVCD, see Maile & Fischer (2005). For a related zinc amide with a dimethylanilide ligand instead of an anilide ligand, see: Chen et al. (2007).graphic file with name e-71-0m246-scheme1.jpg

Experimental  

Crystal data  

  • [Zn(C12H21N2Si)2]

  • M r = 508.19

  • Orthorhombic, Inline graphic

  • a = 29.7954 (12) Å

  • b = 21.3566 (8) Å

  • c = 8.5844 (3) Å

  • V = 5462.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 200 K

  • 0.20 × 0.15 × 0.15 mm

Data collection  

  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.824, T max = 0.864

  • 12927 measured reflections

  • 3296 independent reflections

  • 3153 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.019

  • wR(F 2) = 0.051

  • S = 1.12

  • 3296 reflections

  • 147 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983), 1484 Friedel pairs

  • Absolute structure parameter: 0.028 (7)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015022768/hp2073sup1.cif

e-71-0m246-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022768/hp2073Isup2.hkl

e-71-0m246-Isup2.hkl (162KB, hkl)

. DOI: 10.1107/S2056989015022768/hp2073fig1.tif

The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

CCDC reference: 1439385

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by grants from the Natural Science Foundation of China (grant No. 20702029) and the Natural Science Foundation of Shanxi Province (grant No. 2008011024).

supplementary crystallographic information

S1. Comment

Zinc amides were good transamination reagents and useful precusors for preparing the zinc thin film through the MOVCD method (Amstrong et al., 2002; Maile et al., 2005).

The title compound was prepared by metathetical reaction of [LiN(SiMe2NEt2)(C6H5)]2 with zinc dichloride. It is monomeric and similar to the reported bis[(N-trimethylsilyl)2,6-dimethylanilido]zinc (Schumann et al., 2000). The ligand fixes Zn center with the N—Si—N chelating unit, giving an N—Zn—N bite angle of 76.98°. The N—Si—N group is presumed to be a "quasi" conjugated system owing to dπ interaction between Si and N atoms, but is much more flexible in contrast to the rigid N—C—N chelating unit in the amidinate ligand. The Zn—Nanilide bonds are in the normal range. The Zn—Namine bonds are about 0.3 Å longer than the Zn—Nanilide bonds. Two N—Si—N ligands are arranged in a cis fashion around Zn, composing a highly distorted tetrahedral environment. The situation is quite different from an analgous zinc amide with the similar ligand, in which the two ligands are trans to each other (Chen et al., 2007). Two types of ligands have slightly different steric effect.

S2. Experimental

A solution of LiBun (2.2 M, 2.27 ml, 5.0 mmol) in hexane was slowly added into a solution of [NH(SiMe2NEt2)(C6H5)]2 (1.14 g, 5.0 mmol) in Et2O (30 ml) at 273 K by syringe. The mixture was stirred at room temperature for five hours and then ZnCl2 (0.56 g, 2.5 mmol) was added at 273 K. The resulting solution was stirred at room temperature overnight. The filtrate was concentrated to give the title compound as colorless crystals (yield 0.85 g, 67%).

S3. Refinement

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.98 Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely along its C—C bond. The methylene H atoms were constrained with C—H distances of 0.99 Å and Uiso(H) = 1.2Ueq(C). The phenyl H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

Crystal data

[Zn(C12H21N2Si)2] F(000) = 2176
Mr = 508.19 Dx = 1.236 Mg m3
Orthorhombic, Fdd2 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2d Cell parameters from 9968 reflections
a = 29.7954 (12) Å θ = 2.8–28.3°
b = 21.3566 (8) Å µ = 1.01 mm1
c = 8.5844 (3) Å T = 200 K
V = 5462.5 (4) Å3 Block, colorless
Z = 8 0.20 × 0.15 × 0.15 mm

Data collection

Bruker SMART area-detector diffractometer 3296 independent reflections
Radiation source: fine-focus sealed tube 3153 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scan θmax = 28.3°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −39→36
Tmin = 0.824, Tmax = 0.864 k = −28→28
12927 measured reflections l = −11→11

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0141P)2 + 1.7098P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051 (Δ/σ)max < 0.001
S = 1.12 Δρmax = 0.23 e Å3
3296 reflections Δρmin = −0.23 e Å3
147 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.00049 (6)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1484 Friedel pairs
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.028 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.2500 0.2500 0.29180 (2) 0.02397 (7)
Si1 0.247147 (12) 0.121100 (17) 0.32504 (4) 0.02649 (10)
N2 0.28157 (4) 0.17456 (5) 0.43443 (15) 0.0259 (2)
N1 0.22836 (4) 0.17412 (5) 0.19372 (15) 0.0272 (2)
C1 0.20137 (5) 0.16863 (6) 0.06303 (15) 0.0270 (3)
C2 0.19263 (5) 0.11107 (7) −0.01073 (18) 0.0342 (3)
H2 0.2063 0.0740 0.0281 0.041*
C3 0.16452 (6) 0.10739 (8) −0.1389 (2) 0.0418 (4)
H3 0.1592 0.0679 −0.1863 0.050*
C6 0.18084 (5) 0.22167 (7) −0.00242 (17) 0.0348 (3)
H6 0.1864 0.2616 0.0424 0.042*
C8 0.20082 (6) 0.08844 (8) 0.4469 (2) 0.0443 (4)
H8A 0.1845 0.1228 0.4971 0.066*
H8B 0.2134 0.0608 0.5268 0.066*
H8C 0.1802 0.0646 0.3807 0.066*
C9 0.32965 (5) 0.17499 (7) 0.38603 (19) 0.0329 (3)
H9A 0.3313 0.1681 0.2721 0.039*
H9B 0.3453 0.1397 0.4375 0.039*
C11 0.27592 (6) 0.17628 (8) 0.60640 (19) 0.0359 (3)
H11A 0.2434 0.1768 0.6303 0.043*
H11B 0.2888 0.2159 0.6458 0.043*
C7 0.28096 (6) 0.05379 (8) 0.2524 (3) 0.0530 (5)
H7A 0.2609 0.0192 0.2244 0.080*
H7B 0.3017 0.0400 0.3342 0.080*
H7C 0.2981 0.0667 0.1605 0.080*
C4 0.14411 (5) 0.15989 (9) −0.19904 (19) 0.0432 (4)
H4 0.1245 0.1568 −0.2860 0.052*
C12 0.29757 (7) 0.12168 (10) 0.6950 (3) 0.0568 (5)
H12A 0.2863 0.0819 0.6535 0.085*
H12B 0.2900 0.1248 0.8059 0.085*
H12C 0.3302 0.1234 0.6824 0.085*
C10 0.35400 (5) 0.23565 (7) 0.4258 (2) 0.0401 (4)
H10A 0.3383 0.2710 0.3776 0.060*
H10B 0.3848 0.2337 0.3862 0.060*
H10C 0.3545 0.2412 0.5391 0.060*
C5 0.15272 (6) 0.21749 (8) −0.12999 (19) 0.0402 (4)
H5 0.1392 0.2543 −0.1708 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.02833 (11) 0.01733 (9) 0.02623 (11) −0.00051 (8) 0.000 0.000
Si1 0.0303 (2) 0.01746 (17) 0.0317 (3) 0.00078 (13) −0.00043 (17) 0.00132 (13)
N2 0.0254 (6) 0.0237 (5) 0.0286 (6) 0.0029 (4) −0.0020 (5) 0.0004 (5)
N1 0.0366 (7) 0.0197 (5) 0.0253 (5) −0.0027 (5) −0.0024 (5) −0.0004 (5)
C1 0.0303 (7) 0.0291 (7) 0.0216 (7) −0.0042 (5) 0.0044 (5) −0.0004 (5)
C2 0.0417 (8) 0.0294 (7) 0.0316 (7) −0.0058 (6) 0.0021 (6) −0.0041 (6)
C3 0.0474 (10) 0.0449 (9) 0.0332 (8) −0.0118 (7) 0.0002 (7) −0.0115 (7)
C6 0.0453 (9) 0.0326 (7) 0.0264 (7) 0.0006 (6) −0.0035 (6) −0.0019 (6)
C8 0.0461 (10) 0.0440 (9) 0.0427 (9) −0.0117 (7) 0.0022 (8) 0.0132 (8)
C9 0.0279 (7) 0.0294 (7) 0.0414 (8) 0.0040 (5) 0.0005 (6) −0.0020 (6)
C11 0.0372 (8) 0.0418 (9) 0.0286 (7) 0.0022 (6) −0.0030 (6) 0.0028 (6)
C7 0.0506 (10) 0.0278 (7) 0.0806 (15) 0.0098 (7) −0.0018 (10) −0.0167 (9)
C4 0.0396 (9) 0.0651 (11) 0.0250 (7) −0.0074 (7) −0.0038 (7) −0.0055 (8)
C12 0.0654 (12) 0.0608 (12) 0.0442 (10) 0.0046 (9) −0.0136 (10) 0.0175 (9)
C10 0.0296 (8) 0.0406 (8) 0.0502 (10) −0.0015 (6) −0.0034 (7) −0.0047 (7)
C5 0.0442 (9) 0.0499 (10) 0.0267 (7) 0.0068 (7) −0.0021 (6) 0.0027 (7)

Geometric parameters (Å, º)

Zn1—N1 1.9367 (11) C8—H8B 0.9800
Zn1—N1i 1.9367 (11) C8—H8C 0.9800
Zn1—N2i 2.2315 (12) C9—C10 1.524 (2)
Zn1—N2 2.2315 (12) C9—H9A 0.9900
Zn1—Si1i 2.7689 (4) C9—H9B 0.9900
Si1—N1 1.6930 (13) C11—C12 1.535 (2)
Si1—N2 1.7993 (12) C11—H11A 0.9900
Si1—C7 1.8628 (16) C11—H11B 0.9900
Si1—C8 1.8669 (17) C7—H7A 0.9800
N2—C11 1.486 (2) C7—H7B 0.9800
N2—C9 1.4917 (18) C7—H7C 0.9800
N1—C1 1.3854 (18) C4—C5 1.389 (2)
C1—C6 1.405 (2) C4—H4 0.9500
C1—C2 1.4070 (19) C12—H12A 0.9800
C2—C3 1.385 (2) C12—H12B 0.9800
C2—H2 0.9500 C12—H12C 0.9800
C3—C4 1.376 (3) C10—H10A 0.9800
C3—H3 0.9500 C10—H10B 0.9800
C6—C5 1.382 (2) C10—H10C 0.9800
C6—H6 0.9500 C5—H5 0.9500
C8—H8A 0.9800
N1—Zn1—N1i 128.46 (8) Si1—C8—H8C 109.5
N1—Zn1—N2i 134.62 (5) H8A—C8—H8C 109.5
N1i—Zn1—N2i 76.98 (5) H8B—C8—H8C 109.5
N1—Zn1—N2 76.98 (5) N2—C9—C10 113.59 (12)
N1i—Zn1—N2 134.62 (5) N2—C9—H9A 108.8
N2i—Zn1—N2 113.45 (6) C10—C9—H9A 108.8
N1—Zn1—Si1i 152.49 (4) N2—C9—H9B 108.8
N1i—Zn1—Si1i 37.12 (4) C10—C9—H9B 108.8
N2i—Zn1—Si1i 40.41 (3) H9A—C9—H9B 107.7
N2—Zn1—Si1i 130.41 (3) N2—C11—C12 115.22 (15)
N1—Si1—N2 96.41 (6) N2—C11—H11A 108.5
N1—Si1—C7 118.18 (9) C12—C11—H11A 108.5
N2—Si1—C7 110.86 (7) N2—C11—H11B 108.5
N1—Si1—C8 112.23 (8) C12—C11—H11B 108.5
N2—Si1—C8 111.48 (7) H11A—C11—H11B 107.5
C7—Si1—C8 107.39 (9) Si1—C7—H7A 109.5
C11—N2—C9 112.67 (12) Si1—C7—H7B 109.5
C11—N2—Si1 118.00 (11) H7A—C7—H7B 109.5
C9—N2—Si1 113.95 (9) Si1—C7—H7C 109.5
C11—N2—Zn1 118.64 (10) H7A—C7—H7C 109.5
C9—N2—Zn1 104.34 (8) H7B—C7—H7C 109.5
Si1—N2—Zn1 86.07 (5) C3—C4—C5 118.69 (15)
C1—N1—Si1 132.42 (10) C3—C4—H4 120.7
C1—N1—Zn1 128.03 (9) C5—C4—H4 120.7
Si1—N1—Zn1 99.21 (6) C11—C12—H12A 109.5
N1—C1—C6 120.57 (12) C11—C12—H12B 109.5
N1—C1—C2 123.07 (13) H12A—C12—H12B 109.5
C6—C1—C2 116.36 (13) C11—C12—H12C 109.5
C3—C2—C1 121.27 (15) H12A—C12—H12C 109.5
C3—C2—H2 119.4 H12B—C12—H12C 109.5
C1—C2—H2 119.4 C9—C10—H10A 109.5
C4—C3—C2 121.25 (15) C9—C10—H10B 109.5
C4—C3—H3 119.4 H10A—C10—H10B 109.5
C2—C3—H3 119.4 C9—C10—H10C 109.5
C5—C6—C1 121.94 (15) H10A—C10—H10C 109.5
C5—C6—H6 119.0 H10B—C10—H10C 109.5
C1—C6—H6 119.0 C6—C5—C4 120.48 (16)
Si1—C8—H8A 109.5 C6—C5—H5 119.8
Si1—C8—H8B 109.5 C4—C5—H5 119.8
H8A—C8—H8B 109.5
N1—Si1—N2—C11 129.24 (11) N1i—Zn1—N1—C1 −40.18 (11)
C7—Si1—N2—C11 −107.31 (13) N2i—Zn1—N1—C1 72.13 (15)
C8—Si1—N2—C11 12.27 (14) N2—Zn1—N1—C1 −177.65 (13)
N1—Si1—N2—C9 −95.22 (10) Si1i—Zn1—N1—C1 7.03 (19)
C7—Si1—N2—C9 28.23 (13) N1i—Zn1—N1—Si1 145.83 (7)
C8—Si1—N2—C9 147.82 (10) N2i—Zn1—N1—Si1 −101.86 (7)
N1—Si1—N2—Zn1 8.73 (6) N2—Zn1—N1—Si1 8.36 (6)
C7—Si1—N2—Zn1 132.18 (8) Si1i—Zn1—N1—Si1 −166.96 (3)
C8—Si1—N2—Zn1 −108.23 (7) Si1—N1—C1—C6 162.62 (12)
N1—Zn1—N2—C11 −127.69 (11) Zn1—N1—C1—C6 −9.3 (2)
N1i—Zn1—N2—C11 100.35 (13) Si1—N1—C1—C2 −17.0 (2)
N2i—Zn1—N2—C11 5.59 (10) Zn1—N1—C1—C2 171.08 (11)
Si1i—Zn1—N2—C11 49.47 (12) N1—C1—C2—C3 178.36 (14)
N1—Zn1—N2—C9 105.95 (9) C6—C1—C2—C3 −1.3 (2)
N1i—Zn1—N2—C9 −26.01 (12) C1—C2—C3—C4 0.0 (2)
N2i—Zn1—N2—C9 −120.77 (9) N1—C1—C6—C5 −178.12 (14)
Si1i—Zn1—N2—C9 −76.89 (9) C2—C1—C6—C5 1.5 (2)
N1—Zn1—N2—Si1 −7.78 (5) C11—N2—C9—C10 −66.02 (17)
N1i—Zn1—N2—Si1 −139.74 (6) Si1—N2—C9—C10 156.06 (12)
N2i—Zn1—N2—Si1 125.50 (5) Zn1—N2—C9—C10 63.99 (14)
Si1i—Zn1—N2—Si1 169.383 (19) C9—N2—C11—C12 −59.38 (18)
N2—Si1—N1—C1 176.23 (13) Si1—N2—C11—C12 76.70 (17)
C7—Si1—N1—C1 58.42 (16) Zn1—N2—C11—C12 178.35 (12)
C8—Si1—N1—C1 −67.40 (16) C2—C3—C4—C5 1.0 (2)
N2—Si1—N1—Zn1 −10.18 (7) C1—C6—C5—C4 −0.5 (2)
C7—Si1—N1—Zn1 −127.99 (8) C3—C4—C5—C6 −0.7 (2)
C8—Si1—N1—Zn1 106.18 (8)

Symmetry code: (i) −x+1/2, −y+1/2, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HP2073).

References

  1. Armstrong, D. R., Forbes, G. C., Mulvey, R. E., Clegg, W. & Tooke, D. M. (2002). J. Chem. Soc. Dalton Trans. pp. 1656–1661.
  2. Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, J., Cao, K.-N. & Guo, J. (2007). Acta Cryst. E63, m3112.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Maile, E. & Fischer, R. A. (2005). Chem. Vap. Deposition, 11, 409–414.
  6. Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747–758.
  7. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015022768/hp2073sup1.cif

e-71-0m246-sup1.cif (18.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015022768/hp2073Isup2.hkl

e-71-0m246-Isup2.hkl (162KB, hkl)

. DOI: 10.1107/S2056989015022768/hp2073fig1.tif

The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.

CCDC reference: 1439385

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES