Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Dec 12;71(Pt 12):m257–m258. doi: 10.1107/S2056989015023476

Crystal structure of dimethyl-1κ2 C-bis(μ-4-methylphenolato-1:2κ2 O:O)(N,N,N′,N′-tetramethylethylenediamine-2κ2 N,N′)indium(III)lithium(I)

Glen G Briand a,*, Andreas Decken b, Marshall R Hoey a
PMCID: PMC4719862  PMID: 26870453

Abstract

The mixed bimetallic title compound, [InLi(CH3)2(C7H7O)2(C6H16N2)] or [(tmeda)Li-μ-(4-MeC6H4O)2InMe2] (tmeda is N,N,N′,N′-tetra­methyl­ethylenedi­amine), exhibits a four-membered LiO2In ring core via bridging 4-methyl­phenolate groups. The Li and In atoms are in distorted tetra­hedral N2O2 and C2O2 bonding environments, respectively. The Li atom is further chelated by a tmeda group, yielding a spiro­cyclic structure.

Keywords: crystal structure, bimetallic, indium, lithium, phenolate, spiro­cyclic

Related literature  

For other bimetallic alkali–triel chalcogenolates, see: Niemeyer & Power (1997); Clegg et al. (1999); Muñoz et al. (2011, 2014); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Normand et al. (2012). For metal-containing ligands, see Simmonds & Wright (2012). For organometallic precusors for indium tin oxide (ITO), see: Aksu & Driess (2009); Veith & Kunze (1991). For dimeric di­methyl­indium phenolates [Me2InOR]2, see: Briand et al. (2013, 2010); Beachley et al. (2003); Häusslein et al. (1999); Blake et al. (2011); Bradley et al. (1988); Trentler et al. (1997).graphic file with name e-71-0m257-scheme1.jpg

Experimental  

Crystal data  

  • [InLi(CH3)2(C7H7O)2(C6H16N2)]

  • M r = 482.29

  • Monoclinic, Inline graphic

  • a = 9.0991 (8) Å

  • b = 16.4481 (15) Å

  • c = 16.4256 (15) Å

  • β = 91.956 (1)°

  • V = 2456.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 188 K

  • 0.65 × 0.60 × 0.60 mm

Data collection  

  • Bruker SMART1000/P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a ) T min = 0.569, T max = 0.591

  • 16648 measured reflections

  • 5459 independent reflections

  • 4921 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.067

  • S = 1.05

  • 5459 reflections

  • 261 parameters

  • H-atom parameters constrained

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b ); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b ).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023476/lh5799sup1.cif

e-71-0m257-sup1.cif (513.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023476/lh5799Isup2.hkl

e-71-0m257-Isup2.hkl (434.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023476/lh5799Isup4.cdx

I . DOI: 10.1107/S2056989015023476/lh5799fig1.tif

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

CCDC reference: 1440726

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Natural Sciences and Engin­eering Research Council of Canada, the New Brunswick Innovation Foundation, the Canadian Foundation for Innovation and Mount Allison University.

supplementary crystallographic information

S1. Comment

Ligands containing metal bridgeheads are useful for the generation of mixed metal species with novel physical properties and reactivity (Simmonds et al., 2012). In our efforts to generate organometallic In/Sn precusors for indium tin oxide (ITO) semiconductor species (Aksu et al., 2009; Veith et al., 1991), we have isolated the Li+ salt of the anionic ligand [(4-MeC6H4O)2InMe2]. The structure of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2] (tmeda = N,N,N',N'-tetra­methyl­ethylenedi­amine) (I) (Fig. 1) exhibits a four-membered LiO2In ring core in which Li1 and In1 centre are bridged via the oxygen atoms of two 4-MeC6H4O ligands. The In—O bond distances [In1—O1 = 2.125 (1), In1—O2 = 2.141 (1) Å] are larger than the Li—O bond distances [Li1—O1 = 1.889 (4), Li1—O2 = 1.926 (3) Å] as a result of the larger covalent radius of In versus Li. However, the LiO2In ring is nearly planar [In1—O1—Li1—O2 = −4.5 (1)°]. In addition to the In—O bonds, In1 is also bonded to the carbon atoms of two methyl groups, resulting in a distorted tetra­hedral C2O2 bonding environment for indium [O1—In1—O2 = 78.32 (5), C1—In1—C2 = 133.8 (1)°]. Li1 is also bonded to two nitro­gen atoms of a chelating tmeda ligand, resulting in a distorted tetra­hedral N2O2 bonding environment for lithium [O1—Li1—O2 = 89.9 (2), N1—In1—N2 = 86.8 (2)°]. The overall result is a bimetallic spiro­cyclic arrangement. The 4-MeC6H5 rings are displaced slightly toward the Me2In group [C3—O1—In1 = 121.0 (1), C10—O2—In1 = 125.0 (1), C3—O1—Li1 = 142.4 (2), C10—O2—Li1 = 137.9 (2)°] and are nearly orthogonal [88.63 (6)°]. The geometries at the bridging O atoms are distorted trigonal planar [ΣX—O1—X = 360.0, ΣX—O2—X = 357.9°]. The structure resembles those of di­methyl­indium phenolates [Me2InOR]2, which form bimetallic species in the solid state via inter­molecular In—O coordinate bonding inter­actions (Briand et al., 2013; Briand et al., 2010; Beachley et al., 2003; Häußlein et al., 1999; Blake et al., 2011; Bradley et al., 1988; Trentler et al., 1997). These structures feature distorted tetra­hedral geometries at In, distorted trigonal planar or slightly pyramidal geometries at O, and near planar In2O2 ring cores. For other bimetallic alkali-triel chalcogenolates, see: Niemeyer et al. (1997); Clegg et al. (1999); Muñoz et al. (2011); Uhl et al. (1994); Adonin et al. (2005); Soki et al. (2008); Muñoz et al. (2014); Normand et al. (2012).

S2. Synthesis and Crystallization

Synthesis of [(tmeda)Li-µ-(4-MeC6H4O)2InMe2]. [4-MeC6H4O]Li (0.143 g, 1.25 mmol) was added to a stirrred solution of InMe3 (0.200 g, 1.25 mmol) in di­ethyl ether (10 ml). After1 h, 4-MeC6H4OH (0.064 g, 0.60 mmol) in di­ethyl ether (3 ml) was added. After 2 h, tmeda (0.145 g, 1.25 mmol) was added. After 1 h, the reaction mixture was filtered, and the filtrate concentrated to 5 ml and allowed to sit at 277 K. After 1 d, the solution was filtered to yield colourless crystals of I (0.188 g, 0.490 mmol, 82%). Anal. Calc. for C22H36InLiN2O2: C, 54.78; H, 7.52; N, 5.81. Found: C, 54.56; H, 8.01; N, 5.67. Mp 426–428 K. FT-Raman (cm−1): 127 s, 170 m, 297 w, 342 w, 502 vssym (Me—In—Me)], 519 w [νasym (Me—In—Me)], 646 w, 766 m, 791 m, 857 m, 1155 m, 1212 w, 1288 w, 1383 w, 1438 w, 1607 w, 2841 w, 2921 m, 2959 m, 3045 w. 1H NMR (thf-d8, p.p.m.): 0.00 (s, 6H, Me2In), 2.31 (s, 6H, MeC6H4), 2.33 (s, 12H, Me2N), 2.48 (s, 4H, NCH2), 6.60 (d, 3JH—H = 11 Hz, 4H, C6H4), 6.96 (d, 3JH—H = 11 Hz, 4H, C6H4). 13C{1H} NMR (thf-d8, p.p.m.): −1.8 (Me2In), 19.8 (MeC6H4), 45.4 (Me2N), 58.2 (NCH2), 118.0 (C6H4), 129.5 (C6H4).

S3. Refinement

H atoms were included in calculated positions and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

Crystal data

[InLi(CH3)2(C7H7O)2(C6H16N2)] F(000) = 1000
Mr = 482.29 Dx = 1.304 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.0991 (8) Å Cell parameters from 5977 reflections
b = 16.4481 (15) Å θ = 2.5–28.4°
c = 16.4256 (15) Å µ = 0.98 mm1
β = 91.956 (1)° T = 188 K
V = 2456.9 (4) Å3 Irregular, colourless
Z = 4 0.65 × 0.60 × 0.60 mm

Data collection

Bruker SMART1000/P4 diffractometer 5459 independent reflections
Radiation source: fine-focus sealed tube, K760 4921 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −11→11
Tmin = 0.569, Tmax = 0.591 k = −21→21
16648 measured reflections l = −21→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0318P)2 + 1.1193P] where P = (Fo2 + 2Fc2)/3
5459 reflections (Δ/σ)max = 0.002
261 parameters Δρmax = 0.56 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Experimental. Crystal decay was monitored by repeating the initial 50 frames at the end of the data collection and analyzing duplicate reflections
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
In1 0.26596 (2) 0.05874 (2) 0.78772 (2) 0.03548 (6)
O1 0.37283 (15) 0.14787 (8) 0.71713 (8) 0.0396 (3)
O2 0.12094 (14) 0.16051 (8) 0.79780 (8) 0.0390 (3)
Li1 0.2425 (4) 0.2341 (2) 0.7385 (2) 0.0375 (7)
N1 0.3343 (2) 0.34149 (12) 0.79061 (12) 0.0511 (5)
N2 0.1764 (2) 0.30590 (12) 0.63874 (11) 0.0489 (4)
C1 0.3935 (4) 0.04698 (19) 0.89888 (16) 0.0686 (8)
H1A 0.4979 0.0543 0.8879 0.103*
H1B 0.3783 −0.0072 0.9220 0.103*
H1C 0.3628 0.0884 0.9376 0.103*
C2 0.1651 (2) −0.02775 (13) 0.70346 (14) 0.0475 (5)
H2A 0.0581 −0.0208 0.7024 0.071*
H2B 0.1899 −0.0831 0.7211 0.071*
H2C 0.2016 −0.0185 0.6488 0.071*
C3 0.4953 (2) 0.12953 (11) 0.67653 (11) 0.0333 (4)
C4 0.6347 (2) 0.13756 (12) 0.71342 (11) 0.0382 (4)
H4 0.6443 0.1558 0.7682 0.046*
C5 0.7597 (2) 0.11910 (13) 0.67083 (12) 0.0408 (4)
H5 0.8537 0.1252 0.6971 0.049*
C6 0.7502 (2) 0.09210 (13) 0.59107 (12) 0.0415 (4)
C7 0.6121 (2) 0.08379 (13) 0.55467 (12) 0.0426 (5)
H7 0.6032 0.0653 0.4999 0.051*
C8 0.4854 (2) 0.10193 (12) 0.59630 (12) 0.0384 (4)
H8 0.3917 0.0955 0.5699 0.046*
C9 0.8866 (3) 0.06967 (18) 0.54574 (16) 0.0625 (7)
H9A 0.9076 0.0117 0.5534 0.094*
H9B 0.9702 0.1018 0.5669 0.094*
H9C 0.8702 0.0810 0.4876 0.094*
C10 0.0086 (2) 0.16495 (12) 0.84883 (11) 0.0334 (4)
C11 −0.0424 (2) 0.09752 (13) 0.89039 (13) 0.0415 (4)
H11 0.0019 0.0460 0.8824 0.050*
C12 −0.1578 (3) 0.10467 (14) 0.94352 (14) 0.0502 (5)
H12 −0.1910 0.0575 0.9708 0.060*
C13 −0.2252 (2) 0.17834 (15) 0.95769 (13) 0.0471 (5)
C14 −0.1765 (2) 0.24514 (14) 0.91485 (13) 0.0458 (5)
H14 −0.2227 0.2963 0.9220 0.055*
C15 −0.0617 (2) 0.23886 (13) 0.86159 (12) 0.0407 (4)
H15 −0.0305 0.2859 0.8333 0.049*
C16 −0.3460 (3) 0.18714 (19) 1.01892 (18) 0.0705 (8)
H16A −0.4306 0.2151 0.9931 0.106*
H16B −0.3090 0.2188 1.0658 0.106*
H16C −0.3762 0.1331 1.0372 0.106*
C17 0.2618 (4) 0.37967 (17) 0.64916 (18) 0.0716 (8)
H17A 0.2149 0.4236 0.6164 0.086*
H17B 0.3615 0.3706 0.6285 0.086*
C18 0.2747 (4) 0.40580 (16) 0.7358 (2) 0.0719 (8)
H18A 0.3396 0.4540 0.7399 0.086*
H18B 0.1764 0.4221 0.7540 0.086*
C19 0.2068 (4) 0.2688 (2) 0.55914 (15) 0.0742 (8)
H19A 0.1775 0.3065 0.5154 0.111*
H19B 0.1509 0.2181 0.5528 0.111*
H19C 0.3121 0.2571 0.5565 0.111*
C20 0.0174 (3) 0.3218 (2) 0.64082 (18) 0.0748 (8)
H20A −0.0056 0.3462 0.6933 0.112*
H20B −0.0365 0.2705 0.6339 0.112*
H20C −0.0115 0.3592 0.5967 0.112*
C21 0.4918 (3) 0.3336 (2) 0.7846 (3) 0.1069 (14)
H21A 0.5149 0.3171 0.7291 0.160*
H21B 0.5284 0.2924 0.8233 0.160*
H21C 0.5389 0.3859 0.7972 0.160*
C22 0.2953 (4) 0.3605 (2) 0.87428 (18) 0.0885 (10)
H22A 0.3377 0.3194 0.9114 0.133*
H22B 0.1881 0.3606 0.8781 0.133*
H22C 0.3341 0.4142 0.8894 0.133*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
In1 0.03663 (9) 0.03030 (8) 0.04007 (8) −0.00028 (5) 0.00951 (6) 0.00208 (5)
O1 0.0382 (7) 0.0336 (7) 0.0480 (7) 0.0027 (6) 0.0178 (6) 0.0033 (6)
O2 0.0386 (7) 0.0350 (7) 0.0443 (7) 0.0027 (6) 0.0159 (6) 0.0039 (6)
Li1 0.0400 (17) 0.0319 (16) 0.0410 (16) −0.0002 (13) 0.0065 (13) 0.0024 (13)
N1 0.0498 (11) 0.0399 (10) 0.0635 (12) −0.0054 (8) 0.0004 (9) −0.0099 (9)
N2 0.0563 (11) 0.0452 (10) 0.0454 (9) 0.0051 (9) 0.0050 (8) 0.0086 (8)
C1 0.0794 (19) 0.079 (2) 0.0467 (13) 0.0079 (15) −0.0064 (13) 0.0139 (13)
C2 0.0454 (12) 0.0363 (11) 0.0613 (13) −0.0092 (9) 0.0056 (10) −0.0113 (10)
C3 0.0357 (9) 0.0257 (9) 0.0390 (9) 0.0004 (7) 0.0109 (7) 0.0026 (7)
C4 0.0403 (10) 0.0406 (10) 0.0338 (9) 0.0028 (8) 0.0047 (8) −0.0026 (8)
C5 0.0340 (10) 0.0437 (11) 0.0449 (10) 0.0035 (8) 0.0025 (8) 0.0018 (9)
C6 0.0427 (11) 0.0387 (11) 0.0441 (10) 0.0097 (9) 0.0145 (9) 0.0038 (9)
C7 0.0524 (12) 0.0421 (11) 0.0337 (9) 0.0043 (9) 0.0078 (8) −0.0047 (8)
C8 0.0375 (10) 0.0367 (10) 0.0411 (9) −0.0021 (8) 0.0027 (8) −0.0021 (8)
C9 0.0531 (14) 0.0774 (18) 0.0584 (14) 0.0221 (13) 0.0217 (12) 0.0033 (13)
C10 0.0319 (9) 0.0356 (10) 0.0329 (8) −0.0025 (7) 0.0048 (7) −0.0049 (7)
C11 0.0453 (11) 0.0326 (10) 0.0475 (10) −0.0047 (8) 0.0158 (9) −0.0079 (9)
C12 0.0567 (13) 0.0429 (12) 0.0525 (12) −0.0154 (10) 0.0244 (10) −0.0091 (10)
C13 0.0376 (10) 0.0536 (13) 0.0512 (11) −0.0087 (9) 0.0145 (9) −0.0189 (10)
C14 0.0381 (10) 0.0452 (12) 0.0546 (12) 0.0059 (9) 0.0073 (9) −0.0123 (10)
C15 0.0388 (10) 0.0376 (10) 0.0461 (10) 0.0028 (8) 0.0073 (8) −0.0001 (9)
C16 0.0580 (15) 0.0729 (18) 0.0832 (18) −0.0151 (13) 0.0398 (14) −0.0275 (15)
C17 0.093 (2) 0.0459 (14) 0.0762 (18) −0.0046 (14) 0.0121 (16) 0.0229 (13)
C18 0.092 (2) 0.0334 (12) 0.091 (2) −0.0066 (13) 0.0130 (17) −0.0044 (13)
C19 0.100 (2) 0.077 (2) 0.0470 (13) 0.0161 (17) 0.0141 (14) 0.0074 (13)
C20 0.0626 (16) 0.100 (2) 0.0619 (15) 0.0196 (16) −0.0017 (13) 0.0061 (16)
C21 0.0563 (18) 0.080 (2) 0.184 (4) −0.0067 (16) −0.005 (2) −0.043 (3)
C22 0.117 (3) 0.085 (2) 0.0633 (17) −0.023 (2) −0.0025 (17) −0.0287 (17)

Geometric parameters (Å, º)

In1—O1 2.1252 (13) C9—H9B 0.9800
In1—C1 2.138 (3) C9—H9C 0.9800
In1—O2 2.1414 (13) C10—C11 1.391 (3)
In1—C2 2.167 (2) C10—C15 1.393 (3)
O1—C3 1.352 (2) C11—C12 1.393 (3)
O1—Li1 1.889 (4) C11—H11 0.9500
O2—C10 1.346 (2) C12—C13 1.382 (3)
O2—Li1 1.926 (3) C12—H12 0.9500
Li1—N2 2.092 (4) C13—C14 1.386 (3)
Li1—N1 2.122 (4) C13—C16 1.522 (3)
N1—C21 1.446 (4) C14—C15 1.389 (3)
N1—C22 1.465 (4) C14—H14 0.9500
N1—C18 1.480 (4) C15—H15 0.9500
N2—C17 1.448 (3) C16—H16A 0.9800
N2—C20 1.471 (3) C16—H16B 0.9800
N2—C19 1.478 (3) C16—H16C 0.9800
C1—H1A 0.9800 C17—C18 1.487 (4)
C1—H1B 0.9800 C17—H17A 0.9900
C1—H1C 0.9800 C17—H17B 0.9900
C2—H2A 0.9800 C18—H18A 0.9900
C2—H2B 0.9800 C18—H18B 0.9900
C2—H2C 0.9800 C19—H19A 0.9800
C3—C4 1.393 (3) C19—H19B 0.9800
C3—C8 1.394 (3) C19—H19C 0.9800
C4—C5 1.389 (3) C20—H20A 0.9800
C4—H4 0.9500 C20—H20B 0.9800
C5—C6 1.383 (3) C20—H20C 0.9800
C5—H5 0.9500 C21—H21A 0.9800
C6—C7 1.380 (3) C21—H21B 0.9800
C6—C9 1.514 (3) C21—H21C 0.9800
C7—C8 1.392 (3) C22—H22A 0.9800
C7—H7 0.9500 C22—H22B 0.9800
C8—H8 0.9500 C22—H22C 0.9800
C9—H9A 0.9800
O1—In1—C1 106.45 (10) C6—C9—H9C 109.5
O1—In1—O2 78.32 (5) H9A—C9—H9C 109.5
C1—In1—O2 108.82 (9) H9B—C9—H9C 109.5
O1—In1—C2 107.23 (7) O2—C10—C11 122.42 (17)
C1—In1—C2 133.76 (11) O2—C10—C15 120.24 (17)
O2—In1—C2 108.30 (8) C11—C10—C15 117.34 (17)
C3—O1—Li1 142.41 (15) C10—C11—C12 120.8 (2)
C3—O1—In1 121.02 (11) C10—C11—H11 119.6
Li1—O1—In1 96.57 (11) C12—C11—H11 119.6
C10—O2—Li1 137.92 (16) C13—C12—C11 121.9 (2)
C10—O2—In1 125.00 (12) C13—C12—H12 119.1
Li1—O2—In1 94.94 (11) C11—C12—H12 119.1
O1—Li1—O2 89.85 (15) C12—C13—C14 117.28 (18)
O1—Li1—N2 116.35 (17) C12—C13—C16 122.0 (2)
O2—Li1—N2 126.61 (19) C14—C13—C16 120.7 (2)
O1—Li1—N1 117.30 (18) C13—C14—C15 121.4 (2)
O2—Li1—N1 122.97 (18) C13—C14—H14 119.3
N2—Li1—N1 86.82 (15) C15—C14—H14 119.3
C21—N1—C22 110.9 (3) C14—C15—C10 121.3 (2)
C21—N1—C18 111.5 (3) C14—C15—H15 119.4
C22—N1—C18 108.8 (2) C10—C15—H15 119.4
C21—N1—Li1 105.9 (2) C13—C16—H16A 109.5
C22—N1—Li1 116.8 (2) C13—C16—H16B 109.5
C18—N1—Li1 102.62 (18) H16A—C16—H16B 109.5
C17—N2—C20 111.9 (2) C13—C16—H16C 109.5
C17—N2—C19 109.5 (2) H16A—C16—H16C 109.5
C20—N2—C19 107.9 (2) H16B—C16—H16C 109.5
C17—N2—Li1 103.99 (18) N2—C17—C18 112.3 (2)
C20—N2—Li1 109.79 (18) N2—C17—H17A 109.1
C19—N2—Li1 113.73 (18) C18—C17—H17A 109.1
In1—C1—H1A 109.5 N2—C17—H17B 109.1
In1—C1—H1B 109.5 C18—C17—H17B 109.1
H1A—C1—H1B 109.5 H17A—C17—H17B 107.9
In1—C1—H1C 109.5 N1—C18—C17 113.0 (2)
H1A—C1—H1C 109.5 N1—C18—H18A 109.0
H1B—C1—H1C 109.5 C17—C18—H18A 109.0
In1—C2—H2A 109.5 N1—C18—H18B 109.0
In1—C2—H2B 109.5 C17—C18—H18B 109.0
H2A—C2—H2B 109.5 H18A—C18—H18B 107.8
In1—C2—H2C 109.5 N2—C19—H19A 109.5
H2A—C2—H2C 109.5 N2—C19—H19B 109.5
H2B—C2—H2C 109.5 H19A—C19—H19B 109.5
O1—C3—C4 121.17 (17) N2—C19—H19C 109.5
O1—C3—C8 120.74 (17) H19A—C19—H19C 109.5
C4—C3—C8 118.09 (17) H19B—C19—H19C 109.5
C5—C4—C3 120.61 (17) N2—C20—H20A 109.5
C5—C4—H4 119.7 N2—C20—H20B 109.5
C3—C4—H4 119.7 H20A—C20—H20B 109.5
C6—C5—C4 121.43 (19) N2—C20—H20C 109.5
C6—C5—H5 119.3 H20A—C20—H20C 109.5
C4—C5—H5 119.3 H20B—C20—H20C 109.5
C7—C6—C5 117.92 (18) N1—C21—H21A 109.5
C7—C6—C9 120.8 (2) N1—C21—H21B 109.5
C5—C6—C9 121.2 (2) H21A—C21—H21B 109.5
C6—C7—C8 121.53 (18) N1—C21—H21C 109.5
C6—C7—H7 119.2 H21A—C21—H21C 109.5
C8—C7—H7 119.2 H21B—C21—H21C 109.5
C7—C8—C3 120.41 (19) N1—C22—H22A 109.5
C7—C8—H8 119.8 N1—C22—H22B 109.5
C3—C8—H8 119.8 H22A—C22—H22B 109.5
C6—C9—H9A 109.5 N1—C22—H22C 109.5
C6—C9—H9B 109.5 H22A—C22—H22C 109.5
H9A—C9—H9B 109.5 H22B—C22—H22C 109.5

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5799).

References

  1. Adonin, N. Yu., Bardin, V. V., Flörke, U. & Frohn, H.-J. (2005). Z. Anorg. Allg. Chem. 631, 2638–2646.
  2. Aksu, Y. & Driess, M. (2009). Angew. Chem. Int. Ed. 48, 7778–7782. [DOI] [PubMed]
  3. Beachley, O. T. Jr, MacRae, D. J. & Kovalevsky, A. Y. (2003). Organometallics, 22, 1690–1695.
  4. Blake, M. P., Schwarz, A. D. & Mountford, P. (2011). Organometallics, 30, 1202–1214.
  5. Bradley, D. C., Frigo, D. M., Hursthouse, M. B. & Hussain, B. (1988). Organometallics, 7, 1112–1115.
  6. Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Briand, G. G., Decken, A. & Hamilton, N. S. (2010). Dalton Trans. 39, 3833–3841. [DOI] [PubMed]
  8. Briand, G. G., Decken, A. & Hoey, M. R. (2013). Acta Cryst. E69, m622. [DOI] [PMC free article] [PubMed]
  9. Bruker (1999). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
  10. Bruker (2006). SAINT. Bruker AXS inc., Madison, Wisconsin, USA.
  11. Clegg, W., Lamb, E., Liddle, S. T., Snaith, R. & Wheatley, A. E. H. (1999). J. Organomet. Chem. 573, 305–312.
  12. Häusslein, M., Hausen, H.-D., Klinkhammer, K. W., Weidlein, J. & Merz, K. (1999). Z. Anorg. Allg. Chem. 625, 1608–1618.
  13. Muñoz, M. T., Cuenca, T. & Mosquera, M. E. G. (2014). Dalton Trans. 43, 14377–14385. [DOI] [PubMed]
  14. Muñoz, M. T., Urbaneja, C., Temprado, M., Mosquera, M. E. G. & Cuenca, T. (2011). Chem. Commun. 47, 11757–11759. [DOI] [PubMed]
  15. Niemeyer, M. & Power, P. P. (1997). Inorg. Chim. Acta, 263, 201–207.
  16. Normand, M., Kirillov, E., Roisnel, T. & Carpentier, J.-F. (2012). Organometallics, 31, 1448–1457.
  17. Sheldrick, G. M. (2008a). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  18. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  20. Simmonds, H. R. & Wright, D. S. (2012). Chem. Commun. 48, 8617–8624. [DOI] [PubMed]
  21. Soki, F., Neudörfl, J.-M. & Goldfuss, B. (2008). J. Organomet. Chem. 693, 2139–2146.
  22. Trentler, T. J., Goel, S. C., Hickman, K. M., Viano, A. M., Chiang, M. Y., Beatty, A. M., Gibbons, P. C. & Buhro, W. E. (1997). J. Am. Chem. Soc. 119, 2172–2181.
  23. Uhl, W., Vester, A., Fenske, D. & Baum, G. (1994). J. Organomet. Chem. 464, 23–34.
  24. Veith, M. & Kunze, K. (1991). Angew. Chem. Int. Ed. Engl. 30, 95–97.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015023476/lh5799sup1.cif

e-71-0m257-sup1.cif (513.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015023476/lh5799Isup2.hkl

e-71-0m257-Isup2.hkl (434.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015023476/lh5799Isup4.cdx

I . DOI: 10.1107/S2056989015023476/lh5799fig1.tif

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.

CCDC reference: 1440726

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES